
REFERENCE MANUAL

Reference Manual
Contents
Technologies overview - 10

Abstract Syntax Notation 1 (ASN.1) - 12
Presentation ...12
ASN.1 module example ..12
ASN.1 types ...13

Base and string types 13
SEQUENCE types 14
SET types 14
CHOICE types 14
SEQUENCE OF types 15
SET OF types 15
Embedded type definitions 15
Type extensibility 16
Type constraints 16

Mapping from ASN.1 to C / SDL-RT, SDL & TTCN ..17
Including ASN.1 definitions 17
Naming conventions 17
Type mapping 18

Encoding and decoding ..24

SDL reference guide - 25
Introduction ...25

Benefits 25
Relation between SDL and other languages 25
SDL Components 26

Architecture ...26
System 26
Block(s) 26
Process(es) 27
Procedures 27

Communication ...30
Signal 31
Signal list definition 31
Channel 31

Behavior ..32
Text 32
Procedure 33
Macro 38
Composite state 39
Start 42
Stop 43
State 44
Input 47
Priority input 49
Save 50
Continuous signal 51
Page 2 PragmaDev Studio V6.0

Reference Manual
Output 53
Priority output 55
Task 57
Process creation 58
Timer 59
Decision 62
If statement 65
Loop statement 66
Conditional expression 69
Transition option 70
Connectors 71
Text extension 72
Comment 73

Data Types ..73
Basic types 73
Constants: SYNONYM 84
Renaming or constraining existing types: SYNTYPE 84
Complex types 84

Object Orientation ...92
Block class 92
Process class 93
Class diagram 97

SDL support in PragmaDev Studio- 100
Architecture and communication ...100
Behavior ..100
SDL Abstract Data Types ...102
Macros diagrams ...102
Composite state support ...104

SDL to C translation rules - 107
Conversion guidelines for declarations ...107

SYNTYPE declaration 107
NEWTYPE declarations 108
SYNONYM declaration 112
Variable declarations 113
FPAR and RETURNS declarations 114
Other declarations 115

Conversion guidelines for statements and expressions ...116
Assignment statements 116
Booleans operations 116
Numeric operations 116
Character string operations 117
String(…) types operations 117
Comparison operations 117
Conditional operator 118
Field extraction 118
Array indexing 118
SDL procedure calls 119
PragmaDev Studio V6.0 Page 3

Reference Manual
External procedures and operator calls 119
Inline values for structures or arrays 119

Nested scopes management ...120
Problem 120
C implementation 121

SDL to SDL-RT conversion - 127
Project tree ..127
Files ..128
Diagrams ..128

SDL diagrams 128
UML class diagrams 129
Other diagrams 129

SDL generation from C comments - 130
Architecture ...130
Behavior ..130
Example ..135

SDL and SDL-RT code generation - 137
Basic principles ..137
C code generation with a RTOS ..138

Principles 138
Generated files 143
Structure of a RTOS integration 144
Types used in the generated code 147
Generated constants and prototypes (RTDS_gen.h) 152
Additional generated types & macros for message handling 152
C translation for symbols 155
Memory allocation 176
Build process 177

C++ code generation for passive classes (UML) ...187
C++ code generation with or without a RTOS ...188

Objectives 188
Principles 188
Generated code 190
Whole system scheduling with no RTOS 194

C++ code generation for deployment simulation ...197
Basic principles 197
Nodes and components 197
The scheduler 198
The proxy 199
Process instance identifier 200
External messages 200
ns-3 default setup 201
Simulation tracing 201

C code generation with PragmaDev Studio C scheduler ..202
Process instance context handling 202
General architecture 202
Whole system scheduling with no RTOS 203
Page 4 PragmaDev Studio V6.0

Reference Manual
Limitations 203
Memory footprint 203

C code generation with external C scheduler (SDL only) ...205
Integration with external C code ..208

Function call 208
Message exchange 208

PragmaDev Studio footprints ...211
Static memory footprint 211
Dynamic memory allocation 212

RTOS integrations ..214
Common features 214
Creating a new RTOS integration for PragmaDev Studio 218
VxWorks integration 219
Posix integration 224
Windows integration 226
CMX RTX integration 233
uITRON 3.0 integration 241
uITRON 4.0 integration 242
Nucleus integration 244
OSE Delta integration 246
OSE Epsilon integration 249
ThreadX integration 252
FreeRTOS integration 254

Debugger integrations - 256
Tasking Cross View Pro debugger integration ...256

Version 256
Interface 256
Make utility 256
Restrictions 256

gdb debugger integration ...257
Version 257
Interface 257
Remote debugging 257

MinGW debugger integration ..259
Version 259
Library 259
Interface 259
Console 259
Restriction 259

lldb debugger integration ..261
Version 261
Interface 261

XRAY debugger integration ...262
Version 262
Interface 262
Restrictions 263

Multi 2000 debugger integration ...264
Version 264
PragmaDev Studio V6.0 Page 5

Reference Manual
Interface 264
Target connexion 264
Restrictions 264

TTCN-3 reference guide - 265
Acronyms ..265
TTCN-3 architecture ...265

Port type 265
Component type 265
Test system interface 266
Test system 266
Communication 267
Starting PTC behaviour 268

TTCN-3 test system anatomy ...269
TTCN-3 Control Interface 269
TTCN-3 Executable 273
TTCN-3 Runtime Interface 274

TTCN-3 concepts support in simulation and generation - - - - - - - - - - - 276
Types and values ..276
Operators ...277
Modular ..278
Template ...279
Template matching mechanisms ..280
Tests configuration ...280
Functions and altsteps ..282
Statements ...283
Operations ..284
Attributes ...286

Mapping of SDL data types to TTCN data types - - - - - - - - - - - - - - - - 287

TTCN-3 Code generation- 289
Basic principles ..289
Generated Files ...292
TTCN Control Interface ..292
Automatic main function generation (RTDS_TTCN_main.c) ..293
TTCN-3 module and testcase parameters ...293
Adaptation to a target ..294

Generated data types 294
Requirements 294
Communication from TSI to SUT 294
Communication from SUT to TSI 296
External Action 296
Log 296

Naming convention ..297
Debug information ...297
Types used in TTCN-3 generated code - RTDS_TTCN.h ..298
Generated TTCN-3 constants and prototypes - RTDS_TTCN_gen.h 301
External functions ...301
Page 6 PragmaDev Studio V6.0

Reference Manual
Built-in external functions 301
User defined external functions 301

PragmaDev Studio commands - 302
pragmastudio: main application ..302

Usage 302
Environment variables 303

pramastudiocommand: command line interface ..304
print_assoc: display association information 305
generate_code: code generation 306
import_PR: PR/CIF file import 306
export_PR: PR file export 307
export_xLIA: xLIA file export 309
generate_XML_RPC_wrappers: XML-RPC wrapper generation 309
shell: RTDS command line interface 312
simulate: automated simulation or debug 313
object_server: RTDS API server 314
diagram_diff: RTDS diagram diff utility 314
auto_merge: RTDS diagram merge utility 315

rtdsSearch: Low-level search utility ...315

Syntax & semantics check - 316

Simulator XML connection - 320
Separators ...320
Commands ..320
Simulator answers ..320

Information messages 321
Simulator state changes 321
Sent, received and saved messages 321
External calls and returns 323
Process instance creation and deletion 325
Semaphore creation, deletion, take and give 325
Proces instance SDL state change 326

XMI Import - 327
Diagrams supported ...327
XMI version ..327
Class diagram ...327

Structure of a Class diagram 327
Association and direct association 331
Aggregation and Composition 331
Inheritance 331
Generalization and Realization 332

Structural diagram ..332
Structure of a Structural diagram 332

Communication ...337
Links and ports 338
Interfaces and messages 340
Channel 342
PragmaDev Studio V6.0 Page 7

Reference Manual
Model browsing API- 345
General principles ..345

Architecture 345
Organization 346

Interface detailed description ...349
Class Agent 349
Class AgentClass 350
Class Association 350
Class Attribute 350
Class Channel 351
Class Class 351
Class Element 352
Class GlobalDataManager 353
Class Item 353
Class ObjectServer 357
Class Operation 357
Class Procedure 358
Class Project 358
Class Role 358
Class Signal 358
Class SignalList 359
Class SignalWindow 359
Class State 360
Class Symbol 361
Class Variable 361

SGML export for PragmaDev Studio documents - - - - - - - - - - - - - - - - 362
Principles ...362
Documentation generation process ..363
DSSSL stylesheet production ..364

Experimental exports - 366
Mapping of SDL to IF concepts ..366

Scope 366
Translation table 367
Detailed translation rules 370

Mapping of SDL to Fiacre concepts ..378
Scope 378
Translation table 378
Detailed translation rules 381

Mapping of SDL to xLIA concepts ...386
Scope 386
Translation rules 386
Detailed translation rules 389

GNU distribution- 401
gcc options ..401

Usage: cpp [switches] input output 401
Usage: cc1 input [switches] 403
Language specific options: 406
Page 8 PragmaDev Studio V6.0

Reference Manual
Target specific options: 413
Usage: gcc [options] file... 414

ld ..415
Options 415
emulation specific options 419

gdb commands ..420
Aliases 420
Breakpoints 420
Examining data 424
Files 428
Internals 429
Obscure features 430
Running the program 432
Examining the stack 436
Status inquiries 437
Support facilities 441
User-defined commands 444

ASCII table - 445

About the reference manual - 450
Lexical rules ...450

Index - 451
PragmaDev Studio V6.0 Page 9

Reference Manual
1 - Technologies overview

The following diagram shows an overview of all technologies available in PragmaDev
Studio and how they interact with each other:

Details on the support of all these technologies in PragmaDev Studio can be found in the
following sections:

• ASN.1 is described in “Abstract Syntax Notation 1 (ASN.1)” on page 12, as well as
its mapping to all other languages;

• SDL is described in “SDL reference guide” on page 25;

• Conversion from SDL to SDL-RT is described in “SDL to SDL-RT conversion” on
page 127;

• Conversion from SDL to Fiacre is described in “Mapping of SDL to Fiacre con-
cepts” on page 378;

• Conversion from SDL to IF is described in “Mapping of SDL to IF concepts” on
page 366;

Fiacre

SDL-RT
SDL

Definition sharing

Import/export/convert

Data definition

Modelling

Testing/validation

Implementation

External format

SDL-RT

ASN.1

SDL

IF

TTCN-3

C/C++

SDL-PR

MSC-PR

XMI

MSC

OTF

xLIA
Page 10 PragmaDev Studio V6.0

Reference Manual
• Conversion from SDL to xLIA is described in “Mapping of SDL to xLIA concepts”
on page 386;

• Conversion from SDL to C or C++ is described in “SDL to C translation rules” on
page 107 and “SDL and SDL-RT code generation” on page 137;

• Code generation from SDL-RT is described in “SDL and SDL-RT code genera-
tion” on page 137;

• TTCN-3 is described in “TTCN-3 reference guide” on page 265;

• Shared definitions between TTCN-3 and SDL is described in “Mapping of SDL
data types to TTCN data types” on page 287;

• Conversion from TTCN-3 to C or C++ is described in “TTCN-3 Code generation”
on page 289;

• Importing an XMI file as a SDL-RT project is described in “XMI Import” on
page 327.
PragmaDev Studio V6.0 Page 11

Reference Manual
2 - Abstract Syntax Notation 1 (ASN.1)

2.1 - Presentation
The Abstract Syntax Notation 1 or ASN.1 is a formal language allowing to specify any
kind of information exchanged within a software system in a machine- and programming
language-independent way.

The main elements of ASN.1 are data types and values based on these types. All these def-
initions are grouped in what is called an ASN.1 module.

ASN.1 also offers a set of encoding rules to transport any kind of data from any process
on any architecture to any other process on any other architecture in a deterministic and
non-ambiguous way. This allows to represent any kind of data independently of the
machine it is on and of the programming language used to handle it.

Note that PragmaDev Studio supports only a subset of all ASN.1 types and values that are
described in the following paragraphs.

2.2 - ASN.1 module example
Here is a simple ASN.1 module example, showing some type and value definitions in a
module:

People DEFINITIONS ::=
BEGIN

PersonLocation ::= ENUMERATED
{
home(0),
on-field(1),
roving(2)
}

PersonAge ::= INTEGER (0..150)

Person ::= SEQUENCE
{
nameIA5String,
locationPersonLocation,
age PersonAge OPTIONAL
}

john-doe Person ::=
{
name"John Doe",
locationhome,
age25
}

jane-doe Person ::=
{
name"Jane Doe",
locationroving
}

END

Enumerated type definition, with
integer values given to the allowed
values in the type.

Constrained integer type.

Equivalent to a struct or record.

7-bit ASCII string

Optional field

Value definition with all fields
specified.

Value definition with no value for
optional field.

Module definition
Page 12 PragmaDev Studio V6.0

Reference Manual
2.3 - ASN.1 types
The next paragraphs give a brief description of the main ASN.1 types and indicate if and
how these types are supported in PragmaDev Studio.

2.3.1 Base and string types
The following table gives all ASN.1 base and string types and wether they are supported
or not in PragmaDev Studio:

ASN.1 type Support Comments

BOOLEAN 

NULL 

INTEGER  Constraints specified as list of values or ranges are
supported, but not named numbers (e.g my-

value(42)).

ENUMERATED 

REAL  The usual dotted notation (e.g 3.1416) is supported,
but not the sequence like one with the mantissa, the

base and the exponent.

BIT STRING  Size constraints are supported.

OCTET STRING  Size constraints are supported.

OBJECT IDENTIFIER 

RELATIVE-OID 

IA5String  Used as a general string. No check is made on the
actual characters in the string, which can therefore

have values greater than 127.

NumericString  Used as a general string. No check is made on the
actual characters in the string, which can therefore

have values greater than 127.

GeneralizedTime  Used as a general string. No check is made on the
actual characters in the string, which can therefore

have values greater than 127.

PrintableString  Used as a general string. No check is made on the
actual characters in the string, which can therefore

have values greater than 127.

UTF8String  Used as a general string. No check is made on the
actual characters in the string, which can therefore

have values greater than 127.
PragmaDev Studio V6.0 Page 13

Reference Manual
2.3.2 SEQUENCE types
In ASN.1, SEQUENCE types are a set of named fields, equivalent to struct or record types
found in other languages. ASN.1 specificities include the possibility to mark a field as
optional, and to give a default value to a given field.

For example:
Person ::= SEQUENCE

{
first-nameIA5String,
last-nameIA5String,
ageINTEGER OPTIONAL,
registeredBOOLEAN DEFAULT TRUE
}

Values for SEQUENCE types are specified as field values separated with commas and
enclosed between curly brackets, with each field value preceded by the field name. For
example:
john-doe Person ::= { first-name "John", last-name "Doe", age 42 }

Values for optional fields or fields with a default value can be specified, but do not need
to be. All other fields must have a value. The order of the fields is not significant in val-
ues, since the field name is specified.

SEQUENCE types and values are supported in PragmaDev Studio, including OPTIONAL
fields, but not DEFAULT values on fields.

2.3.3 SET types
ASN.1 SET types are equivalent to SEQUENCE types, but the fields are unordered. This only
has an impact on encoding, which PragmaDev Studio does not support. So in PragmaDev
Studio, SET is just a synonym for SEQUENCE.

2.3.4 CHOICE types
ASN.1 CHOICE types allow to select exactly one out of several fields, similarly to union
types in other languages. For example:
MealEndingType ::= CHOICE

{
dessertDessertType,
cheeseCheeseType
}

Values for CHOICE types are specified with the name for the selected alternative followed
by its value after a colon. For example, supposing the DessertType type is an ENUMERATED
containing a value named chocolate-cake:
my-meal-ending MealEndingType ::= dessert:chocolate-cake

CHOICE types and values are fully supported in PragmaDev Studio.

(Other string types) 

ASN.1 type Support Comments
Page 14 PragmaDev Studio V6.0

Reference Manual
2.3.5 SEQUENCE OF types
ASN.1 SEQUENCE OF types are ordered lists of elements with the same type with an arbi-
trary length, which can be constrained. For example:
PolylineType ::= SEQUENCE SIZE(2..MAX) OF PointType

means a polyline is an ordered list of points with at least 2 points in it (MAX denotes the
maximum possible value of an INTEGER).

Values for SEQUENCE OF types are the values for all elements in order, enclosed with curly
brackets and separated with commas. For example, supposing PointType is a SEQUENCE
type with the fields x and y of type INTEGER:
my-polyline PolylineType ::= {{x 0, y 0}, {x 1, y 0}, {x 2, y 3}}

SEQUENCE OF types and values are fully supported in PragmaDev Studio.

2.3.6 SET OF types
ASN.1 SET OF types are unordered lists of elements with the same type. It is equivalent to
a mathematical set, but a given element can appear several times in it. For example:
PrimeFactorsSet ::= SET OF INTEGER

As for SEQUENCE OF types, the capacity of the set can be constrained via a SIZE constraint.

Values for SET OF types are written like values for SEQUENCE OF types:
twelve-prime-factors PrimeFactorsSet ::= { 2, 2, 3 }

but the order is not significant. So:
twelve-prime-factors PrimeFactorsSet ::= { 2, 3, 2 }

or:
twelve-prime-factors PrimeFactorsSet ::= { 3, 2, 2 }

represent the same value as the first one.

SET OF types and values are fully supported in PragmaDev Studio.

2.3.7 Embedded type definitions
In ASN.1, types for type components such as SEQUENCE fields, CHOICE alternatives or
SEQUENCE OF elements do not have to be specified as a type name; Their definition can be
embedded in the parent type. For example, the following definition is valid:
Player ::= SEQUENCE

{
full-nameSEQUENCE {first-name IA5String, last-name IA5String},
ageINTEGER (0..150) OPTIONAL,
roundsSEQUENCE OF

SEQUENCE
{
start-time SEQUENCE

{
hour INTEGER (0..23),
minute INTEGER (0..59),
second INTEGER (0..59),
},

won-points INTEGER
}

PragmaDev Studio V6.0 Page 15

Reference Manual
}

ASN.1 also allows:

• To extract the definition of a type embedded in another one via the field <
TypeName construct. For example, in the type above, the notation age < Player
would represent the type INTEGER (0..150).

• To include the complete specification of a SEQUENCE type within another one
using the COMPONENTS OF construct.

• To create a subtype of a complex type such as the one above and adding con-
straints on specific fields using the WITH COMPONENT(S) construct.

Embedding type definitions is supported in PragmaDev Studio, but none of the con-
structs above are.

2.3.8 Type extensibility
ASN.1 allows to define types that can be extended in future versions. For example:
Person ::= SEQUENCE

{
first-nameIA5String,
last-nameIA5String,
...
}

means the Person type contains at this point only the fields first-name and last-name,
but can be extended in the future. An example of a redefinition of this type for a future
version could be:
Person ::= SEQUENCE

{
first-nameIA5String,
last-nameIA5String,
...
ageINTEGER
}

Here again, the only impact is on the encoding for the type Person, as all fields have to be
specified completely in each version. So the syntax for extensibility is supported in Prag-
maDev Studio, but has no effect.

2.3.9 Type constraints
Single and multiple value constraints such as in INTEGER (0|1|4|256) are fully sup-
ported.

Simple range constraints such as in INTEGER (-4..4) are supported, but:

• Exclusive ranges as in INTEGER (-4<..<4) are not supported;

• The special values MIN and MAX respectively representing the minimum and max-
imum values for an INTEGER are not recognized.

Type inclusion constraints are not supported. So for example:
Day ::= ENUMERATED {monday, tuesday, wednesday, thursday,

friday, saturday, sunday }
Page 16 PragmaDev Studio V6.0

Reference Manual
WeekEnd ::= Day(saturday |sunday)

works, but:
LongWeekEnd ::= Day(WeekEnd | monday)

is not supported.

Since only the type IA5String is supported, constraints on the alphabet used in strings
are not supported.

The PATTERN keyword allowing to constrain a string via a regular expression is not recog-
nized.

Additional constraints put on SEQUENCE / SET / CHOICE fields or SEQUENCE OF / SET OF ele-
ments via the WITH COMPONENT(S) directive are not supported.

2.4 - Mapping from ASN.1 to C / SDL-RT, SDL & TTCN
ASN.1 type specifications can be included in any project, allowing to share data types and
values across the different languages PragmaDev Studio supports.

2.4.1 Including ASN.1 definitions
Including type and values definitions written is ASN.1 is made differently depending on
the language:

• For SDL-RT or SDL systems:
• An ASN.1 module included in the PragmaDev Studio project at the same pack-

age level as the system will be automatically included in it. Folders can be used
to separate the ASN.1 part from the SDL-RT / SDL part.

• If an ASN.1 module is in a package, a SDL-RT or SDL system containing a USE
clause on this package will import all definitions it contains.

• For TTCN-3 modules, including ASN.1 definitions is made via the standard
import mechanism, for example:
import from ASN1Definitions language "ASN.1:2002" all
This will import all definitions stored in the ASN.1 module called
ASN1Definitions, which must be in a file called ASN1Definitions.asn1 or
ASN1Definitions.asn at the same package level as the TTCN-3 module. Here
again, folders can be used to separate the different parts.
Note the year specified in the language clause for the import is actually ignored.
There is today no possibility to include a set of ASN.1 definitions from a module
in another package than the parent one for the TTCN-3 module.

2.4.2 Naming conventions
Generally, the names found in the ASN.1 definitions are reused in all mappings for all
languages. The only exception is the dash character ("-"), valid in ASN.1 identifiers but
neither in C, SDL-RT, SDL or TTCN-3 ones, which is transformed to an underscore ("_").
This cannot generate problems, as the underscore is forbidden in ASN.1 identifiers.

There are also a few cases where the ASN.1 identifier can be transformed; These are
described in the next paragraph.
PragmaDev Studio V6.0 Page 17

Reference Manual
2.4.3 Type mapping
The following table shows the mapping from the supported ASN.1 types to their equiva-
lent in C / SDL-RT, SDL and TTCN.

BOOLEAN

An ASN.1 BOOLEAN is mapped to a RTDS_BOOLEAN, which is defined as:
enum { FALSE = 0, TRUE = 1 }
in the file RTDS_CommonTypes.h in $RTDS_HOME/share/ccg/common. This file is
always automatically included in the generated code for all projects.

An ASN.1 BOOLEAN is mapped to a SDL Boolean.

An ASN.1 BOOLEAN is mapped to a TTCN-3 boolean.

INTEGER

An ASN.1 INTEGER is mapped to a C int. Note that constraints set on the
ASN.1 type are not considered in the generated C code, except if the type is
used as an index for an array, for example. In this case, the constraints are
used to figure out the minimum and maximum value for the type to set the
number of elements for the generated array.

An ASN.1 INTEGER is mapped to a SDL Integer. If constraints are set on the
ASN.1 type, they are recreated via a SDL SYNTYPE based on an Integer.

An ASN.1 INTEGER is mapped to a TTCN-3 integer. If constraints are set on
the ASN.1 type, they are recreated via a TTCN-3 sub-type of integer.

ENUMERATED

An ASN.1 ENUMERATED type is mapped to a C enum. The constants defined by
the type have the same name in C as in ASN.1, optionally prefixed with the
prefix for constants and/or the type name, depending on the generation
options. The numerical values set for the values are also used in the gener-
ated C type.

An ASN.1 ENUMERATED type is mapped to a SDL NEWTYPE defining a set of LIT-
ERALS, having the same name as the ASN.1 ENUMERATED type values. Note that
the numerical values set for the values will not be accessible through SDL, as
SDL does not support them on LITERALS. They will however be remembered
and used in any code generation from the SDL system.

An ASN.1 ENUMERATED type is mapped to a TTCN-3 enumerated type defining
the same constants. The same note as for SDL applies: The numerical values
set in the ASN.1 type are not accessible via TTCN-3, but are remembered and
used in generated code.

REAL
Page 18 PragmaDev Studio V6.0

Reference Manual
An ASN.1 REAL type is mapped to a C double. Constraints set on the type are
ignored.

An ASN.1 REAL is mapped to a SDL Real. If constraints are set on the ASN.1
type, they are recreated in SDL via a SYNTYPE based on Real.

An ASN.1 REAL is mapped to a TTCN-3 float. If constraints are set on the
ASN.1 type, they are recreated via a TTCN-3 sub-type of float.

BIT STRING

An ASN.1 BIT STRING is mapped to a RTDS_BitString, which is defined as a
struct with the following fields:

• __string is an array of unsigned char containing the actual bits in
the string.

• __length is an unsigned int giving the length of the bit string in
bits.

The definition of RTDS_BitString is in the file RTDS_String.h, automatically
included in the generated code for all projects.
If the ASN.1 type defines any size constraint for the type, it is actually ignored
in the generated code. The capacity for the __string array will be a constant
(today, 64 bytes, i.e 512 bits).
Convenience macros are provided to handle bit string comparisons and con-
catenation:

• RTDS_BIN_OCTET_STRING_CMP allows to compare two bit strings.
Parameters should be the first string, the second string and the con-
stant 8. It returns an integer having the same meaning as the stan-
dard C functions memcmp or strcmp.

• RTDS_BIN_STRING_CAT allows to concatenate two bit strings into a
third one. Its parameters are the bit string where the result must be
put, then the first and second bit strings to concatenate.

An ASN.1 BIT STRING type is mapped to a SDL BITSTRING type. If the ASN.1
type has constraints, they are recreated in SDL via a SYNTYPE based on a BIT-
STRING.

An ASN.1 BIT STRING type is mapped to a TTCN-3 bitstring type. If the
ASN.1 type has constraints, they are recreated via a TTCN-3 sub-type of bit-
string.
PragmaDev Studio V6.0 Page 19

Reference Manual
OCTET STRING

An ASN.1 OCTET STRING is mapped to a RTDS_OctetString, which is defined as
a struct with the following fields:

• __string is an array of unsigned char containing the actual bytes in
the string.

• __length is an unsigned int giving the length of the octet string in
bytes.

The definition of RTDS_OctetString is in the file RTDS_String.h, automatically
included in the generated code for all projects.
If the ASN.1 type defines any size constraint for the type, it is actually ignored
in the generated code. The capacity for the __string array will be a constant
(today, 256 bytes).
Convenience macros are provided to handle octet string comparisons and
concatenation:

• RTDS_BIN_OCTET_STRING_CMP allows to compare two octet strings.
Parameters should be the first string, the second string and the con-
stant 1. It returns an integer having the same meaning as the stan-
dard C functions memcmp or strcmp.

• RTDS_OCTET_STRING_CAT allows to concatenate two octet strings into
a third one. Its parameters are the octet string where the result must
be put, then the first and second octet strings to concatenate.

An ASN.1 OCTET STRING type is mapped to a SDL OCTETSTRING type. If the
ASN.1 type has constraints, they are recreated in SDL via a SYNTYPE based on
an OCTETSTRING.

An ASN.1 OCTET STRING type is mapped to a TTCN-3 octetstring type. If the
ASN.1 type has constraints, they are recreated via a TTCN-3 sub-type of
octetstring.

IA5String

An ASN.1 IA5String is mapped to a RTDS_String, which is an array of charac-
ters. Today, the size constraints set on the ASN.1 type are not taken into
account and the capacity of the array is a constant (256 characters in the cur-
rent version).
The type RTDS_String is defined in the file RTDS_String.h, along with func-
tions allowing to manipulate strings:

• RTDS_StringAssign(s1, s2) copies s2 into s1 in a safe way;

• RTDS_StringCat(s1, s2, s3) concatenates s2 and s3 and puts the
result in s1, taking care of buffer overflows;

• RTDS_SubString(s1, s2, i, len) extracts the substring of s2 start-
ing at index i and with the length len and puts it in s1;

• RTDS_StringReplace(s1, s2, i, len, s3) replaces the portion of s2
starting at index i and with the length len with s3, and puts the
results in s1.
Page 20 PragmaDev Studio V6.0

Reference Manual
An ASN.1 IA5String is mapped to a SDL CharString. If there are constraints
on the ASN.1 type, they are recreated via a SDL SYNTYPE based on a
CharString.

An ASN.1 IA5String is mapped to a TTCN-3 charstring. If there are con-
straints on the ASN.1 type, they are recreated via a TTCN-3 subtype
charstring.

SEQUENCE / SET

An ASN.1 SEQUENCE or SET type is mapped to a C struct type with the same
fields.

An ASN.1 SEQUENCE or SET type is mapped to a SDL NEWTYPE STRUCT with the
same fields.

An ASN.1 SEQUENCE or SET type is mapped to a TTCN-3 record type with the
same fields.

CHOICE

An ASN.1 CHOICE type is mapped to a set of 3 C types:

• An enum type defining the constants corresponding to the field
names in the CHOICE. This type is named t_<type name>.

• A union type for the alternative, with the same fields as the CHOICE
type. This type is named _<type name>_choice.

• An overall struct type, having the same name as the ASN.1 type,
and containing the fields present, with the enum type t_<type name>,
and __value, with the union type _<type name>_choice.

This definition is derived from the SDL notion of CHOICE type, where the
selected alternative is known via a pseudo-field named present, containing
the field name for the chosen alternative.

An ASN.1 CHOICE type is mapped to a SDL CHOICE type with the same fields.

An ASN.1 CHOICE type is mapped to a TTCN-3 union type with the same fields.
PragmaDev Studio V6.0 Page 21

Reference Manual
SEQUENCE OF

An ASN.1 SEQUENCE OF type is mapped to a C struct type with the following
fields:

• elements, which is an array of values with the type of an element in
the SEQUENCE OF;

• length, which is an unsigned int giving the actual number of ele-
ments in the array.

If a constraint is defined on the size of the SEQUENCE OF, it is used to define
the size of the elements array. If there isn’t any constraint, the constant
RTDS_MAX_STRING is used, which is usually 256 unless explicitly defined with
another value.
A convenience macro is defined in RTDS_String.h, allowing to concatenate
two sequences with any types and copy the result to a third one. It is called
RTDS_SEQUENCE_CONCAT and takes as parameters the sequence that will receive
the result, then the 2 sequences to concatenate. The file RTDS_String.h is
automatically included in the generated code for all projects.

An ASN.1 SEQUENCE OF type is mapped to a SDL NEWTYPE using the String(…)
generator. If the ASN.1 type has a size constraint, it is translated to the same
constraint on the SDL type (CONSTANTS clause with a SIZE(…) constraint).

An ASN.1 SEQUENCE OF type is mapped to a TTCN-3 record of type. If the
ASN.1 type has a size constraint, it is translated to the same constraint on the
TTCN-3 type (length(…) constraint).
Page 22 PragmaDev Studio V6.0

Reference Manual
SET OF

An ASN.1 SET OF type is translated to a C type that is not intended to be used
directly. To manipulate a SET OF with type T in C code, the following macros
and functions should be used:

• RTDS_SET_OF_INIT(s): Initializes a set. This macro must be called
before the set variable is used, or the behavior of the other macros is
undefined.

• RTDS_SET_OF_T_COPY(s1, s2): Copies the set s2 into the set s1.

• RTDS_SET_OF_T_INCL(s1, s2, elt): Creates a copy of the set s2,
adds the element elt to it and puts the result in s1.

• RTDS_SET_OF_T_DEL(s1, s2, elt): Creates a copy of the set s2,
removes the element elt from it and puts the result in s1. If elt is
not in s2, s2 is just copied to s1.

• RTDS_SET_OF_LENGTH(s): Returns the number of elements in the set
s as an unsigned int.

• RTDS_SET_OF_T_TAKE(s): Returns a random element from the set s.
The set is not modified.

• RTDS_setOf_T_cmp(op, s1, s2): Compares two sets for equality
and/or inclusion. The operator op has the type
RTDS_setOfCompareOperator, defined in RTDS_Set.h, which can be
RTDS_SET_OF_CMP_ followed by:
• EQ / NE to test for set equality / inequality;
• LT / LE to test if s1 is a strict / non-strict subset of s2;
• GT / GE to test if s1 is a strict / non-strict superset of s2.

• RTDS_setOf_T_in(elt, s): Tests for the inclusion of elt in the set s.

• RTDS_SET_OF_T_FIRST(s, elt): Allows to initialize a iteration on the
elements of the set s. After the call, elt will be set to one of the ele-
ment in the set. To iterate over the other ones, use
RTDS_SET_OF_T_NEXT. Returns a boolean value indicating if elt was
actually set. If it weren’t, the set is empty.

• RTDS_SET_OF_T_NEXT(s, elt): Allows to iterate over all the elements
in the set s. Must be called only after a call to RTDS_SET_OF_T_FIRST.
Sets the elt to the next element in the set if possible, and returns a
boolean value indicating if elt was actually set. If not, it means there
are no more elements to iterate over. Note that the macros
RTDS_SET_OF_T_FIRST and RTDS_SET_OF_T_NEXT are not thread-safe
and shouldn’t be used on the same set in parallel.

In all macros above, s1 and s2 must be sets and have the exact same type, and
elt must have the type of an element in the set(s), or the behavior is unde-
fined.

These macros and functions are defined either in RTDS_Set.h or in the gener-
ated file containing the type itself. The functions are implemented in the gen-
erated file RTDS_comp_functions.c.
PragmaDev Studio V6.0 Page 23

Reference Manual
2.5 - Encoding and decoding

For ASN.1 used in SDL models PragmaDev Studio code generator integrates BER/DER
encoders and decoders. C code for the ASN.1 file is generated via an external utility,
which is included in the distribution. This utility is called asn1c and is available freely at
the following address: http://lionet.info/asn1c/compiler.html.
The generated code includes definitions for C types representing the ASN.1 types as well
as the code needed to encode and decode values of these types in the BER/DER standard
ASN.1 encoding.
Detailed information is provided in the User Manual.

An ASN.1 SET OF type is mapped to a SDL NEWTYPE using the Bag(…) genera-
tor. If the ASN.1 type has a size constraint, it is translated to the same con-
straint on the SDL type (CONSTANTS clause with a SIZE(…) constraint).

An ASN.1 SET OF type is mapped to a TTCN-3 set of type. If the ASN.1 type
has a size constraint, it is translated to the same constraint on the TTCN-3
type (length(…) constraint).
Page 24 PragmaDev Studio V6.0

http://lionet.info/asn1c/compiler.html
http://lionet.info/asn1c/compiler.html

Reference Manual
3 - SDL reference guide

3.1 - Introduction
Specification and Description Language (SDL) is a formal language standardized by the
International Telecommunication Union (ITU) as the Z.100 Recommendation. It is an
object-oriented language created to describe complex, event-driven, and interactive
applications involving many concurrent activities, communicating together through sig-
nals.

SDL is initially introduced to provide a precise specification and description of the tele-
communications systems’ behavior so that it is possible to analyze and interpret them
without ambiguity. The objectives of SDL include providing a language that is easy to
learn, use and interpret, while implementing a precise system specification.

3.1.1 Benefits
The advantage of SDL language is the ability to produce a complete system specification.
It describes the structure, behavior, and data of distributed communication systems
accurately, while eliminating ambiguities and thus, guarantees system integrity. With the
presence of a complete semantics, the SDL description can be rapidly checked and
debugged using compilers, as well as simulators during the modeling process (or even
upon its completion). This enables a very fast correction model. In addition, SDL gives
users a choice of two different syntactic forms to use when representing a system; graph-
ical and textual phrase representation, which makes it an advantageous language.

SDL Description

3.1.2 Relation between SDL and other languages
SDL has the ability to interface with other languages, as well as other high-level notations
frequently used for system analysis. This includes Unified Modeling Language (UML)
object models and Message Sequence Chart (MSC) use-cases, as well as Abstract Syntax

SDL Editor SDL
Description

SDL
Compiler

Simulator
Validator

Test Case
Generator

C Code
Generator

Errors checking

Dynamics errors checking

TTCN-3 test suite

Application (.exe…)
PragmaDev Studio V6.0 Page 25

Reference Manual
Notation One (ASN.1) for data-type definitions. Besides that, tests validations can also be
performed by using Testing and Test Control Notation version 3 (TTCN-3).

3.1.3 SDL Components
A set of extended Finite State Machines (FSM), running in parallel, represents the funda-
mental theoretical model of an SDL system. Various entities are independent of each
other and they communicate with predefined signals.

The following components are provided to form an SDL description:

• Structure: Agents and procedure hierarchy

• Communication: Channels, connection, signals and signal list

• Behavior: Processes

• Data: Abstract Data Types (ADT)

• Inheritance: Relations and specialization description

3.2 - Architecture
A structure is composed of agents. The term agent is used to denote a system, block or
process that contains one or more extended finite state machines.

3.2.1 System
The overall design of an SDL architecture is call a system. Everything that is outside the
system is called the environment. An SDL description must contain at least a system.
There is no specific graphical representation for a system in SDL. However, a block rep-
resentation can be used if needed since a system is the outermost block.

3.2.2 Block(s)
A block is a structuring element that does not imply any physical implementation on the
target. A system must have at least a block. A block can contain other blocks and pro-
cesses, which allows large systems definition.

A block is represented by a solid rectangle:

Syntax: <block name>(<card,>)

• <block name>: name of the block

• <card>: cardinality

Block symbol Example of a block declaration
Page 26 PragmaDev Studio V6.0

Reference Manual
3.2.3 Process(es)
To describe a block’s functionality, processes are inserted. A process contains the code to
be executed in the form of an FSM. It may contain other processes. A process is repre-
sented by a rectangle with cut corners:

Syntax: <process>(<card>)

• <process>: process name

• <card>: cardinality

It is possible to have more than an instance of a particular process running in parallel
independently. The number of instances presents during the start-up and the maximum
number of instances running are declared between parenthesis after the name of the pro-
cess. If these values are not defined, the number of instances at start-up is 1 by default
and infinite for the maximum number of instances.

Below is an example of a process that has no instance at start-up and has a maximum of
10 instances:

Example of a process definition

Every process contains four implicit variables, which are used to output a signal to a par-
ticular process. They are:

• SELF: Pid of the current instance

• SENDER: Pid of the instance that sent the last input signal

• PARENT: Pid of the instance that created the current instance

• OFFSPRING: Pid of the last instance created

3.2.4 Procedures
The emplacement of a procedure may be anywhere in a diagram: system, block or pro-
cess. It is usually not connected to the architecture. However, since it can output mes-
sages, a channel can be connected to a procedure for informational purpose. A
procedure may return a value, and it may also contain nested procedure declarations.

Process symbol Example of a process declaration
PragmaDev Studio V6.0 Page 27

Reference Manual
3.2.4.1 SDL procedure

Procedures may also contain an FSM and procedures calls may be recursive. Below is the
procedure declaration symbol in SDL:

Syntax: <procedure>

• <procedure>: procedure name

Please note the parameters and the return type of the procedure are defined in the proce-
dure diagram in a text symbol.

The syntax is:
FPAR [IN | IN/OUT] <parameter name> <parameter type>, ... ;
RETURNS <return type>;

More information can be found in “Procedure” on page 33.

Procedure declaration symbol Example of a procedure
declaration
Page 28 PragmaDev Studio V6.0

Reference Manual
Relation between agents and procedures in a system:

SDL Structure

3.2.4.2 Remote procedure

SDL also supports remote procedure calls: a procedure implemented in a process p1 can
be called remotely from another process p2. The procedure must be declared as REMOTE in
an ancestor of both p1 and p2, be declared as EXPORTED in p1 and declared again as
IMPORTED in p2.

The syntax for the REMOTE and IMPORTED declarations is:
REMOTE | IMPORTED PROCEDURE <procedure name> (

<parameters>
) -> <return type>;

<parameters> are declared like for an SDL procedure.

Procedure Pr1

Process Proc

Block B1System Example
PragmaDev Studio V6.0 Page 29

Reference Manual
For example:

As all procedures, exported procedures have access to their parent process’s variables, so
a process can share some of the information it has via a remote procedure.

3.2.4.3 External procedure

It is also possible to call a procedure implemented in a different language such as C. To
do so the procedure must be declared as external in a declaration symbol.

3.3 - Communication
The communication in SDL is based on:

• Signal

• Signal list definition

• Channel
Page 30 PragmaDev Studio V6.0

Reference Manual
3.3.1 Signal
A signal instance is a flow of information between agents. It is an instantiation of a signal
type defined by a signal definition. A signal instance can be sent by either the environ-
ment or an agent and is always directed to either an agent or the environment. A signal
has a name and a parameter that is basically a pointer to some data. Below is an example
of a signals definition:

Signals definition

3.3.2 Signal list definition
A signal list is used to gather all possible signals that run through a channel. In order to
indicate a signal list in a list of signals that go through a channel, the signal list is sur-
rounded by parenthesis. Possible signals that can be received by/transmitted to a pro-
cess/environment are listed between brackets, separated by commas. Below is an
example of a signal list:

Signals definition with signal list

3.3.3 Channel
SDL is event-driven, which mean that communication is based on signals transmission/
reception. A channel represents a transportation path for signals. Signals are present at
the destination endpoint of a channel and they pass through it, which connect agents and
end up in the processes’ implicit queues. Represented by one or two-way arrow(s), a
channel can be considered as one or two independent unidirectional channel paths,
between two agents or between an agent and its environment. A channel name is written
next to the arrow without any specific parameter:

Channel symbol

[signal1,(signalList1),signal2]

channelName

channelName

[signal1,
(signalList1)
,

[signal2,
signal3,
signal4]

[signal1,
(signalList2),
signal2]

[]
One independent channel path:

Two independent channel paths:
PragmaDev Studio V6.0 Page 31

Reference Manual
An example of channels representation between two processes and the environment in a
system:

Example of channels representation

Note:

Same signal can be listed in both directions. If in a direction, there are no signals sent/
received, the signal list definition is left blank.

3.4 - Behavior
An SDL system/block hierarchy is unfortunately only a static description of the system
structure. In order to control a system, the dynamic behavior of the system is described
in the processes through extended FSMs, communicating with signals. A process state
determines what behavior the process will have upon reception of a specific action. A
transition is the code between two states. The SDL symbols, as well as SDL expressions
that are frequently used to describe a system’s behavior are listed in this section.

3.4.1 Text

Syntax: <SDL declarations>, SDL declarations.

Note that a comma (,) is used to separate between SDL declarations of the same type,
whereas a semicolon (;) is used to separate between different types of SDL declarations.

SDL Symbol Description

A text is used in any diagram. Its content
is usually SDL declarations.

MySystem
Page 32 PragmaDev Studio V6.0

Reference Manual
Example:

Example on text

In the first text symbol, two different types of SDL declarations are defined: SIGNAL and
SYNONYM. These two types are separated by a semicolon. However, different signals sign-
alIn and signalOut are separated by a comma.

The second example shows different elements of different data types definition. Different
elements of a data type (for example integers a and b) are separated by a comma. Differ-
ent data types (integer and charstring) declared in the text are also separated by a
comma.

3.4.2 Procedure

3.4.2.1 Procedure declaration

Syntax: <procedure>, procedure name

3.4.2.2 Procedure call

Syntax: <return variable> = <procedure name>({<parameters>}*)

• <return variable>: value returned upon procedure call

• <procedure name>: procedure name

• <parameters>: parameters

SDL Symbol Description

A procedure can be defined in any dia-
gram: system, block or process. The pro-
cedure’s name is precised in the block. A

procedure is usually not connected to
the architecture. However, since it can
output signals, a channel can be con-

nected to it for informational purpose. A
procedure is invoked by calling the pro-

cedure definition.

SDL Symbol Description

Used to call an SDL procedure.
PragmaDev Studio V6.0 Page 33

Reference Manual
Example:

Example of procedures declarations and calls

Example above shows four different ways of a procedure call in SDL:

Procedure, proc1

proc1 shows the utilization of SDL syntax IN/OUT to modify the variables values defined
in the process pProc directly in the procedure. In this example, a procedure call symbol is

System architecture

Procedures

Procedures calls

Process pProc
Page 34 PragmaDev Studio V6.0

Reference Manual
used to call proc1 upon reception of signal1. It takes two parameters: j and k of type
integer, which are the variables to be modified.

The procedure proc1

proc1 takes two formal parameters (FPAR) of type IN/OUT which are integers j and k.
Upon termination of proc1, j and k values are updated.

FSM in proc1

Observation in SDL

FPAR
IN input parameters
IN/OUT input/output parameters
PragmaDev Studio V6.0 Page 35

Reference Manual
Procedure, proc2

proc2 is an example of a procedure containing states.

The procedure proc2

FSM in proc2

MSC Tracer
Page 36 PragmaDev Studio V6.0

Reference Manual
Procedure, proc3

proc3 is an example of a procedure call using CALL keyword from a task block. The pro-
cedure returns a value in the return symbol. Before entering proc3, i equals to 0 and it is
updated to 100 upon proc3 termination.

The procedure proc3

Observation in SDL Simulator,
i is the value returned by b

FSM in proc3
PragmaDev Studio V6.0 Page 37

Reference Manual
Procedure, proc4

Another procedure, proc5 is nested in proc4.

The procedure proc4 and nested procedure, proc5

3.4.3 Macro

3.4.3.1 Macro declaration

Syntax: <macro>, macro name

SDL Symbol Description

Each macro call in an SDL specification
must be preceded by the macro defini-

tion before the specification can be ana-
lyzed. A macro call is replaced by the
contents of the corresponding macro

during the compilation.

MSC Tracer

FSM in proc4

FSM in
Page 38 PragmaDev Studio V6.0

Reference Manual
3.4.3.2 Macro call

Syntax: <macro name>({<parameters>}*)

• <macro name>: macro name, defined in the macro declaration

• <parameters>: parameters names

Example:

Example of a macro

3.4.4 Composite state

3.4.4.1 Composite state definition

Syntax: <state>, composite state name

SDL Symbol Description

Used to call a macro by specifying its
name.

SDL Symbol Description

A composite state definition indicates
that the state machine has a composite
state. It is a state composed of concur-

rent states machines, also known as ser-
vices.

A process FSM
containing a macro

declaration an a macro mMacro

Observation in SDL
PragmaDev Studio V6.0 Page 39

Reference Manual
3.4.4.2 Composite state

Syntax: <state>, composite state name, refers to the composite state machine definition
name.

Once the FSM is in a composite state, signals are routed towards the corresponding ser-
vice. In a situation where a signal can be received by both the super-FSM and the service,
the super-FSM has the priority.

3.4.4.3 Service

Syntax: <service name>, service name

Each service handles a different subset of signals. The super-FSM also handles its own
inputs. When a signal is for one of the services, the super-state does not change. How-
ever, when a signal is for the super-FSM, all services are terminated.

SDL Symbol Description

A dashed state symbol is used to indicate
that the FSM is getting into a composite

state.

SDL Symbol Description

Concurrent state machine/service sym-
bol, it is connected to channels. Each

signal is routed to a specific service; the
same signal can not be received by two

different services.
Page 40 PragmaDev Studio V6.0

Reference Manual
Example:

A system composed of two pSender

pReceiver

myCompStat

myService1

myService
PragmaDev Studio V6.0 Page 41

Reference Manual
Example of composite state definition and services

3.4.5 Start

This symbol marks the starting point for the execution of a process. The transition
between the Start symbol and the first state of the process is called the start transition.
This transition is the first thing the process will do when started. During this initializa-
tion phase, the process can not receive signals. All other symbols are allowed.

SDL Symbol Description

Initial state of an FSM

MSC Tracer
Page 42 PragmaDev Studio V6.0

Reference Manual
Syntax: none

Example:

Start example

3.4.6 Stop

A process can terminate itself with this symbol. Note that a process can only terminate
itself; it can not kill another process.

Syntax: none

Example:

Stop example

SDL Symbol Description

Process termination
PragmaDev Studio V6.0 Page 43

Reference Manual
3.4.7 State

The symbols that are allowed to be followed after a state are:

• Input

The signal could be coming from an external channel, or it could be a timer signal
started by the process itself.

• Continuous signal
When reaching a state with continuous signals, the expressions in the continuous
signals are evaluated, following the defined priorities. All continuous signals are
evaluated after input signals.

• Save
In a situation where the incoming signal can not be treated in the current process
state, it is therefore saved until the process state changes. When the process state
has changed, the saved messages are treated first (before any other signals in the
queue and continuous signals).

Syntax: <state>, state name, where any names can be defined.

In addition, specific symbols can be introduced, which are:

SDL Symbol Description

The state symbol means that the process
is waiting for some input to go on.

Symbol Description

(,) Used to specify several states in a state
symbol when several states have identi-

cal transitions

* Any state in the process, this notation is
used in the state symbol for adding the

same transition to all the states in a pro-
cess

*(,) All the states in a process except for the
states mentioned in the brackets

- The state remains unchanged. It means
that after executing the transition, the

state will remain unchanged.
Page 44 PragmaDev Studio V6.0

Reference Manual
Examples:

Several states in a state symbol

Any state in a process
PragmaDev Studio V6.0 Page 45

Reference Manual
Any state except states listed in the bracket (in this example, all states except state3)

MSC Tracer
Page 46 PragmaDev Studio V6.0

Reference Manual
The state idle remains unchanged

3.4.8 Input

Syntax: <signal>(params...>]

• <signal>: signal name

• <params...>: parameters names

NB: input symbols are also used for state timers as described in “Timer supervised
states” on page 61.

In order to receive the parameters, it is necessary to declare the variables that will be
assigned to the parameters values in accordance with the signal definition.

SDL Symbol Description

The signal input symbol in SDL, it is
always followed by an SDL state.

MSC Tracer
PragmaDev Studio V6.0 Page 47

Reference Manual
Example:

Input signals example

A system with two processes pSend

pReceive

MSC Tracer
Page 48 PragmaDev Studio V6.0

Reference Manual
3.4.9 Priority input

Syntax: <signal>(<params...>)

• <signal>: signal name

• <params>: parameters names

Example:

Priority input example

SDL Symbol Description

In some cases, user can indicate in the
FSM that reception of a signal takes pri-

ority over reception of other signals
using the signal priority input symbol.

FSM in pReceive
MSC Tracer
PragmaDev Studio V6.0 Page 49

Reference Manual
3.4.10 Save

Syntax: <signal>, input signal name

Example:

Save example

In the example above, idle can receive two signals: signal1 and signal2:

• when signal2 is received, it will be saved

• upon reception of signal1, go to state1

SDL Symbol Description

In an FSM, a process may have interme-
diate states that can not deal with a new
request until the on-going job is done.

These new requests should not be lost. It
must be kept until the process reaches a
stable state. Therefore, save concept has
been introduced to hold the input signal

until it can be treated. No symbol is
introduced after this symbol in an FSM.

MSC Tracer
Page 50 PragmaDev Studio V6.0

Reference Manual
Once in state1, since signal2 has been saved earlier, it has the priority over signal1.
Thus, it will first be treated before the signal1.

3.4.11 Continuous signal

A continuous signal is an expression that is evaluated right after a process reaches a new
state. A continuous signal symbol can be followed by any other symbol except:

• another continuous signal

• an input signal

Note that input signals have always priority over a continuous signal.

Syntax: <expr.> PRIORITY <prio>

• <expr.>: any condition that returns a TRUE/FALSE expression

• PRIORITY: an SDL state may contain several continuous signals. Therefore, a pri-
ority level needs to be defined with this keyword.

• <prio>: the priority level, lower value corresponds to higher priority

Below is an example of a continuous signal. In this example, when the process is in
ready:

• the process will firstly execute the signal2 since it has been saved earlier.

• the expression j>0 is evaluated since it has the highest priority. If the expression
returns false, then:

SDL Symbol Description

Used to verify the value of a variable (an
if statement)
PragmaDev Studio V6.0 Page 51

Reference Manual
• the expression i>0 is evaluated. Else, this expression will never be evaluated.

An example on continuous signal

MSC Tracer
Page 52 PragmaDev Studio V6.0

Reference Manual
If several continuous signals have the same priority, a non-deterministic choice is made
between them.

3.4.12 Output

When an output signal has parameters, user defined local variables are used to assign the
parameters.

Syntax: <signal>[<params...>] [TO <destination> | VIA <path>]

• <signal>: output signal name.

• <params...>: parameters’ values.
• <destination>:

• <process name>: the process name where the signal is to be sent to.
• <pid variable>: the Pid of the process the signal is to be sent to.
• ENV: the environment.
• PARENT: the parent process.
• OFFSPRING: the last chil process created.
• SELF: it is possible to send a message to self but it is to be avoided as this might

reflect a bad construction.
• <path>:

• <channel name>: the channel name the signal should go through.
• <gate name>: the gate name defined in class of process on which a channel is

connected to.

The various output configuration for the receiver are summarized in the table below.
Note that OK means that only one process instance receives the signal output, which is
generally the desired behavior in a system:

SDL Symbol Description

Used for information exchange, it puts
data in the receiver’s queue in an asyn-
chronous way. The receiver information
can be ommitted if it can be computed

from the architecture.

Situation Output Result

one process one instance simple OK

several processes mono-instance simple non-deterministic choice
of one process

several processes mono-instance VIA path OK

several processes mono-instance TO processName OK
PragmaDev Studio V6.0 Page 53

Reference Manual
Example:

Example of output signals for processA

one process, several instances simple non-deterministic choice
of one instance

one process, several instances TO pid_variable OK

several processes with several instances simple non-deterministic choice
of one process, then

non-deterministic choice
of one instance

several processes with several instances VIA path non-deterministic choice
of one instance

several processes with several instances TO processName non-deterministic choice
of one instance

several processes with several instances TO pid_variable OK

Situation Output Result
Page 54 PragmaDev Studio V6.0

Reference Manual
3.4.13 Priority output

Syntax: <signal>(<params...>)

• <signal>: signal output name

• <params...>: parameters values

Example:

In the example below, the process Sender sends an output signal, before sending a prior-
ity output signal to the process Receiver. In the process Receiver, an FSM that validates
that reception of the two signals from Sender is inserted.

SDL Symbol Description

When priority output is inserted, the
system prioritizes this signal to be sent
to the receiver before any other output

signals, even though it is sent after other
signals in an FSM.
PragmaDev Studio V6.0 Page 55

Reference Manual
MSC Tracer below is the result of the simulation. Observation shows that the signal
mPrio is first received by the Receiver, followed by the signal mNonPrio, which validates
the usage of priority output signal:

A system with
two processes
Page 56 PragmaDev Studio V6.0

Reference Manual
Example of priority output

3.4.14 Task

Syntax: <actions...>, tasks to be performed written in SDL language

Example:

Figure below shows three tasks example. The first one performs a simple assignment, the
second one contains informal text (sometimes called informal task), and the third one
shows how to insert several statements in a task symbol.

SDL Symbol Description

Also known as action symbol

MSC Tracer
PragmaDev Studio V6.0 Page 57

Reference Manual
Tasks example

Task blocks can also include more complex statements such as tests or loops. See the
description for “If statement” on page 65 and “Loop statement” on page 66.

3.4.15 Process creation

Syntax: <process>(<params...>)

• <process>: process name

• <params...>: parameters

SDL Symbol Description

SDL allows dynamic creation of process
instances.
Page 58 PragmaDev Studio V6.0

Reference Manual
Example:

Example of process creation

3.4.16 Timer
A timer in SDL is like a signal, and not a watchdog. It can be activated/deactivated using
Init timer and Reset timer symbols. The syntax of a timer is:

Syntax: TIMER <timer name>;

SDL keywords that are used commonly with timers are:

3.4.16.1 Init timer

When a timer is set, a Time value is associated with the timer. It is active from the
moment of setting up to the moment of consumption of the timer signal. If there is no

SDL keyword Description

NOW It represents the current value of the
system clock

ACTIVE It is used to test whether a timer is
active.

SDL Symbol Description

It represents a timer instance that can be
activated/deactivated.

pProces

pChild

MSC Tracer
PragmaDev Studio V6.0 Page 59

Reference Manual
reset or other setting of this timer before the system time reaches this Time value, a sig-
nal with the same name as the timer is put in the input port of the process.

Remark: When a timer is already activated, the action of setting the timer is equivalent to
resetting the timer, immediately followed by setting it.

Syntax: SET(<seconds>,<timer>)

• <seconds>: time value. This is an absolute time, not a delay.

• <timer>: timer name.

3.4.16.2 Reset timer

Syntax: RESET<timer name>, timer name to be resetted

Example:

Init timer example

SDL Symbol Description

Used to cancel a timer. When an active
timer is reset, the association with the
Time value is lost. If there is a corre-
sponding retained timer signal in the
input port, this signal is removed and
the timer becomes inactive.

MSC Tracer
Page 60 PragmaDev Studio V6.0

Reference Manual
Example: The timer wakeup is resetted just after it is activated

Reset timer example

3.4.16.3 Timer supervised states

Syntax: SET(<seconds>,<timer>)

• <seconds>: time value. This is an absolute time, not a delay.

• <timer>: timer name

Alternate syntax: STATE TIMER <seconds>

• <seconds>: same meaning as above.

The second form starts an anonymous timer.

SDL Symbol Description

Used to start automatically a timer each
time the state is entered, and cancelling
it whenever a transition is triggered. The

attached transition is executed only if
the timer times out, which means no

transition have been triggered since the
state was entered.

MSC Tracer
PragmaDev Studio V6.0 Page 61

Reference Manual
3.4.17 Decision

Syntax: <expr.>, the condition to be evaluated. There are two ways to evaluate an expres-
sion:

• A variable is evaluated by expressing its condition in one of the branches:
<expression>, ELSE

• A condition expression that returns TRUE/FALSE is written in the decision symbol.

Example:

• When receiving signal1, i is evaluated. If i>0, then the left branch is executed.
Else, the right branch is executed.

SDL Symbol Description

Condition - Decision, which is used to
branch according to the value of an

expression.
Page 62 PragmaDev Studio V6.0

Reference Manual
• Upon reception of signal2, the expression b AND (i>0) is evaluated. If the
expression returns TRUE, the left branch is evaluated. Else, the right branch is
executed.
PragmaDev Studio V6.0 Page 63

Reference Manual
Decision example
Page 64 PragmaDev Studio V6.0

Reference Manual
3.4.18 If statement
Syntax:
IF <boolean expression>

{
<consequence expression>

}
ELSE
{

<alternative expression>
}

Notes:

• Unlike simple task blocks, statements in complex task blocks must end with a
semicolon (’;’). In simple task blocks, statement are separated by a comma (’,’).

• In the IF statement, the ELSE part is optional.

• The IF statement should not be confused with the conditional expression IF
<condition> THEN <expression> ELSE <expression>. In the expression, the
THEN keyword is used, and the ELSE part is not optional.

Example:

If statement example

Observation in SDL Simulator
PragmaDev Studio V6.0 Page 65

Reference Manual
3.4.19 Loop statement
A loop statement is introduced in a task block to execute an iteration statement. It may
be used to replace a decision when a more compact notation is preferred. The two
optional keywords BREAK and CONTINUE can be used in a loop statement.

Loop statement

Syntax:
FOR (<assignment>, <expression>, <expression>)

{
<statement...>;

}

Example:

The example below shows the loop statement in textual representation and in graphical
representation.

Example of for loop

Note that unlike the C for statement, the increment is not a statement, but an expres-
sion. The loop variable is taken from the initializer statement and shall not be repeated.

Loop statement

Graphical representation of
loop

Variable values as shown
in the SDL Simulator at

the end of loop
Page 66 PragmaDev Studio V6.0

Reference Manual
Terminate a FOR loop using a BREAK

Syntax:
FOR(...)
{

<statement>;
IF(condition) BREAK;

}

Example:

Loop example using a BREAK

Loop statement with CONTINUE

CONTINUE may be used to jump to the next iteration.

Syntax:
FOR(...)
{

<statement>;
IF(condition) CONTINUE;
<statement>;

}

Observation in SDL Simulator
PragmaDev Studio V6.0 Page 67

Reference Manual
Example:

Loop example using a CONTINUE

Loop statement in another loop statement

Syntax:
FOR(...)
{

<statement>;
FOR(...)
{

<statement>;
}

}

Observation in SDL Simulator
Page 68 PragmaDev Studio V6.0

Reference Manual
Example:

Example of a loop statement in a loop statement

3.4.20 Conditional expression
A conditional expression may be used where a return value is expected. Note that the
ELSE branch cannot be omitted.

Syntax;
IF <boolean expression>

THEN <consequence expression>
ELSE <alternative expression>

FI

Observation in SDL Simulator
PragmaDev Studio V6.0 Page 69

Reference Manual
Example:

Conditional expression example

3.4.21 Transition option

The branches of the symbol have values true or false. The true branch is defined when the
expression is defined so the equivalent C code is: #if <expression>
The branches can stay separated until the end of the transition or they can meet again
and close the option as would do an #endif.

Syntax: <expr.>, simple expressions (must contain only literals, operators, and methods
defined within the package Predefined defined as a SYNONYM) or informal text.

SDL Symbol Description

Transition options are similar to C pre-
processor directive #if... #endif. The
expression defined must only contain

SYNONYM types.

Observation in SDL Simulator
Page 70 PragmaDev Studio V6.0

Reference Manual
Example:

Transition option example

3.4.22 Connectors
Connector are used to:

• split a transition into several pieces so that the diagram stays legible and print-
able

• gather different branches to a same point

3.4.22.1 Connector out/join

Syntax: <lbl>, connector name

SDL Symbol Description

It modifies the flow in a FSM by express-
ing that the next action to be interpreted
should be the one that contains the same
name for a connector in. The flow of exe-

cution goes from the connector out to
the connector in symbol.
PragmaDev Studio V6.0 Page 71

Reference Manual
3.4.22.2 Connector in/label

Syntax: <lbl>, connector name

Example:

Connectors example

3.4.23 Text extension

Syntax: <...>, any expressions of the same type as the graphical symbol that precede the
text extension.

SDL Symbol Description

It is the entry point of a transfer control
from corresponding joins.

SDL Symbol Description

It can be connected to any graphical
symbol containing text. Its contents is a

continuation of the text within the
graphical symbol

Observation in SDL Simulator
Page 72 PragmaDev Studio V6.0

Reference Manual
Example:

Text extension example

3.4.24 Comment

Syntax: none

Example:

Comment example

3.5 - Data Types
SDL predefined data in SDL is based on abstract data types (ADT). They are defined in
terms of their properties, which means that as long as the same behavior is preserved,
SDL does not precise implementation dependent features. For instance the number of
bits to store in an Integer is not specified. Thus, the SDL descriptions are more general
and portable to be used. Furthermore, pointers and memory allocation are also not part
of SDL definition.

An ADT is declared in SDL using the NEWTYPE construct. Similar to a class, it provides a
data structure in addition to other operations to manipulate the structure. The data
structure can be in various forms: literals (enumerated values), a struct, an array, etc.

3.5.1 Basic types
Basic data types in SDL are defined in a package called Predefined, which is used implic-
itly by any SDL description.

SDL Symbol Description

A notation to represent comments asso-
ciated with symbols or text.

Observation in SDL
PragmaDev Studio V6.0 Page 73

Reference Manual
3.5.1.1 Boolean

A boolean represents a logical quantity with two possible literals values: true or false.

Default value: FALSE

Operators:

Example:

Boolean example

Boolean operator Description

NOT Negation, it is an operation on proposi-
tions.

= Equivalence of two operands

/= Non-equivalence of two operands

AND Logical conjunction, it returns true if
both operands are true, otherwise it

returns false.

OR Inclusive disjunction, it results in true
whenever one or more of its operands

are true.

XOR Exclusive disjunction, the result of two
operands is true if exactly one of the
operands has a value true (one or the

other, but not both).

=> Implication operator

ANY(boolean) Returns true or false randomly.

Observation in SDL
Simulator
Page 74 PragmaDev Studio V6.0

Reference Manual
3.5.1.2 Character

A character represents an ASCII character with the ASCII character codes varies from 0
to 127.

Default value: ’’

Operators:

Character operator Description

"=" Equality of two characters.

"/=" Non-equality of two characters.

"<" Less than; the characters are compared
by their ASCII code.

"<=" Less than or equal.

">" Greater than.

">=" Greater than or equal.

num(’MyCharacter’) Returns the ASCII code of a character.

chr(MyInteger) Returns the character having the given
ASCII code.
PragmaDev Studio V6.0 Page 75

Reference Manual
Example:

Example of a character
Note that literal names for control characters (ASCII characters from 0 to 32, and 127)
such as NUL, STX or DEL are not supported. These characters must be created via the chr
standard operator with the corresponding ASCII code.

Example: The example below shows the insertion of a new line character between two
characters.

Example on control character insertion

Observation in SDL Simulator

Observation in SDL
Page 76 PragmaDev Studio V6.0

Reference Manual
3.5.1.3 Charstring

A charstring defines strings of characters. A charstring literal can contain printing char-
acters and spaces. Indices for charstrings start at 1.

Default value: ’’

Operators:

Charstring operator Description

mkstring(character) Returns the charstring with length 1
containing the given character.

length(charstring) Returns the length of the charstring.

first(charstring) Returns the first character of the char-
string.

last(charstring) Returns the last character of the char-
string.

"//" Concatenates two charstrings.

substring(charstring,
integer, integer)

Returns the substring of the charstring
starting at the index given by the second
parameter and having the length speci-

fied by the third parameter.
PragmaDev Studio V6.0 Page 77

Reference Manual
Example:

Example of a Charstring

3.5.1.4 Integer

A integer type represents mathematical integers with decimal notation.

Default value: 0

Operators:

Operator Description

- (Unary) Negative natural numbers

+ Addition of two integers

- Subtraction of two integers

* Multiplication of two integers

/ Division of two integers

mod Modulo operation of two integers

rem Remainder of the division of two inte-
gers

= Equality

Observation in SDL Simulator
Page 78 PragmaDev Studio V6.0

Reference Manual
Example:

Example of Integers

3.5.1.5 Natural

A natural is a zero or a positive Integer.

Default value: 0

Operators: same as Integer

/= Non-equality

< Less than

> Greater than

<= Less than or equals to

>= Greater than or equals to

ANY(MyIntegerSyntype) Returns a random value of the type. This
operator is only available on a SYNTYPE
of INTEGER with an upper and a lower

bound.

Operator Description

Observation in SDL Simulator
PragmaDev Studio V6.0 Page 79

Reference Manual
Example:

Example of Naturals

3.5.1.6 Real

Real represents real numbers. All operators defined to be used for Integer can also be
used for Real, except mod, rem, Float and Fix.

Default value: 0.0

Operators: All Integer operators can be used except "mod" and "rem"

Example:

Example of a Real

3.5.1.7 Pid

Pid, or process id, is used to identify the process instances.

Observation in SDL Simulator

Observation in SDL
Page 80 PragmaDev Studio V6.0

Reference Manual
Default value: NULL

Operators:

Example:

Example of a Pid

3.5.1.8 Duration
The duration sort is used for the values to be added to the current time to set timers. The
literals of the sort duration are the same as the literals for the Real sort. The meaning of
one unit of duration will depend on the system being defined.

Default value: 0

Operators:

Operator Description

= Equality

/= Non-equality

Operator Description

+ Addition between two duration

- Negative duration

- Substraction between two durations

> A comparison (strictly greater than) between two
durations, returns a boolean

< A comparison (strictly less than) between two dura-
tions, returns a boolean

Observation in SDL Simulator
PragmaDev Studio V6.0 Page 81

Reference Manual
Example:

Example of a duration

3.5.1.9 Time
Time values are used to set the expiration time of timers. The origin of time is system
dependent. A time unit is the amount of time represented by adding one duration unit to
a time. A NOW expression has the Time sort.

>= A comparison (greater than or equals) between two
durations, returns a boolean

<= A comparison (less than or equals) between two
durations, returns a boolean

* Multiplication between a duration and a real num-
ber, returns a duration

/ Division between a duration and a real number,
returns a duration

Operator Description

MSC Tracer
Page 82 PragmaDev Studio V6.0

Reference Manual
Operators:

Example:

Example on time

Operator Description

< A comparison (strictly less than) between two
times, returns a boolean

<= A comparison (less than or equals) between two
times, returns a boolean

> A comparison (strictly greater than) between two
times, returns a boolean

>= A comparison (greater than or equals) between two
times, returns a boolean

+ Addition between a time and a duration, returns
time

- Substraction of (time - duration), returns a time

- Substraction of (duration - time), returns a dura-
tion

MSC Tracer
PragmaDev Studio V6.0 Page 83

Reference Manual
3.5.2 Constants: SYNONYM
A synonym is used to define constants in SDL.

Syntax: SYNONYM <synonym name> <synonym type> = <constant expression>;

Example:
SYNONYM count Natural = 100;
SYNONYM Yes Boolean = True;
SYNONYM No Boolean = False;

3.5.3 Renaming or constraining existing types: SYNTYPE
A SYNTYPE defines an alternative name for an existing type, optionally adding constraints
to the base type. A syntype based on a given type will always be compatible with it, mean-
ing that values for the base type can be assigned to the syntype. This might however trig-
ger a runtime error if the value doesn’t match the constraints defined in the syntype.

Syntax:
SYNTYPE <syntype name> = <syntype base type>

DEFAULT <default value>
CONSTANTS <value constraint>

ENDSYNTYPE;

Example:
SYNONYM NUM_PHONE Integer = 5;

SYNTYPE PhoneNumberType = Integer

DEFAULT 1;

CONSTANTS 1..NUM_PHONE

ENDSYNTYPE;

SYNTYPE MyIndexType = Natural

CONSTANTS < 16

ENDSYNTYPE;

All values of the type PhoneNumberType will be between 1 and 5 (inclusive); all values of
the type MyIndexType will be between 0 and 15 (inclusive).

3.5.4 Complex types
Complex user-defined types are created by using the SDL keyword NEWTYPE. There are
several kinds of complex types, described in the following sections.

Note that the NEWTYPE keyword actually defines a new type, which won’t be compatible
with any other one, even if both type have exactly the same definition. Defining a type
compatible with another one can only be done via the SYNTYPE keyword (see “Renaming
or constraining existing types: SYNTYPE” on page 84).

There are some common features for all types defined via the NEWTYPE keyword:
Page 84 PragmaDev Studio V6.0

Reference Manual
• Special constant values of the type can be defined via a LITERALS clause within
the NEWTYPE. For example, the default value NULL for the PID type is a literal for
the PID type. These literals have no explicit value. They also can be used to define
the equivalent of an enumerated type; the NEWTYPE will then contain only a LIT-
ERALS clause.

• A default value for the type can be given via the DEFAULTS clause within the NEW-
TYPE. See the sections on the actual type kinds below for the possible syntax for
these values.

• Types can define operators acting on the values of this type. Operators are mostly
equivalent to functions, except they depend on the actual type of their parame-
ters and of their return value. For example, two different types can define the
same operator op, as long as the types of the parameters or of the return value for
both op operators are different in the two types. Operators are defined via the
OPERATORS clause.
For example:
NEWTYPE MyType1

...
OPERATORS

op1: MyType1 -> Integer;
op2: Integer -> MyType1;

ENDNEWTYPE;
NEWTYPE MyType2

...
OPERATORS

op2: Integer -> MyType2;
op3: MyType2, Integer -> Integer;

ENDNEWTYPE;
Operators op2 in MyType1 and op2 in MyType2 are different and not ambiguous,
since their return type is different. When writing "var := op2(1)", the type of
var will determine the actual operator to call.
Note that only the signature of the operators are defined in the SDL specification.
Their implementation is supposed to be external. Note also that defining an
operator with no parameters or with no return type is illegal in SDL, even if it is
often allowed in tools supporting the language.

Note that SDL has a semantics based on values. This means that assigning to a variable,
or passing a value to a parameter, or to a message, and so on, will always copy the value
from the source to the destination, even for complex types. The only exception to this
rule are parameters declared as IN/OUT to a procedure. So an operator will never modify
any value passed to it.

3.5.4.1 Enumerated type: LITERALS

The equivalent of an enumerated type can be created in SDL by using a NEWTYPE with no
definition, but having a LITERALS clause containing the names for the constants in the
type.
PragmaDev Studio V6.0 Page 85

Reference Manual
Example:

Note the ANY operator will randomly return one of the LITERALS value. Usage is:
ANY(<type name>).

3.5.4.2 Structure type: STRUCT

A STRUCT is a collection of typed information, defined as fields in the STRUCT. The syntax
for defining a STRUCT is the following:
NEWTYPE MyStructType

STRUCT

fieldName1 FieldType1;

fieldName2 FieldType2;

...

ENDNEWTYPE;

Values for STRUCT types can be specified as a whole using the syntax (. <value for first
field>, <value for second field>,). This can typically be used in default values
for the type itself:
NEWTYPE PointType

STRUCT

x Integer;

y Integer;

DEFAULT (. 0, 0 .);

ENDNEWTYPE;

The syntax to access a field in a STRUCT is <STRUCT variable name>!<field name>. So for
example, if there is a variable p with the type PointType, changing its x field will be done
via: p!x := 2

A field in a STRUCT can be marked as OPTIONAL:

Observation in SDL Simulator
Page 86 PragmaDev Studio V6.0

Reference Manual
NEWTYPE TaggedPointType

STRUCT

x Integer;

y Integer;

tag CharString OPTIONAL;

ENDNEWTYPE;

In this case, an implicit field having the name of the optional field followed by "Present"
will be added to the STRUCT, with the type Boolean, and will be automatically set to True if
the field has a value, and to False if it hasn’t. For example:
DCL p TaggedPointType;

p!x := 3, -> p!tagPresent is False

p!y := 5, -> p!tagPresent is False

p!tag := ’Ending point’ -> p!tagPresent is True

Example:

3.5.4.3 Choice/union types: CHOICE

A CHOICE is an alternative of different typed informations, defined as fields in the CHOICE.
The syntax to define a CHOICE is the following:

Observations in SDL Simulator
PragmaDev Studio V6.0 Page 87

Reference Manual
NEWTYPE MyChoiceType

CHOICE

field1 FieldType1;

field2 FieldType2;

...

ENDNEWTYPE;

The syntax to access fields in the CHOICE is the same as for STRUCT types: <CHOICE varia-
ble name>!<field name>. An implicit field named present is always added to a CHOICE,
having a type defining only the literals with the name of the CHOICE fields (field1,
field2, etc… in the example). Any assignment of one of the fields in the CHOICE will set
the value for the present field to the name of the assigned field. For example:
NEWTYPE MyChoiceType

CHOICE

i Integer;

s CharString;

ENDNEWTYPE;

DCL c MyChoiceType;

c!i := 1; -> value for c!present is i

c!s := ’foo’; -> value for c!present is s

3.5.4.4 Associative arrays: Array generator

In SDL, an Array is a mapping from one typed information to another. It does not match
what is usually called an array in programming languages (see “Ordered lists: String gen-
erator” on page 89 for that). The Array generator has two type parameters, named the
index type and the element type, which defines a mapping from the index to the element.

Syntax:
NEWTYPE <Array type name>

Array(<index type>, <element type>)

ENDNEWTYPE;

Default value: all elements in the array are set to the default value for its element type.

Operators:

The syntax to access the element in an array a for the index i is a(i). So for example:
NEWTYPE MyArrayType

Array(CharString, Integer)

ENDNEWTYPE;

DCL a MyArrayType;

a(’foo’) := 42

will set the value in the array for the character string index ’foo’ to the integer 42.
Page 88 PragmaDev Studio V6.0

Reference Manual
Values for arrays can be specified as a whole using the syntax (. <element value> .).
Note that only a single <element value> is allowed, and that it will be set for all indices in
the array.

Example: In the example below, the new data type intTable is an Integer array, indexed
by the type itIndex.

3.5.4.5 Ordered lists: String generator

A String type is an ordered list of elements of any other type. Elements are accessed
using their integer index, which starts at 1. The syntax to access the element in the String
s at index i is s(i).

Syntax:
NEWTYPE <String type name>

String(<element type name>)
ENDNEWTYPE;

Default value: the empty string

Operators:

Charstring operator Description

mkstring(element) Returns the string with length 1 contain-
ing the given element.

length(string) Returns the length of the string.

first(string) Returns the first character of the string.

last(string) Returns the last character of the string.

"//" Concatenates two strings.

Observation from SDL
Simulator
PragmaDev Studio V6.0 Page 89

Reference Manual
Values for strings can also be specified as a whole via the syntax (. <element value 1>,
<element value 2>,). This will define a value for the string with as many elements
as there are within the (. .), with the given values.

Example:

3.5.4.6 Multi-sets: Bag generator

A Bag type is a collection of items with no specific order. It is similar to the mathematical
notion of a set, except that an element can appear several times in a Bag.

Syntax:
NEWTYPE <Bag type name>

Bag(<element type name>)
ENDNEWTYPE;

Operators:

substring(string, inte-
ger, integer)

Returns the substring of the string start-
ing at the index given by the second

parameter and having the length speci-
fied by the third parameter.

Operator Description

empty Returns an empty bag.

Charstring operator Description

defined in the System
Page 90 PragmaDev Studio V6.0

Reference Manual
"in" Checks if a value appears as an element
in a bag, returns a boolean.

incl(element, bag) Returns the bag having the same con-
tents as bag, with element added to it.

del(element, bag) Returns the bag having the same con-
tents as bag, with element removed from
it. If element is not in bag, returns a copy

of bag.

"<" Tests if a bag is a strict subbag of
another bag.

">" Tests if a bag is a strict superbag of
another bag.

"<=" Tests if bag is a subbag of another bag,
or is equal to it.

">=" Tests if a bag is a superbag of another
bag, or is equal to it.

"and" Returns the intersection of two bags.

"or" Returns the union of two bags.

length(bag) Returns the number of elements in a
bag, counting duplicates.

take(bag) Returns a random element in bag.

Operator Description
PragmaDev Studio V6.0 Page 91

Reference Manual
Example:

3.6 - Object Orientation
In order to reuse structural entities, SDL offers to users object-oriented features.

3.6.1 Block class
By defining a block class, all blocks of the same class have the same properties as defined
for the specific block class. A block class is represented by a block symbol with a double
frame with no channels connected to it:

A block class can be instantiated in a system or a block by inserting the block class
instance represented below:
Page 92 PragmaDev Studio V6.0

Reference Manual
Syntax: <block>(<card.>) : <class>

• <block>: Block name

• <card.>: Cardinality

• <class>: Class name
In a block class instance, gates are defined and represent connection points for channels.
They are used to connect the block class instances to the system. The signals listed in the
gates must be consistent with the signals listed in the connected channels.

Example: In the example below, b1 and b2 are block class instances of myBlock.

Example of block class

3.6.2 Process class

3.6.2.1 Description
A process class allows all process instances of the same class to have the same properties
as defined for the process class, besides having the possibility to inherit from a process

myBlock

mySystem
PragmaDev Studio V6.0 Page 93

Reference Manual
super-class.A process class is represented by a process symbol with a double frame with
no channels connected to it:

A process class can be instantiated in a system or a block by inserting the process class
instance represented below:

Syntax: <process>(<card>) : <class>

• <process>: Process name

• <card>: Cardinality

• <Class>: Class name
Since a class is not supposed to know the surrounding architecture, signal outputs should
not use the TO_NAME concept. Instead VIA should be used.

Example:

Example of process class

3.6.2.2 Specialization

A process class can specialize another one using either the specialization relationship in
the class diagram declaring them, or the INHERITS declaration, or both. The specialized

Relation between sub-class and
super-class
Page 94 PragmaDev Studio V6.0

Reference Manual
class is then called the sub-class, and the class it specializes the super-class. The INHERITS
declaration should be in the sub-class:

When a process class specializes another one, it inherits all its declarations and transi-
tions. Transitions can then be overloaded to change the sub-class behavior. This is done
by simply redefining a transition with the same state and trigger (input message, for
example). Transitions can of course also be added to the sub-class.

If a sub-class needs only to add some behavior to a transition in its super-class, it can use
specific symbols only available in process classes:

Example:

SDL Symbol Description

When this symbol is present in a rede-
fined transition in a sub-class, the tran-

sition with the same trigger in the super-
class is executed, minus its ending next-

state.
This symbol can only appear once in a

transition. It is an error if it appears in a
transition that is not inherited from any-

where.

When this symbol is present in a rede-
fined transition in a sub-class, the next-

state for the transition with the same
trigger in the super-class is executed.

This symbol has no meaning if the body
of the transition has not been executed.
PragmaDev Studio V6.0 Page 95

Reference Manual
Consider the two following process classes, the second one specializing the first one:
Page 96 PragmaDev Studio V6.0

Reference Manual
The equivalent process class for the sub-class is:

3.6.3 Class diagram
The SDL class diagram is conform to UML class diagram.

3.6.3.1 Class

A class is the descriptor for a set of objects with similar structure, behavior and relation-
ships. In order to create specific types of classes, a stereotype, which is an extension of
the UML vocabulary is used. When the stereotype is present, it is placed above the class
name within quotation mark (guillemets). However, besides using this purely textual
notation, special symbols may also be used in place of the class symbol:

Different notations for a class stereotyped as a process

There are two types of classes:

• active classes: an instance of an active class owns a thread of control and may
initiate control activity

<=>
PragmaDev Studio V6.0 Page 97

Reference Manual
• passive classes: an instance of a passive class holds data, but does not initiate
control.

In a class diagram, agents are represented by active classes. Agent type is defined by the
class stereotype. Known stereotypes are: block class and process class. Active classes do not
have any attribute. Operations defined for an active class are incoming or outgoing sig-
nals.

Syntax: <signal direction> <signal name> [(<parameter type>)] [{via <gate
name>}]

• <signal direction>: The signal direction can be
>: for incoming signals
<: for outgoing signals

• <signal name>: Signal name

• <parameter type>: Parameters associated to the signal

• {via <gate name>}: The gate name where signals pass through

Example:

The process class ProcessSuperClass can:

• receive signals sToProcessClass1() and sToProcessClass2()

• transmit signal sTomyProcess()

through gate G.

Pre-defined graphical symbols for stereotyped classes in SDL are:

3.6.3.2 Specialization
Specialization defines the relationship ’is a kind of’ between two classes. It is normally
used to describe the relation between a super-class and a sub-class. The most general
class is called the super-class and the specialized class is the sub-class. The relationship
from the sub-class to the super-class is called generalization.

Block class Process class
Page 98 PragmaDev Studio V6.0

Reference Manual
Example: In the example below, ProcessSubClass is a kind of ProcessSuperClass.
PragmaDev Studio V6.0 Page 99

Reference Manual
4 - SDL support in PragmaDev Studio

4.1 - Architecture and communication

4.2 - Behavior

Features SDL
Simulator SDL-RT C Code

Generation
C++ Code

Generation

Block YES YES YES YES

Process YES YES YES YES

Procedure YES YES YES YES

Package YES YES YES YES

Block class PARTIAL YES YES YES

Process class PARTIAL PARTIAL YES YES

Channel with delay NO NO NO NO

Class diagram NO YES NO YES

HISTORY nextstate(_*) NO N/A NO NO

ERROR keyword NO N/A NO NO

ANY keyword NO N/A NO NO

Delays in channel NO N/A NO NO

Class diagram NO YES NO NO

Package diagram NO N/A NO NO

Features SDL
Simulator SDL-RT C Code

Generation
C++ Code

Generation

Remote procedure YES N/A NO NO

Macro YES NO NO NO

Composite state YES NO NO NO

Start YES YES YES YES

Stop YES YES YES YES

State YES YES YES YES

Input YES YES YES YES
Page 100 PragmaDev Studio V6.0

Reference Manual
Priority input YES NO NO NO

Save YES YES YES YES

Continuous signal YES YES YES YES

Enabling condition NO NO NO NO

Output YES YES YES YES

Priority output YES NO NO NO

Broadcast YES YES YES YES

Task YES YES YES YES

Process creation YES YES YES YES

Timer YES YES YES YES

State timer YES N/A YES YES

Decision YES YES YES YES

Transition option YES YES YES YES

Connectors YES YES YES YES

Text extension YES YES YES YES

Comment YES YES YES YES

Remote variables YES N/A NO NO

If statement YES N/A YES YES

Loop statement YES N/A YES YES

Super-class transition call YES YES YES YES

Super-class nextstate call YES YES YES YES

HISTORY nextstate (_*) in
composite states

NO N/A NO NO

ENTRY and EXIT procedure
in composite states

NO N/A NO NO

Features SDL
Simulator SDL-RT C Code

Generation
C++ Code

Generation
PragmaDev Studio V6.0 Page 101

Reference Manual
4.3 - SDL Abstract Data Types

4.4 - Macros diagrams
Since PragmaDev Studio does not rely on a textual representation such as the PR format
for the SDL diagrams, a few differences had to be introduced between the semantics
defined by the Z100 specification and the one supported by PragmaDev Studio:

Features SDL
Simulator

C Code
Generation

C++ Code
Generation

Boolean YES YES YES

Character YES YES YES

Charstring YES YES YES

Integer YES YES YES

Natural YES YES YES

Real YES YES YES

Pid YES YES YES

Duration YES YES YES

Time YES YES YES

String YES YES YES

Array YES YES YES

Bag YES YES YES

Powerset NO NO NO

Synonym YES YES YES

Syntype YES YES YES

Newtype YES YES YES

INHERIT in NEWTYPE NO NO NO

Interface definition NO NO NO

ANY operator YES1

1. Partial: Only for booleans, literal types and types based on integers from which a
lower bound and upper bound can be easily extracted.

NO NO
Page 102 PragmaDev Studio V6.0

Reference Manual
• Parameters passed to macros must be valid expressions. So, for example, it is
impossible to do:

• If a parameter is used in a macro where only a name is valid, the actual parame-
ter must be a valid name. So for example, it is impossible to do:

• If macro parameters are expressions, they will be evaluated on their own, and
not in the context where they are used. For example, in a macro with a parameter
X, if the actual value passed for X is 1 + 3, the value for X * 5 in the macro will be
(1 + 3) * 5, and not 1 + 3 * 5 as expected.

FPAR X;

i := X 5

M

M(j +)

INVALID!

FPAR FLD;

myStructVar!FLD := 2

M

M(x!y)

INVALID!
PragmaDev Studio V6.0 Page 103

Reference Manual
• Some names cannot be specified as macro parameters:
• Connector names, either in or out. So doing this will not work:

• Names of macros called in a macro. So doing this will not work:

4.5 - Composite state support
PragmaDev Studio supports composite states, but not exactly as described in the SDL
2000 version of the Z.100 specification.The concepts are however basically the same:

• There are special states that can have one or several sub-state machines.

• The sub-state machine(s) associated to such a state begin their execution when
the state is entered.When several sub-state machines are present, they execute in
parallel.

• Transitions can be defined on such a state as a whole. If such a transition ends
with a next state, all sub-state machines are ended. There is a special pseudo-
state named "history state" allowing to continue the execution of all sub-state
machines where they were when the transition was entered.

• The concept of sub-state machine entry points allowing to start a sub-state
machine in different contexts is currently not supported by PragmaDev Studio.

PragmaDev Studio however introduces differences in terminology and graphical repre-
sentations. The reasons for these differences are:

FPAR CTR;

CTR

M

M(A)

INVALID!

A

FPAR M;

M(...)

M1

M1(M2)

INVALID!

M2
Page 104 PragmaDev Studio V6.0

Reference Manual
• Terminology consistency problems between SDL 2000 and former SDL ver-
sions:
In SDL 2000, a state with exactly one sub-state machine is named a state sub-
structure. In former SDL versions, the term "sub-structure" was used for block
diagrams containing other blocks. This additional level has been dropped in SDL
2000 and blocks may now contain other blocks without an intermediate sub-
structure level. This makes the concept of sub-structure quite unclear, especially
for users of former SDL versions.

• Terminology consistency problems between SDL and the UML:
In SDL 2000, a composite state is a state containing other states each having a
sub-structure, i.e. a sub-state machine. In the UML, the meaning is reversed: a
composite state is a state having one or several sub-state machines. When sev-
eral sub-state machines are present, the UML uses the name "state aggregation".
This is especially confusing since the concepts in SDL 2000 are clearly inspired
from those found in the UML.

• Confusing graphical representations in SDL 2000:
In SDL 2000, the same state symbol is used with no less than 3 different mean-
ings:
• for "normal" states;
• for states with a sub-structure, i.e. with an associated sub-state machine;
• for composite states, containing several states with sub-structures.
This makes the reading of state machines quite difficult.

• Graphical consistency problems between SDL 2000 and former SDL versions:
Former SDL versions already had a notation for a sub-state machine with ser-
vices. Even if this concept cannot be reused as it was defined, re-using the sym-
bol itself to represent a sub-state machine can improve the overall readability,
especially for users of former SDL versions.

• Loss of information from former SDL versions:
Former SDL versions supported channels connecting the services to the parent
process environment and between each other. This allows to specify the mes-
sages exchanged between services and to the other processes. These messages
can no more be specified in SDL 2000.

So here are the terminology and graphical representation used in PragmaDev Studio:

• A composite state is a state with one or several sub-state machines. This is con-
sistent with the UML terminology.

• A composite state must be declared in its parent process with a composite state
declaration symbol. Since such a symbol does not exist in the Z.100 specifica-
tion, the symbol used is the one for a composite state type definition:

This allows to quickly spot which states are composite and which aren’t.

State name
PragmaDev Studio V6.0 Page 105

Reference Manual
• Each time a composite state is used, it should be specified with a composite state
symbol. Since this symbol does not exist in the Z.100 specification, the symbol
used is the one for a composite state type instanciation:

NB: the use of this symbol is only recommended, since transitions can be defined
for several states, some of them "normal" and some of them composite. If a nor-
mal state symbol contains only composite states, a warning will however be gen-
erated during the semantics check.

• The definition of a composite state in terms of sub-state machines is contained in
a composite state diagram, represented in the project tree and stored in its own
file. This diagram is composed of:
• A set of sub-state machine symbols, also named service symbols since their

graphical representation is exactly the one for services found in former SDL
versions:

• A set of channels, linking the services between each other or to the diagram’s
external frame. These channels have the same meaning as the channels
between services in former SDL versions. If connection names are given for
channels connecting to the diagram’s external frame, they refer to channels
connecting to the parent process or service.

• To each sub-state machine or service is attached a sub-state machine diagram or
service diagram, which is normal process state machine. The start and end sym-
bols are the same as in processes. These diagrams can define and use other com-
posite states, allowing composite state nesting up to any level.

State name

Sub-state machine name
Page 106 PragmaDev Studio V6.0

Reference Manual
5 - SDL to C translation rules

This section describes how SDL code is translated to C. This translation happens when
producing an executable for a SDL system (see “SDL and SDL-RT code generation” on
page 137) and when converting a SDL project to a SDL-RT one.

This section focuses on the translation of the actual code, i.e the declarations, statements
and expressions found in the symbols in the diagrams. For the parts specific to the code
generation or the SDL to SDL-RT conversion, refer to the corresponding sections.

5.1 - Conversion guidelines for declarations

5.1.1 SYNTYPE declaration
SYNTYPE declarations are converted to:

• Two constants definitions, one for the type’s lower bound, the other for the type’s
upper bound;

• A typedef for the type itself.

For example:
SYNTYPE MyIndexType = INTEGER

CONSTANTS 0:7
ENDSYNTYPE;

will be converted to:
#define RTDS_MYINDEXTYPE_MIN 0
#define RTDS_MYINDEXTYPE_MAX 7 + 1
typedef int MyIndexType;

The constants are used when the SYNTYPE is used as an index type for an ARRAY; see
“NEWTYPE … Array(…) declaration” on page 109.

Notes:

• The SYNTYPE declarations are supposed to be there for array indices. So a SYNTYPE
based on anything else than INTEGER or NATURAL is not likely to produce any
usable result.

• The range for the SYNTYPE should be closed and continuous. For example, a SYN-
TYPE defined with "CONSTANTS > -4, /= 0, < 4" will ignore the "/= 0" constraint
and be used exactly like a SYNTYPE with "CONSTANTS -4:4". If no lower or upper
bound is specified, as in "CONSTANTS < 10" or "CONSTANTS >= -2", they will be
forced respectively to 0 and 1.

• SYNTYPE definitions based on another SYNTYPE are handled:
SYNTYPE t1 = t2 CONSTANTS < 3 ENDSYNTYPE;
will be translated to:
#define RTDS_T1_MIN RTDS_T2_MIN
#define RTDS_T1_MAX 3
typedef t2 t1;
PragmaDev Studio V6.0 Page 107

Reference Manual
5.1.2 NEWTYPE declarations
The actual conversion depends on the actual type kind defined. The exact conversion is
described in the following paragraphs. The conversion performed for the operators
defined for the type is described in “OPERATORS conversion” on page 111.

5.1.2.1 NEWTYPE … STRUCT declaration

SDL STRUCT types are converted to C struct types. For example:
NEWTYPE MyStructType
STRUCT

i INTEGER;
c CHARACTER;
x MyOtherType;

ENDNEWTYPE;

will be converted to:
typedef struct _MyStructType

{
int i;
char c;
MyOtherType x;
} MyStructType;

Notes:

• Pointers are never used: in the example above, the conversion would be the same
if MyOtherType was a complex type such as a struct, a choice or an array. This pre-
vents from having to manage dynamic allocation for variables.

• The correct order is ensured by the conversion process: In the example above,
the struct for MyStructType will always be created after the declaration of MyO-
therType, even if the SDL declarations were in the reverse order.

• If an optional field x is present in the STRUCT, an additional field xPresent with
the type RTDS_BOOLEAN is automatically added just after it. The generated code
then handles this field to reflect the field presence.

• This is the same C representation as for ASN.1 SEQUENCE types; See “Type map-
ping” on page 18.

5.1.2.2 NEWTYPE … CHOICE declaration

SDL CHOICE types are converted to two C types:

• An enum type for each of the fields in the CHOICE;

• A struct type containing:
• A present field with the enum type defined above;
• A __value field with a union type containing all the fields in the CHOICE.

For example:
NEWTYPE MyChoiceType
CHOICE

i INTEGER;
c CHARACTER;
x MyOtherType;

ENDNEWTYPE;
Page 108 PragmaDev Studio V6.0

Reference Manual
will be converted to:
typedef enum _t_MyChoiceType

{
MyChoiceType_i,
MyChoiceType_c,
MyChoiceType_x
} t_MyChoiceType;

typedef struct _MyChoiceType
{
t_MyChoiceType present;
union _MyChoiceType_choice

{
int i;
char c;
MyOtherType x;
} __value;

} MyChoiceType;

Notes:

• The first 3 notes in “NEWTYPE … STRUCT declaration” on page 108 also apply.

• This is the same C representation as for ASN.1 CHOICE types; See “Type mapping”
on page 18.

5.1.2.3 NEWTYPE … Array(…) declaration

The ARRAY generator has two parameters: an index type and an element type. The index
type must be a SYNTYPE based on INTEGER or NATURAL. The declaration is then converted to
a C array typedef, using the constants defined for the index type’s lower and upper
bounds. For example:

SYNTYPE IndexType = INTEGER
CONSTANTS 0:7

ENDSYNTYPE;
NEWTYPE ArrayType

ARRAY(IndexType, NATURAL)
ENDNEWTYPE;

will be converted to:
#define RTDS_INDEXTYPE_MIN 0
#define RTDS_INDEXTYPE_MAX 7 + 1
typedef int IndexType;
typedef unsigned int ArrayType[RTDS_INDEXTYPE_MAX - RTDS_INDEXTYPE_MIN];

This ensures that enough entries in the array are created, even if the lower bound for its
index type is negative. The offset in indices in this case is handled when a variable with
this type is used; see “Variable declarations” on page 113.

Notes:

• Pointers are never used, even if the array element is a complex type such as a
struct, choice or another array.

• If the array in the SDL declarations is declared before its index or element type, C
declarations are re-ordered so that it appears after both of them.
PragmaDev Studio V6.0 Page 109

Reference Manual
5.1.2.4 NEWTYPE … Bag(…) declaration

The BAG generator has a single parameter which is the type for the bag element. The dec-
laration is converted to a C typedef with the same name as the SDL type, which is not
intended to be directly manipulated in the code. All manipulations on a BAG type T are
done via the following macros and functions:

• RTDS_SET_OF_INIT(<bag variable>) initializes the variable to an empty bag;

• RTDS_SET_OF_T_COPY(<bag var. 1>, <bag var. 2>) copies the first bag variable
to the second one;

• RTDS_SET_OF_T_INCL(<bag var. 1>, <bag var. 2>, <element var.>) adds the
element to the second bag variable and puts the result in the first bag variable;

• RTDS_SET_OF_T_DEL(<bag var. 1>, <bag var. 2>, <element var.>) removes
the element from the second bag variable and puts the result in the first bag vari-
able;

• RTDS_SET_OF_T_TAKE(<bag variable>) returns a random element from the bag
variable;

• RTDS_SET_OF_LENGTH(<bag variable>) returns the length of the bag;

• RTDS_setOf_T_cmp(<operator>, <bag var. 1>, <bag var. 2>) compares the
two bags for equality and/or inclusion; <operator> is defined by the enum type
RTDS_setOfCompareOperator and contains constants for the traditionnal compar-
ison operators (==, !=, <, <=, >, >=);

• RTDS_setOf_T_in(<element variable>, <bag variable>) tests if the element is
in the bag and returns a boolean;

• RTDS_SET_OF_T_FIRST(<bag variable>, <element variable>) initializes a loop
over the bag, puts its first element in <element variable> if any, and returns true
if the bag is not empty or false if it is;

• RTDS_SET_OF_T_NEXT(<bag variable>, <element variable>) continues a loop
over the bag initialized with RTDS_SET_OF_T_FIRST; It puts the next bag element
in <element variable> if any and returns true if there actually was a next ele-
ment, or false if there are no more element to iterate over.

Notes:

• Bags are never modified ‘in place’: The result of an operation on a bag is always
put in another bag.

• Pointers are never used: If an element is added to a bag, a modification on the
variable used in the addition will not be reflected on the bag element.

• This is the same C representation as for ASN.1 SET OF types; See “Type mapping”
on page 18.
Page 110 PragmaDev Studio V6.0

Reference Manual
5.1.2.5 NEWTYPE … String(…) declaration

The STRING generator has a single parameter which is the type for the string element. A
declaration for a type StringType with elements of type ElementType is converted to the
following C typedef:

typedef struct _StringType
{
ElementType elements[<size>];
unsigned int length;
} StringType;

If a size constraints is specified in the NEWTYPE, <size> is set according to it. If no size con-
straint is specified, <size> is set to RTDS_MAX_STRING.

Note: This is the same C representation as for ASN.1 SEQUENCE OF types; See “Type map-
ping” on page 18.

5.1.2.6 NEWTYPE … LITERALS declaration

SDL LITERALS type are converted to their equivalent enum types in C. For example:
NEWTYPE MyLiteralsType

LITERALS literal1, literal2, literal3;
ENDNEWTYPE;

will be converted to:
typedef enum _MyLiteralsType

{
<prefix>literal1,
<prefix>literal2,
<prefix>literal3
} MyLiteralsType;

where <prefix> can be a standard prefix for all constants and/or the name of the type,
depending on the generation options.

Notes:

• The LITERALS clause is not allowed in STRUCT, CHOICE or generator-based types: It
must be alone in the NEWTYPE declaration.

• This is the same C representation as for ASN.1 ENUMERATED types; See “Type map-
ping” on page 18.

5.1.2.7 OPERATORS conversion

An operator defined in a SDL type is translated to a function with the same name in C.
Each parameter for the operator is mapped to a parameter with the same name in C; the
parameter C type is the translation of the parameter’s SDL type, except for structures and
choices, where it becomes a pointer on this type.

For the return value, an additional parameter is added as the last one in the C function
which is always a pointer on the operator’s return type, even for simple types. The func-
tion also returns a pointer on the return value, which may or may not be the pointer
passed as last parameter. At each call of the function, a pointer on a pre-allocated area for
the return value will be passed. The function can use this area if it needs to. The actual
return value will be the one returned by the function, and not the contents of the pre-
allocated area. This allows to return a pointer on a static or global variable for example.
PragmaDev Studio V6.0 Page 111

Reference Manual
The C function is always declared as extern and no implementation is generated.

For example:
NEWTYPE Point
STRUCT

x, y REAL;
OPERATORS

newPoint: REAL, REAL -> Point;
movePoint: Point, REAL, REAL -> Point;
dist0: Point -> REAL;

ENDNEWTYPE;

will be converted to:
typedef struct _Point

{
float x, y;
} Point;

extern Point * newPoint(float, float, Point*);
extern Point * movePoint(Point*, float, float, Point*);
extern float * dist0(Point*, float*);

Note: If an operator uses a type, its C translation is always generated after the used type’s
one, even if the SDL declarations were the other way. This may lead to defining the oper-
ators quite far from the type defining them in the SDL declarations.

5.1.3 SYNONYM declaration
Synonyms are usually converted to #define directives in the SDL-RT project. For exam-
ple:

SYNONYM MyConstant INTEGER = 5;

will be translated to:
#define MyConstant 5

Please note the constant name is not upper cased, and that the constant type is not used.

Synonyms are however converted differently when their type is a complex type such as a
structure or an array. In this case, they will be converted to a #define directive, plus a
variable definition. For example:

SYNONYM MyStructuredConstant MyStructType = (. 2, ’foo’ .);

will be translated to:
#define _MyStructuredConstant_ { 2, "foo" }
MyStructType MyStructuredConstant = _MyStructuredConstant_;

The generated variable is automatically declared static if in the context of a header file.
An option allows to also declare it const if the compiler allows it. This translation allows
to use the synonym in all C contexts, including variable initializers and as values in
expressions. For example, with the declaration above:

DCL st MyStructType := MyStructuredConstant;

will be converted to:
MyStructType st = _MyStructuredConstant_;

but:
x := MyStructuredConstant!field1
Page 112 PragmaDev Studio V6.0

Reference Manual
will be converted to:
x = MyStructuredConstant.field1;

The same conversion is performed for arrays:
SYNONYM IndexType = INTEGER

CONSTANTS 0:7
ENDSYNONYM;
NEWTYPE ArrayType

ARRAY(IndexType, REAL)
ENDNEWTYPE;
SYNONYM ArrayConstant ArrayType = (. 3.14 .);

will be converted to:
#define RTDS_INDEXTYPE_MIN 0
#define RTDS_INDEXTYPE_MAX 7 + 1
typedef int IndexType;
typedef float ArrayType[RTDS_INDEXTYPE_MAX - RTDS_INDEXTYPE_MIN];
#define _ArrayConstant_ { 3.14 }
ArrayType ArrayConstant = _ArrayConstant_;

Note that the semantics of the C type is different from the SDL one: initializing a SDL
array initializes all its elements with the given value; the initialization for the C array will
only set the array’s first element. However, whenever possible, a dynamic initialisation
will be performed for the array setting all its elements to the given value. This initialisa-
tion may be performed:

• At the beginning of the process’s initial transition if the array variable is in a pro-
cess;

• In the middle of the code if an array is set to a (. … .) constant in a task block;

• During system start for a SYNONYM. This will mainly happen for SDL to C/C++
code generation, not for SDL to SDL-RT conversion.

5.1.4 Variable declarations
A variable declaration in SDL is usually converted to its direct equivalent in C. For exam-
ple:

DCL i INTEGER;

will be converted to:
int i;

The built-in conversion for the base SDL types are:

SDL base type C type Comment

INTEGER int

NATURAL unsigned int

REAL double
PragmaDev Studio V6.0 Page 113

Reference Manual
If an initializer is present, it is copied for each declared variable. For example:
DCL x, y REAL := 0.0;

will be converted to:
float x = 0.0, y = 0.0;

5.1.5 FPAR and RETURNS declarations
In processes, the SDL FPAR declaration is dropped since process parameters are not sup-
ported in SDL-RT.

In procedures, SDL FPAR and RETURNS declarations are inserted in the procedure declara-
tion symbol declaration in the procedure’s parent, and removed from the procedure dia-
gram. For example:

BOOLEAN RTDS_BOOLEAN,
defined as an

enum

The enum type defines the constants TRUE and
FALSE to 1 and 0 respectively. Its definition is in

the file RTDS_CommonTypes.h, in $RTDS_HOME/
share/ccg/common.

CHARACTER char

CHARSTRING RTDS_String Custom type used to represent a string. Func-
tions handling this type are declared in

RTDS_String.h and RTDS_String.c, automati-
cally included in every converted project.

PID RTDS_PID Type for process identifiers in all SDL-RT pro-
files.

TIME long

DURATION long

SDL base type C type Comment

MyProcedure

Agent
FPAR

i INTEGER,
x REAL;

RETURNS CHARACTER;
…

Page 114 PragmaDev Studio V6.0

Reference Manual
will be translated to:

If the SDL procedure takes as parameter or returns a structure or a choice, its SDL-RT
counterpart will respectively take as parameter or return a pointer on this structure or
choice.

If the SDL procedure returns a CHARSTRING or an array, is SDL-RT counterpart will
respectively return a char* or a pointer on the array element.

For example:

will be translated to:

All these type changes are considered in the procedure or caller body. In the example,
getting field s!x in the MyProcedure’s body will be translated to (*s).x.

5.1.6 Other declarations
The following declarations: INHERITS, USE, SIGNAL, and SIGNALLIST do not have any direct
translation to C code.

SDL TIMER declarations are ignored. If a value is specified in the declaration, it is
repeated in each timer set symbol that does not include an explicit time-out in the gener-
ated C code.

char MyProcedure(int i, float x)

Agent
…

NEWTYPE StructType
STRUCT

…
ENDNEWTYPE;

MyProcedure
FPAR s StructType;
RETURNS CHARSTRING;

typedef struct _StructType
{
…
} StructType;

char * MyProcedure(StructType * s)
PragmaDev Studio V6.0 Page 115

Reference Manual
External procedure declaration is translated as the prototype of the C function imple-
menting the procedure. The code is generated as for the operators (See “OPERATORS
conversion” on page 111) except that IN/OUT and OUT parameters are always generated
as pointers.

5.2 - Conversion guidelines for statements and expres-
sions

5.2.1 Assignment statements
SDL assignments are converted as follows:

• For basic types, the generated code is a C assignment.

• For strings, the function RTDS_StringAssign is used: s1 := s2 will be converted
to RTDS_StringAssign(s1, s2);. This function is defined in the files
RTDS_String.h and RTDS_String.c.

• For structures, choices, arrays and SDL strings (ordered lists), the standard C
function memcpy is used. So if x and y are structures, choices or arrays with type T,
x := y will be translated to:
memcpy(&(x), &(y), sizeof(T));

• For SDL bags (multi-sets), a macro is generated to perform the assignment, so if
b1 and b2 have the type MyBagType, which is a Bag(Integer), the assignment b1
:= b2 would be generated as:
RTDS_SET_OF_MyBagType_COPY(&(b1), &(b2));

Note: One or both & may not appear if the corresponding variable is already an address
(array, IN/OUT parameter for a procedure, nested scopes, …).

5.2.2 Booleans operations
The following conversions are made for boolean operations:

5.2.3 Numeric operations
The conversion for numeric operations is trivial for operators +, - and *. The / operation
is converted to the C /, which alters its semantics when both operands are integers, with

SDL
expression C expression Comment

b1 AND b2 b1 && b2

b1 OR b2 b1 || b2

b1 XOR b2 b1 != b2 False only if b1 and b2 are both false or both
true

b1 => b2 !(b1) || b2 False only if b1 is true and b2 is false
Page 116 PragmaDev Studio V6.0

Reference Manual
the first positive and the second negative: the result in SDL is then positive where the
result in C is negative.

Both SDL operators mod and rem are also translated to the C operator %. This is actually
only valid for the rem operator, so the semantics for mod is altered.

5.2.4 Character string operations
The SDL character string concatenation operator // is translated to:

• The declaration of a temporary C character string used to store the results of the
concatenation;

• The call to the function RTDS_StringCat with 3 parameters: the temporary string
defined above, then the two strings to concatenate.

For example, the statement:
s := ’foo’ // ’bar’

will be converted to:
{
RTDS_String RTDS_tempString1;
RTDS_StringAssign(s, RTDS_StringCat(RTDS_tempString1, "foo", "bar"));
}

The RTDS_StringCat function is defined in the files RTDS_String.h and RTDS_String.c.

Note: This means using the // operator in a symbol that can only contain an expression
will not work. For example, testing length(strVar // ’foo’) >= 12 in a decision will be
translated to a C code that is not an expression.

5.2.5 String(…) types operations
The operator // can also be used to concatenate any String(…) type. The translation is
then similar to the one for the // for character strings described above, but uses the
macro RTDS_SEQUENCE_CONCAT instead of the function RTDS_StringCat.

For example:
DCL a, b, c MyStringType;
…
a := b // c;

is converted to:
MyStringType a, b, c;
…
MyStringType tmp_string;
RTDS_SEQUENCE_CONCAT(&tmp_string, &b, &c);
memcpy(&a, &tmp_string);

5.2.6 Comparison operations
When both operands for comparison operators are booleans, integers, reals, times or
durations, the SDL comparison operators are directly translated to their C equivalent.

For comparison operations on character strings, the C function strcmp is used: s1 op s2
is simply translated to strcmp(s1, s2) op’ 0, op’ being the C translation of op.
PragmaDev Studio V6.0 Page 117

Reference Manual
For comparison operations on structures, choices, arrays or strings, a C function named
RTDS_<type name>_cmp is generated, returning an integer having the same meaning as
the standard C function memcmp: If variables a and b have the type T, a op b is translated
to RTDS_T_cmp(&a, &b) op’ 0, op’ being the C translation of op. In this case, op can only
be = or /= (translated respectively to == and !=). All comparison functions are declared
just after the type itself, and all are implemented in a single generated file called
RTDS_comp_functions.c.

For comparisons on bag types, the function is actually named RTDS_setOf_<type
name>_cmp since it has a different signature and can test for inclusions too. It is described
in paragraph “NEWTYPE … Bag(…) declaration” on page 110.

5.2.7 Conditional operator
The SDL conditional operator IF cond THEN expr1 ELSE expr2 FI is converted to its C
equivalent ((cond’) ? (expr1’) : (expr2’)), where cond’, expr1’ and expr2’ are the C
translations for cond, expr1 and expr2 respectively. Note that types for the expressions is
not considered, so using structures, choices or arrays in expr1 or expr2 will generate
invalid C code.

5.2.8 Field extraction
A field extraction s!x is usually converted to its C equivalent s.x, except in the following
cases:

• If s is a variable passed as an in/out parameter to a procedure, it is passed as a
pointer. So the field extraction becomes (*s).x;

• If s is a variable inherited from an enclosing scope, it is also accessed via a
pointer (see “Nested scopes management” on page 120), so the field extraction
also becomes (*s).x;

• If s is a choice:
• If x is present, the conversion is normal: s.present;
• If x is not present, the __value sub-structure is added in the middle and the

field extraction becomes s.__value.x. See “NEWTYPE … CHOICE declara-
tion” on page 108.

Note that a field extraction via s(x) instead of s!x is not recognized.

5.2.9 Array indexing
The conversion for an array indexing a(i) depends on the index type for the array:

• If the index type’s lower bound is 0, the translated code is a[i].

• If the index type’s lower bound is not 0, the translated code is:
a[i - RTDS_IndexType_MIN]
where IndexType is the name of the array index type.

Note that this will happen for all expressions with the format x(y) if x is not a declared
operator.
Page 118 PragmaDev Studio V6.0

Reference Manual
5.2.10 SDL procedure calls
Procedure calls generate a call to a C function with the same name as the procedure,
passing structure or choice parameters by address. In addition:

• Parameters defined as IN/OUT are always passed by address.

• The additional parameter RTDS_localsStack is always passed to the procedure
except for external ones (see “Nested scopes management” on page 120).

• When in task blocks:
• The CALL keyword is removed;
• The parameter RTDS_currentContext is automatically added, as required by

the SDL-RT semantics expect for external ones.

5.2.11 External procedures and operator calls
In the generated C code the external procedures and operators are called following their
declarations described in the previous chapter. In the case of complex return types such
as CHARSTRING, STRUCT, etc.. and additional parameter is expected. This parameter
should be of the same type as the return value of the procedure.

For example the following SDL declaration:
PROCEDURE PragmaDev_FileReadLine(file_id INTEGER) -> CHARSTRING EXTERNAL;

expects the definition of the procedure to be:
char * PragmaDev_FileReadLine(int file_id, char * RTDS_return_value);

5.2.12 Inline values for structures or arrays
Inline values for structures are (. field1, field2, … .), and (. element .) for arrays.
These values can only be converted when in the context of a variable assignment. In this
case, the translation consists in the declaration of a temporary variable with the structure
or array type at the beginning of the parent task block, initialized with the given value.
The value itself is then replaced by this temporary variable. For example:

myStruct := (. 1, ’foo’ .)

where the type for myStruct is MyStruct_t is translated to:
{
MyStruct_t RTDS_MyStruct_t_CONSTANT1 = { 1, "foo" };
memcpy(&(myStruct), &(RTDS_MyStruct_t_CONSTANT1), sizeof(MyStruct_t));
}

Note: this means that expressions in an inline structure or array initializer must always
be constants: if a variable is used, its value may change between the beginning of the task
block and where the initializer is actually used. This is consistent with the semantics used
for the SDL simulator.
PragmaDev Studio V6.0 Page 119

Reference Manual
5.3 - Nested scopes management

5.3.1 Problem
In SDL, if a procedure is defined in a process or another procedure, it may see or modify
all variables defined in its parent, recursively. For example, with the following architec-
ture:

each procedure may modify the following variables:

Since C function declarations cannot be nested, this feature has no equivalent in C, so it
must be implemented explicitly. Moreover, one has to consider that procedures may call
any other procedure if the latter has been defined in the caller procedure or any of its
ancestors. In the example:

Procedure: may access variables in:

p1 P, p1

p1a P, p1, p1a

p1b P, p1, p1b

p2 P, p2

p2a P, p2, p2a

p2b P, p2, p2b

Procedure: may call:

p1 p1a, p1b, p1, p2

p1a p1a, p1b, p1, p2

p1b p1b, p1a, p1, p2

p2 p2a, p2b, p2, p1

p2a p2a, p2b, p2, p1

P

p1

p2

p2a

p2b

p1a

p1b
Page 120 PragmaDev Studio V6.0

Reference Manual
So if the process calls p1, which in turn calls p1a, which calls p2, which calls p2b, p2b
should still be able to access any variable in p2 and P, even if a variable with the same
name exists in p1 or p1a.

5.3.2 C implementation

5.3.2.1 General case

The implementation chosen in C to allow this behavior is to manage explicitly a second-
ary call stack containing pointers on process or procedure’s local variables:

• Each process or procedure stores the addresses of all its local variables in a C
array named RTDS_<proc. name>_myLocals, declared as an array of void*. The
variables are sorted by name to ensure a consistent order across scopes (there is
an exception to this rule for specialized process classes; see “Specialized process
classes” on page 125).
For example, if a process or procedure declares the local variables:
int i, j;
MyStructType st;
RTDS_String msg;
the following additional declarations and statements will be generated:
void * RTDS_myLocals[4];
RTDS_myLocals[0] = (void*)&i;
RTDS_myLocals[1] = (void*)&j;
RTDS_myLocals[2] = (void*)&msg;
RTDS_myLocals[3] = (void*)&st;

• All these arrays are organized into a stack that is filled from the top-level process
or procedure. This stack is stored in an C array called RTDS_localsStack and
declared as an array of void**. This array is then passed to every procedure as
the last parameter under the name RTDS_inhLocalsStack.
For example, for a procedure p1 with no parameters or return value in the pro-
cess P, p1 is actually defined as:
void p1(void *** RTDS_inhLocalsStack)
and the procedure declares:
void ** RTDS_localsStack[2];
which is initialized by:
RTDS_localsStack[0] = RTDS_inhLocalsStack[0];
RTDS_localsStack[1] = RTDS_myLocals;
where RTDS_myLocals is the array referencing the local variables in p1.
When p1 is called from the process, the array passed in RTDS_inhLocalsStack
only contains the element for P’s local variables, enabling the procedure to access
them.
When p1 calls any other procedure, it will pass in its RTDS_inhLocalsStack the
array containing P’s variables and the array containing its own variables. So if the
called procedure is defined in p1, it will be able to access p1’s and P’s variables. If
the called procedure is defined in P, it will be able to access P’s variables.

p2b p2b, p2a, p2, p1

Procedure: may call:
PragmaDev Studio V6.0 Page 121

Reference Manual
• All inherited variables in procedure are declared as pointers, initialized with the
corresponding element in the corresponding stack entry. If the variable is shad-
owed by another variable with the same name in an enclosed scope, it is simply
not defined.

Here is a detailed example, with the following architecture:

The variables declared in the process and procedures are:

The additional declarations and statements in the process and procedures are:

• In process P:
void * RTDS_myLocals[2];
void ** RTDS_localsStack[1];
RTDS_myLocals[0] = (void*)&i;
RTDS_myLocals[1] = (void*)&j;
RTDS_localsStack[0] = RTDS_myLocals;

• In procedure p1 (declared with additional parameter void ***
RTDS_inhLocalsStack):
void * RTDS_myLocals[1];
void ** RTDS_localsStack[2];
int * i;
int * j;
RTDS_myLocals[0] = (void*)&n;
RTDS_localsStack[0] = RTDS_inhLocalsStack[0];
RTDS_localsStack[1] = RTDS_myLocals;
i = (int*)(RTDS_inhLocalsStack[0][0]);
j = (int*)(RTDS_inhLocalsStack[0][1]);
When p1 is called, RTDS_inhLocalsStack[0] is always the RTDS_myLocals array
declared by process P. So P’s variables i and j may be accessed in p1 via *i and
*j.

Process /
procedure Variables

P int i, j;

p1 int n;

p1a int j, k;

p1b int m;

p2 float x, y;

P

p1

p2

p1a

p1b
Page 122 PragmaDev Studio V6.0

Reference Manual
• In procedure p1a (declared with additional parameter void ***
RTDS_inhLocalsStack):
void * RTDS_myLocals[2];
void ** RTDS_localsStack[3];
int * i;
int * n;
RTDS_myLocals[0] = (void*)&j;
RTDS_myLocals[1] = (void*)&k;
RTDS_localsStack[0] = RTDS_inhLocalsStack[0];
RTDS_localsStack[1] = RTDS_inhLocalsStack[1];
RTDS_localsStack[2] = RTDS_myLocals;
i = (int*)(RTDS_inhLocalsStack[0][0]);
n = (int*)(RTDS_inhLocalsStack[1][0]);
j is not declared as in p1 since it is shadowed by variable j in p1a. Again,
RTDS_inhLocalsStack[0] is always P’s RTDS_myLocals, and
RTDS_inhLocalsStack[1] is always p1’s RTDS_myLocals, allowing access to their
respective local variables.

• In procedure p1b (declared with additional parameter void ***
RTDS_inhLocalsStack):
void * RTDS_myLocals[1];
void ** RTDS_localsStack[3];
int * i;
int * j;
int * n;
RTDS_myLocals[0] = (void*)&m;
RTDS_localsStack[0] = RTDS_inhLocalsStack[0];
RTDS_localsStack[1] = RTDS_inhLocalsStack[1];
RTDS_localsStack[2] = RTDS_myLocals;
i = (int*)(RTDS_inhLocalsStack[0][0]);
j = (int*)(RTDS_inhLocalsStack[0][1]);
n = (int*)(RTDS_inhLocalsStack[1][0]);
Same thing as in p1a, but j is not shadowed by a local variable, so it is extracted
from the first entry in the stack, corresponding to process P.

• In procedure p2 (declared with additional parameter void ***
RTDS_inhLocalsStack):
void * RTDS_myLocals[2];
void ** RTDS_localsStack[2];
int * i;
int * j;
RTDS_myLocals[0] = (void*)&x;
RTDS_myLocals[1] = (void*)&y;
RTDS_localsStack[0] = RTDS_inhLocalsStack[0];
RTDS_localsStack[1] = RTDS_myLocals;
i = (int*)(RTDS_inhLocalsStack[0][0]);
j = (int*)(RTDS_inhLocalsStack[0][1]);
PragmaDev Studio V6.0 Page 123

Reference Manual
Here is the contents of the RTDS_inhLocalsStack additional parameter passed to each
procedure when called by the process or another procedure:

//// denotes that there is no element in RTDS_inhLocalsStack at this index. The name in
the "Index" columns is the name of the process or procedure whose variables are stored
in the specified element. The greyed cells with bold text emphasize the entries that are
required in a given context. For example, when p1a is called, it must be able to access
variables from two levels above, i.e. P’s and p1’s variables. The table shows that all
required entries are always correctly set.

Caller Called
Variables in RTDS_inhLocalsStack

Index 0 Index 1 Index 2

P p1 P //// ////

P p2 P //// ////

p1 p1 P p1 ////

p1 p2 P p1 ////

p1 p1a P p1 ////

p1 p1b P p1 ////

p1a p1 P p1 p1a

p1a p2 P p1 p1a

p1a p1a P p1 p1a

p1a p1b P p1 p1a

p1b p1 P p1 p1b

p1b p2 P p1 p1b

p1b p1a P p1 p1b

p1b p1b P p1 p1b

p2 p1 P p2 ////

p2 p2 P p2 ////
Page 124 PragmaDev Studio V6.0

Reference Manual
5.3.2.2 Specialized process classes

An additional problem appears when a process class is specialized, since a procedure
called in the sub-class can access variables defined in the super-class. Here is an example
architecture:

In this case:

• Procedure p2 has access to all variables defined for process class P2, including
those inherited from P1;

• Process class P2 may call procedure p1, which has access to variables inherited
from P1, but not to P2’s own local variables.

To ensure correct behavior, the variables in the P1’s and P2’s arrays RTDS_myLocals are
ordered first by inheritance level, then by variable name. This ensures that procedures
that may access only variables defined in the super-class will always find them at the
same index in their RTDS_inhLocalsStack parameter.

In the example, if the variables declared in the processes are:

the definitions and initialisations for the arrays for nested scope management will be:

Process Variables

P1 int i, j;

P2 short b;

Process Array declarations

P1 void * RTDS_myLocals[2];
void ** RTDS_localsStack[1];
RTDS_myLocals[0] = (void*)&i;
RTDS_myLocals[1] = (void*)&j;
RTDS_localsStack[0] = RTDS_myLocals;

P2 void * RTDS_myLocals[2];
void ** RTDS_localsStack[1];
RTDS_myLocals[0] = (void*)&i;
RTDS_myLocals[1] = (void*)&j;
RTDS_myLocals[2] = (void*)&b;
RTDS_localsStack[0] = RTDS_myLocals;

P1

p1

Package

P2

p2

P2

P1
PragmaDev Studio V6.0 Page 125

Reference Manual
Note that the address for variable b, defined in P2, is inserted after the addresses for the
variables i and j inherited from P1. By doing so, we ensure that addresses for variables i
and j are always found at indices 0 and 1 in the array, allowing procedures p1 and p2 to
access them in a consistent way in their RTDS_inhLocalsStack parameter.
Page 126 PragmaDev Studio V6.0

Reference Manual
6 - SDL to SDL-RT conversion

6.1 - Project tree
The conversion of project nodes in the project tree is generally one to one: A package
node will be converted to a package node, a diagram node to a diagram node, and so on…
The following exceptions apply:

• Two special files named RTDS_String.h and RTDS_String.c are always added to
the converted project. These files define and implement the functions required to
handle strings in converted diagrams.

• If an agent hierarchy contains type, syntype or synonym declarations, these dec-
larations are not inserted in the diagrams, but in a special C header file at the
same level as the top-level agent in the hierarchy. All type declarations are gath-
ered in this file, wherever they appear. For example:

will be converted to:

The corresponding type definitions will be removed from the corresponding
symbols and a new text symbol will be inserted in the top-level diagram contain-
ing a #include for the created header file (see “Diagrams” on page 128).
This mechanism ensures that all types defined at all levels in the hierarchy will
be seen in all diagrams. This also allows to re-order the declarations to ensure
that types are always declared after the types they depend on, as required by the
C semantics. For more details, see “Conversion guidelines for declarations” on
page 107.

System

BlockA

BlockB

ProcessA1

ProcessA2

ProcessB

NEWTYPE t1 …

NEWTYPE t2 …

NEWTYPE t3 …

NEWTYPE t4 …

NEWTYPE t5 …

NEWTYPE t6 …

System

BlockA

BlockB

ProcessA1

ProcessA2

ProcessB

System_types.h typedef … t1;
typedef … t2;
typedef … t3;
typedef … t4;
typedef … t5;
typedef … t6;
PragmaDev Studio V6.0 Page 127

Reference Manual
• A SDL declarations file node may be split into two file nodes: A C header file and
a SDL-RT declarations file. For further details, see “Files” on page 128.

6.2 - Files
Declaration files are translated as explained in “Conversion guidelines for declarations”
on page 107. The conversion result is:

• A C header file containing the standard import of the RTDS_String.h file and the
translation for all type, syntype and synonym declarations;

• Optionally a SDL-RT declarations file containing the MESSAGE and MESSAGE_LIST
declarations corresponding to the SIGNAL and SIGNALLIST declarations in the
original file.

If any C source, C header or external file is present in the SDL project, it is copied to the
translated SDL-RT project without any conversion.

6.3 - Diagrams
The general principles for diagram conversion are:

• Partitions are converted one to one: Each partition in the diagram will have an
equivalent in the converted one;

• Symbols in partitions are also converted one to one whenever possible.

There are exceptions to these rules, depending on the original diagram type. They are
detailed in the following paragraphs, along with the actual conversions performed.

6.3.1 SDL diagrams
The following exceptions apply for SDL diagrams:

• The conversions performed for declarations and statements are respectively
described in “Conversion guidelines for declarations” on page 107 and “Conver-
sion guidelines for statements and expressions” on page 116. The latter para-
graph also describes how are converted the expressions that may appear in other
symbols (e.g. message parameters in message outputs, procedure parameters in
procedure calls, etc…). Apart from declarations, statements and expressions, the
conversion is usually quite straightforward, except in the following cases:
• In architecture diagrams, cardinalities for blocks are ignored.
• In behavioral diagrams, virtualities (VIRTUAL, REDEFINED, FINALIZED) is start,

input, save or continuous signal symbols are ignored.
• In behavioral diagrams, message outputs TO <receiver id> are converted

either to a TO_NAME or a TO_ID depending on the existence of a variable named
<receiver id>.

• Parameters for processes are ignored: the FPAR declaration will disappear
from the process diagram and the parameters will be removed from the pro-
cess creation symbols.
Page 128 PragmaDev Studio V6.0

Reference Manual
• NEWTYPE, SYNTYPE and SYNONYM declarations in text symbols are copied to a global
C header file as explained in “Project tree” on page 127. If no other declaration is
present in the symbol, it will not appear in the converted diagram.

• An additional text symbol will appear in all top-level SDL diagrams (system,
block class and process class). It will contain the #include directive for the global
C header file for types.

• Some declarations in SDL text symbol will be translated to SDL-RT declarations
(in dashed text symbols), and some to C declarations (in regular text symbols). If
a symbol contains both, it will be split in two. For example:

will be translated to:

• An additional partition containing an additional text symbol may appear in pro-
cess and procedure diagrams. This symbol is used to manage SDL nested scopes,
i.e. the ability for procedures to access their parent process’s variables. For more
details, see “Nested scopes management” on page 120.

6.3.2 UML class diagrams
The only conversion involved in UML class diagrams is the conversion of the message
parameter types to their C equivalent.

For example, if the UML class diagram in the SDL project contains:

it will be converted in the SDL-RT project to:

6.3.3 Other diagrams
The following diagram types are copied to the SDL-RT project without any conversion:

• MSC and HMSC diagrams,

• UML use case and deployment diagrams.

INHERITS SuperClass;
DCL i INTEGER;

INHERITS SuperClass;

int i;
PragmaDev Studio V6.0 Page 129

Reference Manual
7 - SDL generation from C comments

This section describes how to generate an SDL view from a C source file.
Generation is based on PR-like comments in the C code. It is possible to generate the
complete architecture of a system and the behaviour of each element, or only the behav-
iour of specific element.

7.1 - Architecture
Each element of the architecture has to be declared one after each other.
/* _PRAGMADEV_SYSTEM system_name */
/* _PRAGMADEV_ENDSYSTEM */

/* _PRAGMADEV_BLOCK block_name */
/* _PRAGMADEV_ENDBLOCK */

/* _PRAGMADEV_PROCESS system_name */
/* _PRAGMADEV_ENDPROCESS */

It is possible to make a reference to an element:
/* _PRAGMADEV_REFERENCED element_type element_name */
with element is SYSTEM, BLOCK or PROCESS

7.2 - Behavior
• Declaration

C comments SLDL symbol

/*_PRAGMADEV_TEXT_START*/
the

text in
the
box

/*_PRAGMADEV_TEXT_END*/

/*_PRAGMADEV_PROCEDURE procedureName */

Table 1: Mapping between C and SDL declarations
Page 130 PragmaDev Studio V6.0

Reference Manual
• State
To declare a new state:
/* _PRAGMADEV_STATE state_name*/
At the end of a state branch, we can declare a nextstate:
/* _PRAGMADEV_NEXTSTATE nextstate_name*/
When all branches of a state have been declared, end state:
/* _PRAGMADEV_ENDSTATE*/
To declare a JOIN:
/* _PRAGMADEV_JOIN labelName*/
To declare a LABEL:
/* _PRAGMADEV_CONNECTION labelName*/

/*_PRAGMADEV_MACRODEFINITION macroName */

C comments SLDL symbol

/*_PRAGMADEV_START*/

/*_PRAGMADEV_STATE StateName*/
...

/*_PRAGMADEV_ENDSTATE */

/*_PRAGMADEV_NEXTSTATE StateName*/

/*_PRAGMADEV_JOIN labelName*/

Table 2: Mapping between C and SDL states

C comments SLDL symbol

Table 1: Mapping between C and SDL declarations
PragmaDev Studio V6.0 Page 131

Reference Manual
• Transition

• Action
To make a send message:
/* _PRAGMADEV_OUTPUT message_name_and_parameters*/
To declare a task block of C code:
/*_PRAGMADEV_TASK_START*/
C Code
/*_PRAGMADEV_TASK_END*/
To make a stop:
/*_PRAGMADEV_STOP*/

/*_PRAGMADEV_CONNECTION labelName*/

C comments SDL symbol

/*_PRAGMADEV_INPUT message(param)*/

/*_PRAGMADEV_PRIORITY_INPUT message(param)*/

/*_PRAGMADEV_SAVE messageName*/

/*_PRAGMADEV_PROVIDED condition*/

Table 3: Mapping between C and SDL transition

C comments SLDL symbol

Table 2: Mapping between C and SDL states
Page 132 PragmaDev Studio V6.0

Reference Manual
To start a decision:
/* _PRAGMADEV_DECISION decision_text */
For each branch of the decision:

C comments SDL symbol

/*_PRAGMADEV_OUTPUT message(param)*/

/*_PRAGMADEV_PRIORITY_OUTPUT message(param)*/

/*_PRAGMADEV_TASK_START*/
C Code

/*_PRAGMADEV_TASK_END*/

/*_PRAGMADEV_STOP*/

/*_PRAGMADEV_CREATE processName(param)*/

/*_PRAGMADEV_CALL procedureName(param)*/

/*_PRAGMADEV_MACRO macroName(param)*/

Table 4: Mapping between C and SDL actions
PragmaDev Studio V6.0 Page 133

Reference Manual
/* _PRAGMADEV_BRANCH decision_condition */
After all the branches have been declared, end decision:
/* _PRAGMADEV_ENDDECISION */

Timer

C comments SDL symbol

/*_PRAGMADEV_DECISION decision_text*/
/*_PRAGMADEV_BRANCH condition_one*/

/*_PRAGMADEV_NEXTSTATE Idle*/
/*_PRAGMADEV_BRANCH condition_two*/
/*_PRAGMADEV_NEXTSTATE Running*/

/*_PRAGMADEV_ENDDECISION*/

Table 5: Mapping between C and SDL decision

C comments SDL symbol

_PRAGMADEV_SET timerName duration/

_PRAGMADEV_RESET timerName/

Table 6: Mapping between C and SDL Timer
Page 134 PragmaDev Studio V6.0

Reference Manual
7.3 - Example
Here is a C source file with specific comments for SDL generation:
PragmaDev Studio V6.0 Page 135

Reference Manual
To generate the corresponding SDL element, click on the View graphical representation
button:
This action will open a process diagram for pLocal with its behaviour:
Page 136 PragmaDev Studio V6.0

Reference Manual
8 - SDL and SDL-RT code generation

8.1 - Basic principles
In a generated executable, SDL-RT or SDL process instances must execute in parallel. To
handle this, two solutions are available:

• The generated code can rely on a RTOS to actually execute the instances in paral-
lel using tasks or threads;

• The generated code can use a scheduler to handle the parallelism by executing
instances transition by transition, based on the messages they send to each
other.

PragmaDev Studio offers both ways of generating code, and even ways to mix the two.
For example, the generated code can use tasks or threads for each block, and schedule
the process instances within the blocks. In addition, it is possible to generate code in C or
C++, each language offering different possibilities.

Here is a summary of the different code generation types that are available in PragmaDev
Studio:

• C code generation with a RTOS: This is the basic code generation feature in
PragmaDev Studio. It requires an RTOS for which the code will be generated.
Each process instance will be mapped to one RTOS task. This type of code gener-
ation is available for SDL-RT and SDL, and is described in paragraph “C code
generation with a RTOS” on page 138.

• C++ code generation with or without a RTOS: This is the most advanced
code generation feature. It allows to set up precisely how process instances will
be scheduled and arranged into tasks, based on the system architecture. This
type of code generation is available for SDL-RT and SDL, and is described in
paragraph “C++ code generation with or without a RTOS” on page 188.

• C code generation with the built-in scheduler: This type of code genera-
tion allows only a full system scheduling. In this specific case, it can be used
instead of the more advanced C++ code generation if C++ cannot be used for any
reason. It is described in paragraph “C code generation with PragmaDev Studio
C scheduler” on page 202.

• C code generation with an external scheduler: This type of code genera-
tion is based on the previous one, but does not include the built-in C scheduler. It
can be used if the generated code must be integrated in an external scheduler
with code coming from other tools. It also has some limitations, since Prag-
maDev Studio cannot know how the external scheduler is working. This type of
code generation is described in paragraph “C code generation with external C
scheduler (SDL only)” on page 205.
PragmaDev Studio V6.0 Page 137

Reference Manual
8.2 - C code generation with a RTOS

8.2.1 Principles
As described above, this code generation requires a RTOS or OS to work. It maps each
process instance to exactly one task or thread and relies on the RTOS to perform the
scheduling. The basic services such as instance creation, message sending, semaphore
handling, and so on…, use the RTOS or OS API. So the generated code is interfaced with
the underlying RTOS using a RTOS integration, as described below.

Code generation is run on a diagram in a project with a set of generation options. For
each diagram is generated a C header file, and a C source file for behavioral elements
(processes and procedures).

To ensure the visibility of declarations made in all ancestors of a diagram in any element,
each header file always includes the header file generated for its parent element:

The name for the generated C header or source file is always the name of the agent with
the proper extension, except when there are several agents with the same name. In this
case, the files for the first encountered one are named <agent name>__1, then <agent
name>__2 for the second one, and so on…

MySystem

MyBlock1

MyBlock2

MyProcess1

MyProcess2

MyProcedure2

MySystem.h

MyBlock1.h

MyProcess1.h

MyBlock2.h

MyProcess2.h

MyProcedure2.h

#include “MySystem.h”

#include “MySystem.h”

#include “MyBlock1.h”

#include “MyBlock2.h”

#include “MyProcess2.h”
Page 138 PragmaDev Studio V6.0

Reference Manual
For all architecture diagrams, all declarations are copied without modification from the
diagram to the generated C header file in SDL-RT, or translated according to the rules
described in “SDL to C translation rules” on page 107:

If several declaration symbols are present in the same partition of the diagram:

• In SDL-RT projects, their order in the generated header file is random. However,
the order of the partitions is kept: declarations in the first partition will all
appear before the declarations in the second, and so on…

• In SDL, the declarations and their dependencies are analysed and they are put in
the proper order in the generated file. This means that the sequence of declara-
tions in the diagram is never preserved in the generated file. Please also note that
recursive types are not supported and will make the code generation fail.

For behavioral elements, the generated C header file won’t contain the declarations made
in declaration symbols, since those can be declarations for variables that must go in the
process body. Only the other declarations are inserted in the header file, such as those for
procedures or messages declared in the process.

typedef struct _Point
{
long x;
long y;
} Point;

…
typedef struct _Point

{
long x;
long y;
} Point;

…
my_process

NEWTYPE Point
STRUCT

x Integer;
y Integer;

ENDNEWTYPE;

…
typedef struct _Point

{
int x;
int y;
} Point;

…
my_process
PragmaDev Studio V6.0 Page 139

Reference Manual
The C source file for a process actually contains very few code generated directly by Prag-
maDev Studio. Most of the code is taken from the RTOS integration, which is described
in the directory entered in the field “Code templates dir.” in the generation options:

RTOS integrations delivered with PragmaDev Studio can be found in PragmaDev Stu-
dio’s installation directory, subdirectory share, then ccg. Each directory having the name
of a RTOS is a RTOS integration.

Each integration contains the following:

• A set of mandatory files, that will actually be used during the code generation
process or within the generated code. These files are described below.

• A set of optional files, that are specific to the integration, and that will be inte-
grated in the built executable via a special file named addrules.mak, described
below.

• A set of partial C source files called “bricks”, that must be in the subdirectory
named bricks. These files will be used to generate the code for processes and
procedures.

${RTDS_HOME}
...

share

...

ccg

...

windows

RTDS_BasicTypes.h

RTDS_MACRO.h

RTDS_Env.c

addrules.mak

DefaultOptions.ini

...

bricks

RTDS_ContSig_begin.c

RTDS_ContSig_end.c

RTDS_Include.c

RTDS_Proc_end.c

...

RTDS_Stratup_end.c
Page 140 PragmaDev Studio V6.0

Reference Manual
For a process, here is how the corresponding code is generated:

The code for a procedure is generated the same way, except the bricks
RTDS_Procedure_begin.c and RTDS_Procedure_loopStart.c are used instead of
RTDS_Process_begin.c and RTDS_Proc_loopStart.c.

The part for continuous signal handling is optional and only appears if a state in the pro-
cess or procedure has continuous signals. In this case, this part is generated as follows:

my_process my_process.c bricks

RTDS_Include.c

generated includes

generated process header

generated declarations

RTDS_Process_begin.c

RTDS_Proc_loopStart.c

continuous signal handling

RTDS_Proc_middle.c

state/message double switch

RTDS_Proc_end.c

Bricks

Code generated by PragmaDev Studio

Code translated from the diagram

Optional parts

my_process my_process.c bricks

loop while state changes

RTDS_ContSig_begin.c

RTDS_ContSig_end.c

...

...

state switch

cont. sig. condition test

cont. sig. condition test

Bricks

Code generated by PragmaDev Studio

Code translated from the diagram

Surrounding parts
PragmaDev Studio V6.0 Page 141

Reference Manual
The remaining bricks are used for the generation of the startup task, which is run auto-
matically when the system starts and creates all global data and all initial instances:

Concerning the code in the transitions, all C code is just copied from the symbols to the
generated source file, and all SDL code is translated according to the rules described in
“SDL to C translation rules” on page 107. For symbols representing a call to an RTOS ser-
vice, the generated code uses a macro that must be defined in the file RTDS_MACRO.h in the
RTOS integration. For a given symbol type, the generated macro is always the same, so
the code actually generated by PragmaDev Studio (red and green parts in the diagrams
above) is always the same.

Here are some examples of generated code for a few symbol types:

There are a few special cases, especially for message handling where PragmaDev Studio
generates itself some macros to handle message parameters more easily. However, the
macro generated by PragmaDev Studio always ends up calling a macro defined in
RTDS_MACRO.h. In the example, the generated macro RTDS_MSG_SEND_mPing_TO_NAME will
only transform its parameters and then call the macro RTDS_MSG_QUEUE_SEND_TO_NAME,
defined in RTDS_MACRO.h.

The next paragraphs get into more details concerning the code generation:

• The files actually generated (page 143);

RTDS_Start.c bricks

semaphore creations

RTDS_Startup_begin.c

RTDS_Startup_end.c

initial instances creations

RTDS_Include.c

mPing TO_NAME pReceiver

pChild PRIO 5

child_processes[i] = OFFSPRING;

RTDS_MSG_SEND_mPing_TO_NAME(pReceiver)

RTDS_PROCESS_CREATE(

child_processes[i] = OFFSPRING;

...

...

TimeOut(5) RTDS_SET_TIMER(TimeOut, 5)

Defined in RTDS_MACRO.h

Generated constant

Special case

“pChild”, RTDS_process_pChild,
pChild, 5)
Page 142 PragmaDev Studio V6.0

Reference Manual
• The structure of a RTOS integration (page 144);

• The various types used in the generated code (page 147);

• The various generated constants in the code (page 152);

• The additional macros generated by PragmaDev Studio for some specific services
such as message handling (page 152);

• The translation performed for all symbols for code generation (page 155);

• The build process, including the generation of the makefile (page 177).

8.2.2 Generated files
The generated files for a typical system are shown on the figure below:

As explained above, a C header file is generated for each diagram, and a C source file is
generated for each behavioral diagram. The header files contain the declarations found
in the corresponding diagram; they all include the one generated for the parent diagram
to ensure the correct scope for declarations.

The other generated files are global to the whole system and are not associated to any
diagram. They will always have the same name for all systems and for all RTOS integra-
tions:

• RTDS_Start.c contains the startup task for the whole system. This may or may
not include a main function, depending on the RTOS. The startup task contains
all the necessary global initializations for the system, including the creation of
semaphores, then creates all initial process instances and runs them.

• RTDS_messages.h contains all the generated macros used to handle message
inputs and outputs. These macros are described in detail in paragraph “Addi-
tional generated types & macros for message handling” on page 152.

• RTDS_encdecMsgData.c is generated only if the debugging level in the generation
options is not None. It contains the utility functions used to encode message
parameters to the form used in the PragmaDev Studio debugger or the MSC

sACS.h
bCentral.h
pCentral.h
pCentral.c
bLocal.h
pLocal.h
pLocal.c
DisplayStar.h
DisplayStar.c
RTDS_Start.c
RTDS_messages.h
RTDS_encdecMsgData.c
RTDS_gen.h
RTDS_gen.ini
RTDS_gen.inf
Makefile

Files not associated
with any diagram
PragmaDev Studio V6.0 Page 143

Reference Manual
tracer (“|{param1|=…|,param2|=…|,…|}”) and to decode such a form to the actual
message parameters. These functions are built from the analysis of the parame-
ter types for all messages. This file is generated in a second phase during the
build, as described in “Pre-build action: Message encoders & decoders genera-
tion” on page 185.

• RTDS_gen.h contains all generated constants used in the generated code. These
include the numerical identifiers for all messages, timers, states, processes, and
semaphores in SDL-RT. This file also contains all prototype declarations for the
functions implementing the processes. For more details, see paragraph “Gener-
ated constants and prototypes (RTDS_gen.h)” on page 152.

• RTDS_gen.ini contains the same constants as RTDS_gen.h in the form of a Win-
dows INI file. The section are [States], [Processes], [Semaphores] and [Mes-
sages], the option names are the names for the states, processes, semaphores
and messages and their value is the numerical value as defined in RTDS_gen.h.
There are 2 additional sections in the file:
• [CodeGen] contains a single option called profileName, containing the name of

the code generation profile used for the generation.
• [MessageParams] contains the type for the transport structure for parameters

for all messages, the option name being the message name, and its value the
name of the structure type.

This file is used by the PragmaDev Studio debugger to map numerical identifiers
to the corresponding names. It can also be used by external tools.

• RTDS_gen.inf contains some detailed information about the running system that
can be used by some RTOS integrations, especially to create static structures
when the underlying RTOS doesn’t allow dynamic creations. It includes:
• The name and numerical identifier for all declared semaphores;
• The name, numerical identifier, function name, minimum and maximum

number of instances and priority for all processes;
• The name, numerical identifier and parameter transport structure type for all

messages.

• Makefile is the makefile for the whole system. It is described in detail in para-
graph “Build process” on page 177.

8.2.3 Structure of a RTOS integration
As described in “Principles” on page 138, a RTOS integration is a directory containing 3
sets of files:

• A set of mandatory files, that have to be present in all integrations, since they are
explicitely used in the generated code.

• A set of optional files, that will be included in the final build. These files are typi-
cally utility functions above the RTOS API.

• A set of files called bricks, used to generate the code for the processes, proce-
dures and the startup task.

These files are described in the following paragraphs, as well as the naming conventions
used in all integrations.
Page 144 PragmaDev Studio V6.0

Reference Manual
8.2.3.1 Naming conventions

All file names in all RTOS integrations are prefixed with “RTDS_” to avoid name clashes
with generated files.

In the code for the integration as well as in the generated code where it applies, all vari-
ables and types used internally are prefixed with “RTDS_”, and global variables used by
PragmaDev Studio to gather information about the running system are prefixed with
“RTDS_global”.

8.2.3.2 Mandatory files

The files that have to be present in every RTOS integration are the following ones:

• RTDS_BasicTypes.h defines the names used by PragmaDev Studio for the basic
RTOS concepts such as message queues, tasks, semaphores, and so on. These
types are usually not those used directly in the generated code, as PragmaDev
Studio adds a layer above these to add specific information. All these types are
described in detail in paragraph “Types used in the generated code” on page 147.

• RTDS_MACRO.h defines all macros used to translate the symbols found in the dia-
grams to C code, as explained in “Principles” on page 138. The exact translation
performed for all symbols and the macros that should be in this file are described
in detail in paragraph “C translation for symbols” on page 155.

• RTDS_Env.c is not always used, so it is not exactly mandatory. However, it has to
be present if the option “Generate environment process” is checked in the “Code
gen.” tab of the generation options in the project. It contains the default imple-
mentation for the environment process (RTDS_Env).

• addrules.mak references the optional files that must be included in the final built
and gives the rule that has to be included in the generated makefile for them. It
can use the macros defined in the generated makefile, described in paragraph
“Build process” on page 177.
For example, the default OSE integration contains 2 optional files, named
RTDS_OS.c and RTDS_Trace.c. To include them in the final build, the file
addrules.mak must contain the following lines:
RTDS_OS.o: $(RTDS_TEMPLATES_DIR)/RTDS_OS.c
RTDS_Trace.o: $(RTDS_TEMPLATES_DIR)/RTDS_Trace.c
The macro RTDS_TEMPLATES_DIR is always defined in the makefile and points to
the directory for the RTOS integration.

• DefaultOptions.ini contains a set of options for the integration and the build
process. It is a regular Windows INI file, containing the following sections:
• [general] contains the options for the integration itself. The options it con-

tains are described below.
• [common] contains the options for the build process that should apply to all

cases: build only, with MSC Tracer support and for PragmaDev Studio debug-
ger. The options it can contain are described in paragraph “Build process” on
page 177.

• [tracer] contains the additional options that should apply when MSC Tracer
support is turned on in the generation options. The possible options are the
same as in the [common] section.
PragmaDev Studio V6.0 Page 145

Reference Manual
• [debug] contains the additional options that should apply when PragmaDev
Studio debugger support is turned on in the generation options. The possible
options are the same as in the [common] section.

The available options in the [general] section are:
• rtos: The name for the RTOS for the integration. This information is used

internally by PragmaDev Studio to access to the debugging information.
• socketAvailable: 1 if a connection by socket to the debugged program is avail-

able, 0 if it’s not; Default is 0.
• malloc: Specifies whether dynamic memory allocation is supported by the

integration. Possible values are forbidden and allowed; Default is allowed.
• requiredEnvVariables: Environment variables that have to be defined to be

able to use the integration. The value is a semicolon separated list of strings;
Default is empty, meaning no environments variables are required.

• scheduling: Specifies whether scheduling is supported by the integration.
Possible values are required, supported and unsupported; Default is unsup-
ported. The value required means that this integration does not support the
notion of thread or task and that it has to be used with a scheduler (built-in or
external).

NB: In some integrations, there might be some other sections such as [options]
or [makefile] containing various options. These sections are deprecated and
should not be used anymore.

8.2.3.3 Optional files

Any integration can contain any number of additional source files implementing func-
tions that are used directly or indirectly by the macros in RTDS_MACRO.h. To include them
in the final build, they have to be referenced in the addrules.mak file described above. If
an additional header file is required, it does not have to be declared anywhere, since the
integration directory is always inserted in the include path, so a simple #include direc-
tive will find it.

Integrations provided with PragmaDev Studio usually contain a file named RTDS_OS.c,
containing various functions calling the RTOS API after adapting the data found in the
common types used in all integrations (see “Types used in the generated code” on
page 147). They also usually contain a file named RTDS_Error.h, gathering all the error
codes that might be returned by all operations.

8.2.3.4 Bricks

Bricks are used to generate the code for processes, procedures and the startup task in
RTDS_Start.c, as explained in “Principles” on page 138:

• RTDS_Include.c contains the #include directives that should be inserted at the
beginning of all source files: processes, procedures and startup task.

• RTDS_Process_begin.c & RTDS_Procedure_begin.c contain the definitions of the
local variables for each process or procedure (resp.). This brick is inserted just
after the declaration of the function implementing the process or procedure.

• RTDS_Proc_loopStart.c & RTDS_Procedure_loopStart.c contain the statement
opening the infinite loop for the process or procedure (resp.). Today, for all inte-
Page 146 PragmaDev Studio V6.0

Reference Manual
grations delivered with PragmaDev Studio, this brick contains “for (; ;) {”,
but it can be customized in a user-defined integration.

• RTDS_ConSig_begin.c & RTDS_ConSig_end.c are only used if the process or proce-
dure contains states handling continuous signals. These bricks are inserted
before and after the code block handling these continuous signals. See paragraph
“Continuous signal” on page 163.

• RTDS_Proc_middle.c is inserted just after the declarations in the process or pro-
cedure, or after the block handling continuous signals if any, and before the gen-
erated double-switch/case for states and messages. It contains the acquision of
the next message to consider, either in the save queue for the process (see “Mes-
sage save” on page 165) or in the process’s own message queue (see “Message
input” on page 161). It is common to processes and procedures.

• RTDS_Proc_end.c is inserted after the generated double-switch/case for state and
message. It usually contains clean-up code that should be executed before check-
ing continuous signals after a state change, or before acquiring the next message
to consider. It is common to processes and procedures.

• RTDS_Startup_begin.c contains the beginning of the file RTDS_Start.c contain-
ing the startup task. It is inserted after the code from RTDS_Include.c and the
inclusion of the necessary generated header files. It is followed by the initial cre-
ations for the generated system: semaphores, then initial process instances.

• RTDS_Startup_end.c is the end of the startup task. It is inserted in RTDS_Start.c
after the initial creations for the generated system.

8.2.4 Types used in the generated code
PragmaDev Studio defines its own types for basic SDL-RT or SDL concepts such as pro-
cess instances or messages. These types are the same ones for all integrations, as Prag-
maDev Studio needs to find the same information in the same structures, typically for the
PragmaDev Studio debugger. For this reason, these types are not defined in a header file
in the integration itself, but in a file named RTDS_Common.h, located in $RTDS_HOME/share/
ccg/common.

However, some information in these types are actually dependent on the RTOS. For
example, the message queue for a process instance will be a message queue created by
the RTOS. So its type is RTOS dependent. The mechanism chosen to handle this problem
is the following:

• The generated files and the files in the RTOS integration always include the
shared file RTDS_Common.h.

• RTDS_Common.h itself includes another file, called RTDS_BasicTypes.h, which is
not common, but defined in the RTOS integration. This file contains the type def-
initions for all basic concepts that have a RTOS dependent type.

This allows to have common top-level types that can have RTOS-specific parts, that the
RTOS integration will be able to use, but that PragmaDev Studio itself doesn’t need to
know.

The following paragraphs describe the common and RTOS-specific types.
PragmaDev Studio V6.0 Page 147

Reference Manual
8.2.4.1 Common types - RTDS_Common.h

The common types are described in the following table:

Table 7: Common types

RTDS_SdlInstanceId Identifier for a process instance in a
running system. Each instance will

have its own unique one.

queueId RTDS_RtosQueueId Identifier for the message queue for
the instance. If the instance is a

task, it has its own message queue;
If it is scheduled, this will be the
message queue for its scheduler.
The type RTDS_RtosQueueId must
be defined in RTDS_BasicTypes.h.

instanceNumber int Order number for instance if it is
run within a scheduler. If the

instance runs in its own task, the
value of this field is not significant.

RTDS_MessageHeader Descriptor for a message sent or
received by a process instance.

RTDS_MESSAGE_HEADER_ADDITIONNAL_FIELDS Macro that has to be defined in
RTDS_BasicTypes.h, allowing to

add fields at the beginning of the
message descriptors. Some RTOSes
require having some specific infor-

mation at the beginning of the
descriptor.

messageNumber long Numerical identifier for the mes-
sage type. This is the message iden-
tifier generated in RTDS_gen.h (see

“Generated files” on page 143).

timerUniqueId long Unique numerical identifier for a
timer “instance”. Each running

timer will have its own, even if it
has the same timer name as

another one. Used to identify a
timer when it times out or when it

has to be cancelled. If this field is 0,
the message is not for a timer.
Page 148 PragmaDev Studio V6.0

Reference Manual
messageUniqueId unsigned long Unique identifier for the message
instance. Each sent message will

have its own, even if it has the same
message name as another one.

Used to match the message recep-
tion with its sending, especially in

the trace. Only present if the code is
generated for the PragmaDev Stu-

dio debugger.

sender RTDS_SdlInstanceId* Points to the descriptor of the mes-
sage’s sender instance. It is typi-

cally used to implement the SENDER
variable in the processes.

receiver RTDS_SdlInstanceId* Points to the descriptor for the
message’s receiver instance. This
field is set when the message is

sent. It is necessary in the context
of scheduled instances, to figure out

if the message should be put in
another message queue, or if it

should be handled internally by the
scheduler when both the sender
and receiver instances are run

within the same scheduler.

dataLength long Length for the data associated with
the message, i.e its parameters.

pData unsigned char* Pointer on the data associated with
the message, i.e its parameters. The
contents of this field varies depend-
ing on the message. See “Additional
generated types & macros for mes-

sage handling” on page 152.

next RTDS_MessageHeader* Pointer on the next message if this
one is in a list or queue.

RTDS_GlobalProcessInfo Descriptor for a running process
instance.

myRtosTaskId RTDS_RtosTaskId Identifier for the task for the
instance. This is the identifier at the

RTOS level. The type
RTDS_RtosTaskId has to be defined

in RTDS_BasicTypes.h.

Table 7: Common types
PragmaDev Studio V6.0 Page 149

Reference Manual
sdlProcessNumber int Numerical identifier for the pro-
cess. This is the process identifier
as generated in RTDS_gen.h (see
“Generated files” on page 143).

mySdlInstanceId RTDS_SdlInstanceId* Identifier for this instance.

parentSdlInstanceId RTDS_SdlInstanceId* Identifier for this instance’s parent
if any.

offspringSdlInstanceId RTDS_SdlInstanceId* Identifier for the last process
instance created by the current one

if any.

sdlState int Current state for this instance. The
value is a state identifier generated

in RTDS_gen.h (see “Generated
files” on page 143).

currentMessage RTDS_MessageHeader* Last message read for the instance.

timerList RTDS_TimerState* List of currently active timers in the
instance. The type RTDS_TimerState

has to be defined in
RTDS_BasicTypes.h.

readSaveQueue RTDS_MessageHeader* Save queue used when reading
saved messages. See how saved

messages are handled in paragraph
“Message save” on page 165.

writeSaveQueue RTDS_MessageHeader* Save queue used when actually sav-
ing messages. See how saved mes-

sages are handled in paragraph
“Message save” on page 165.

next RTDS_GlobalProcessInfo* Pointer to the next descriptor when
it is in a list.

RTDS_GLOBAL_PROCESS_INFO_ADDITIONNAL_FIELDS Macro defined in
RTDS_BasicTypes.h to add RTOS-

specific fields to the structure when
needed.

RTDS_EventType Enumerated type for types of
events that can be reported to the

PragmaDev Studio debugger.

Table 7: Common types
Page 150 PragmaDev Studio V6.0

Reference Manual
NB: In addition to these types, RTDS_Common.h also defines type named RTDS_QueueId,
which is an alias for RTDS_SdlInstanceId*. This is for backwards compatibility with pre-
vious versions of PragmaDev Studio that identified a process instance with its message
queue. This type should no more be used.

8.2.4.2 RTOS-specific types - RTDS_BasicTypes.h

The types that must be defined in RTDS_BasicTypes.h are the following ones:

• RTDS_RtosTaskId is the identifier for a task in the underlying RTOS. For example,
it is an integer in the VxWorks integration, a PROCESS in the OSE 5.2 integration,
and a pthread_t in the POSIX integration.

• RTDS_RtosQueueId is the identifier for a message queue in the underlying RTOS.
For example, it is a MSG_Q_ID in the VxWorks integration, and a pointer on a cus-
tom type named RTDS_QCB in the POSIX integration.

• RTDS_TimerState is a descriptor for a running timer. It is usually a custom struct
type, including RTOS-specific fields such as the WDOG_ID in the VxWorks integra-
tion.

In addition to these types, fields can be added to the types defined in RTDS_Common.h
by defining the following macros:

• RTDS_GLOBAL_PROCESS_INFO_ADDITIONNAL_FIELDS can be used to add fields at the
end of the RTDS_GlobalProcessInfo type. This is typically used to add RTOS-spe-

RTDS_GlobalTraceInfo Descriptor for an event that has to
be traced by the debugger. Defined
only when the debugger or tracer

support is on.

event RTDS_EventType Type for the event.

eventParameter1 void* First parameter for the event. The
actual type for this parameter

depends on the event type. For
example, for a message send, this
parameter will be a pointer on the

corresponding
RTDS_MessageHeader, or for an
instance creation, it will be the
RTDS_GlobalProcessInfo for the

created instance.

eventParameter2 long Second parameter for the event.
For example, it will be the timer

delay for a timer start, or the state
identifier for a state change.

currentContext RTDS_GlobalProcessInfo* Descriptor for the instance within
which the event happened.

Table 7: Common types
PragmaDev Studio V6.0 Page 151

Reference Manual
cific information such as the instance’s priority, or its stack, or its message
queue.

• RTDS_MESSAGE_HEADER_ADDITIONNAL_FIELDS can be used to add fields at the
beginning of the RTDS_MessageHeader type. It is very often unused, except when
the RTOS requires a specific field at the beginning of the message descriptor, e.g
OSE which requires its own signal identifier to be there (type SIGSELECT).

The file RTDS_BasicTypes.h can of course also include other type or macro definitions if
they have to be known in the whole generated code and/or integration files.

8.2.5 Generated constants and prototypes (RTDS_gen.h)
This paragraph describes in detail the contents of the generated file RTDS_gen.h. As said
above, this file defines constants for all processes, messages, states and semaphores in
the SDL-RT or SDL system. It also defines the prototypes for the functions implementing
the processes.

More precisely:

• A #define’d constant is generated for each process in the system. The constant
has the name of the process prefixed with RTDS_process_. If there are several
processes with the same name in the system, the first encountered one will have
a suffix __1, the second one a suffix __2, and so on…

• A #define’d constant is generated for each state name in all processes. The con-
stant has the name of the state. If a state with the same name is used in two or
more processes, a single constant is generated, so the numerical value for a given
state name is always the same, whichever process it appears in.

• A #define’d constant is generated for each message. The constant has the name
of the message. All messages are considered global: If a message is declared in a
block, its numerical identifier will be declared globally in RTDS_gen.h anyway.
This means that hiding a message declared at system level with one declared in a
block cannot work.

• A prototype for each function implementing a process. The prototype is not writ-
ten directly, but via a macro defined in RTDS_MACRO.h. The declaration for a pro-
cess foo will be:
RTDS_TASK_ENTRY_POINT_PROTO(foo);
This is necessary since some RTOSes use themselves macros to declare the func-
tion that can be used as tasks.

8.2.6 Additional generated types & macros for message handling
As described in paragraph “Common types - RTDS_Common.h” on page 148, the descrip-
tor for message includes the message parameters as a simple couple length + pointer
(field dataLength and pData), the pointer having the generic type unsighed char*, allow-
ing to point to any type of memory buffer.

In the SDL-RT or SDL system, the message is however described in a structured way: For
any message can be given one or several parameter types. When sending the message,
Page 152 PragmaDev Studio V6.0

Reference Manual
the vaules for each individual parameter is specified, and when receiving it, each param-
eter is assigned to a given variable.

To be able to pass all parameters in a single buffer, PragmaDev Studio generates a trans-
port structure for the message parameters, with a field for each one with the type speci-
fied in the message declaration. For example, for a message declared as:
MESSAGE CTIdentify_req(t_callIdentity, t_number, t_vendor_extension);

will generate the transport structure:
typedef struct RTDS_CTIdentify_req_data

{
t_callIdentityparam1;
t_numberparam2;
t_vendor_extensionparam3;
} RTDS_CTIdentify_req_data;

This way, if a process sends a message of type CTIdentify_req, it just has to allocate a
variable data with the type RTDS_CTIdentify_req_data, fill its fields, then specify for the
fields dataLength and pData in the RTDS_MessageHeader for the sent message the values
sizeof(RTDS_CTIdentify_req_data) and (unsigned char*)(&data) respectively. Simi-
larly, if a process receives a message of type CTIdentify_req, specifying the variables ci,
n and ve for its parameters, it just has to get the message parameters in the field pData in
the received RTDS_MessageHeader, cast it to the type RTDS_CTIdentify_req_data* and
extract the fields param1, param2 and param3 to assign them to the variables ci, n and ve
respectively.

Things are actually a bit more complicated than this, since there are two cases for each
parameter that forces to do things differently:

• If a parameter has a base type, assigning to it, or assigning its value to a variable
can be done with a simple assignment. This applies for parameters declared
directly with a base type in the message declaration, but also to synonyms for
these ones. If the type t_number in the example above was declared as:
typedef long t_number;
it should be considered as a base type.

• If a parameter has a complex type, such as a struct, union or array, assigning to
it, or assigning its value to a variable cannot be done with a simple assignment.
Doing so requires to use the standard function memcpy to copy the whole variable.

Note also that using memcpy sometimes doesn’t work in the first case: For example, if a
parameter is an int and the message sending directly specifies the value 0 for the param-
eter, one of the parameters to memcpy would be &(0), which isn’t valid C.

To avoid having to handle all these specific cases each time a message is sent or received,
PragmaDev Studio actually generates a set of message-specific macros allowing to
directly send them, or decode a received RTDS_MessageHeader without having to write
everything each time. These macros are:

• RTDS_MSG_RECEIVE_<message>(RTDS_PARAM1, RTDS_PARAM2, …)
This macro decodes the current message, which must be a message with the
name <message>, and assigns all its parameters to the variable passed in
RTDS_PARAM1, RTDS_PARAM2, and so on…
In the example:
PragmaDev Studio V6.0 Page 153

Reference Manual
RTDS_MSG_RECEIVE_CTIdentify_req(ci, n, ve)
will assign the parameters for the current message, which must be a
CTIdentify_req, to the variables ci (a t_callIdentity), n (a t_number) and ve (a
t_vendor_extension).

• RTDS_MSG_SEND_<message>_TO_ID(RECEIVER, RTDS_PARAM1, RTDS_PARAM2, …)
This macro sends a message with name <message> to the process identified by
the RTDS_SdlInstanceId RECEIVER, with the parameter values specified in
RTDS_PARAM1, RTDS_PARAM2, and so on… The macro allocates itself a variable with
the type RTDS_<message>_data, fills its fields, then sends the message using the
standard message sending macro RTDS_MSG_QUEUE_SEND_TO_ID, defined in the file
RTDS_MACRO.h of the RTOS integration.

• Other variants for sending a message are implemented using the following mac-
ros:
• RTDS_MSG_SEND_mCardAndCode_TO_NAME

(RECEIVER, RECEIVER_NUMBER, RTDS_PARAM1, RTDS_PARAM2, …)
Sends the message to a named process. RECEIVER is the receiver name as a
string; RECEIVER_NUMBER is its numerical identifier as found in RTDS_gen.h.
Eventually calls the macro RTDS_MSG_QUEUE_SEND_TO_NAME found in
RTDS_MACRO.h.

• RTDS_MSG_SEND_mCardAndCode_TO_ENV(RTDS_PARAM1, RTDS_PARAM2, …)
Sends the message to the environment. Eventually calls the macro
RTDS_MSG_QUEUE_SEND_TO_ENV found in RTDS_MACRO.h.

• RTDS_MSG_SEND_mCardAndCode_TO_ENV_W_MACRO
(MACRO_NAME, RTDS_PARAM1, RTDS_PARAM2, …)
Sends the message to the environment using a custom macro. No macro in
RTDS_MACRO.h is called, but the macro named MACRO_NAME is, passing as param-
eters the numerical identifier for the sent message as found in RTDS_gen.h, the
size of the transport structure and a pointer on it.

All these macros are generated in a file called RTDS_messages.h. All of them are protected
against redefinition using #ifndef directives, so it is possible to override PragmaDev Stu-
dio’s default message handling with a custom one. The file RTDS_messages.h also defines
a macro called RTDS_MSG_DATA_DECL that contains the definition for the pointer variable
used to allocate the transport structure for all messages. A call to this macro is inserted in
the generated code after all declarations in each process.
Page 154 PragmaDev Studio V6.0

Reference Manual
8.2.7 C translation for symbols

8.2.7.1 SDL-RT declaration symbol

The SDL-RT declaration symbol is the dashed text symbol that contains every declara-
tion which is not a C declaration. This symbol can only be found in SDL-RT projects.
Here are its translations in the different cases:

Table 8: SDL-RT declaration symbol translations

Symbol contents Translation

These symbols are analysed before the code genera-
tion for their parent diagram starts and the code for
the used package will be generated before the one for
the diagram. The translation for this symbol will just
be a set of #include directives for the header file(s)

produced by the package code generation.

This kind of declaration only generates the declara-
tion of a constant for mPing in RTDS_gen.h (see “Gen-

erated files” on page 143) and the macros for
handling it in RTDS_messages.h (see “Additional gen-

erated types & macros for message handling” on
page 152).

This kind of declaration is only used during the code
generation and doesn’t have any translation in the

generated code.

This kind of declaration is only used during the code
generation and doesn’t have any translation in the

generated code.

This declaration will analyse translate the code
found in Declarations.rdm and insert its translation

at this point in the generated code.
PragmaDev Studio V6.0 Page 155

Reference Manual
8.2.7.2 Plain declaration symbol

This symbol is the plain text symbol. In SDL-RT, it contains C declarations; In SDL, it
contains declarations for signals, types, variables, and so on… Here are its translations in
the different cases:

Table 9: Plain declaration symbol translations

Language Symbol contents Translation

The text for the symbol is simply copied in the
generated code. For architecture diagrams, it is
copied in the diagram’s header file; For behav-

ioral diagrams, it is copied at the top of the func-
tion, in the part for declarations. No code

analysis is performed and if several symbols are
present in the diagram, they are inserted in a

random order in the generated code.

For declarations equivalent to those appearing in
a SDL-RT declaration symbol, the translation is
the one described in paragraph “SDL-RT decla-
ration symbol” on page 155. For all others, the
declaration is translated to C code according to

the rules described in “SDL to C translation
rules” on page 107 and the result is inserted in
the generated code. A dependency analysis is

performed before the actual translation and the
declarations are put in the order expected in C

code.
Page 156 PragmaDev Studio V6.0

Reference Manual
8.2.7.3 Semaphore declaration symbol

This symbol can only appear in SDL-RT projects. Here are its translations in the different
cases, which always appear in RTDS_Start.c (see “Generated files” on page 143):

8.2.7.4 Block / block class instance declaration symbol

There is no direct generated code for a block or block class instance symbol. It only trig-
gers the code generation for the corresponding block or block class diagram.

Table 10: Semaphore declaration symbol translations

Symbol contents Translation

This generates the macro call for the creation of
the binary semaphore:

RTDS_BINARY_SEMAPHORE_CREATE(
“my_bin_sem”, my_bin_sem,
RTDS_SEMAPHORE_OPTION_FIFO,
RTDS_BINARY_SEM_INITIAL_EMPTY)
Likewise, option PRIO would be translated to
RTDS_SEMAPHORE_OPTION_PRIO and option

INITIAL_FULL to RTDS_BINARY_SEM_INITIAL_FULL.
The constant my_bin_sem is the one generated for

the semaphore in RTDS_gen.h (see “Generated
files” on page 143).

This generates the macro call for the creation of
the mutex semaphore:

RTDS_MUTEX_SEMAPHORE_CREATE(
“my_mutex_sem”, my_mutex_sem,
RTDS_SEMAPHORE_OPTION_PRIO |
RTDS_MUTEX_SEM_DELETE_SAFE)

The options are combined through a binary ‘or’;
The common options (PRIO, FIFO) are prefixed

with RTDS_SEMAPHORE_OPTION_ and the mutex-spe-
cific options (DELETE_SAFE, INVERSION_SAFE) with

RTDS_MUTEX_SEM_.
The constant my_mutex_sem is the one generated

for the semaphore in RTDS_gen.h (see “Generated
files” on page 143).

This generates the macro call for the creation of
the counting semaphore:

RTDS_COUNTING_SEMAPHORE_CREATE(
“my_cntng_sem”, my_cntng_sem,
RTDS_SEMAPHORE_OPTION_PRIO, 5)

The FIFO option would be similarly translated to
RTDS_SEMAPHORE_OPTION_FIFO.

The constant my_cntng_sem is the one generated
for the semaphore in RTDS_gen.h (see “Generated

files” on page 143).
PragmaDev Studio V6.0 Page 157

Reference Manual
Please note that for a block class instance symbol, the C header file for the corresponding
block class will not include the header file generated for the class instance symbol: If a
system includes an instance of a block class, the block class has no visibility on the decla-
rations made in the system.

8.2.7.5 Process / process class instance declaration symbol

The only generates code for a process or process class instance symbol is:

• The constant for the process or process class generated in RTDS_gen.h;

• The prototype for the function implementing the process or process class, also in
RTDS_gen.h.

• The creation of the initial instance(s) if any in RTDS_Start.c.

Please refer to paragraph “Generated files” on page 143 for more details. Note also that
for a process class instance, the numerical identifier is associated to the process class,
and not the instance. For example, for a such a symbol:

the generated constant will be called RTDS_process_MyProcessClass; There will be no
constant named RTDS_process_my_instance.

All initial instances are created using a macro defined in RTDS_MACRO.h:
RTDS_STARTUP_PROCESS_CREATE(

“my_process”, RTDS_process_my_process, my_process, <priority>);

The name my_process refers to the function implementing the process. The priority will
be the priority specified in the diagram if any (SDL-RT only). If no priority is specified,
the priority passed to the macro is RTDS_DEFAULT_PROCESS_PRIORITY.

The same call will be made as many times as there are initial instances for the process.

NB: The macro is different from the one used for dynamic process creation (see
“Dynamic process instance creation” on page 168). This is due to the fact that the actual
start for initial instances usually must be synchronized to avoid an instance to send a
message to a not-yet created instance, for example.

8.2.7.6 Procedure declaration symbol

Here are the translations for a procedure symbol in all cases:

Table 11: Procedure declaration symbol translations

Language Symbol contents Translation

The text for the procedure declara-
tion is simply copied to the C header
file generated for the parent diagram.
An extern specifier is added in front

of it and an additional parameter
with type RTDS_GlobalProcessInfo is

added.
Page 158 PragmaDev Studio V6.0

Reference Manual
In both cases, the additional parameter with the type RTDS_GlobalProcessInfo is added
to allow to pass to the procedure the context for the caller process. This allows for exam-
ple to use the predefined variable SELF in procedures, or to identify the sender of a mes-
sage sent in the procedure as the caller process.

8.2.7.7 Macro definition symbol

Macros are not supported in code generation. If a macro definition symbol is used in a
diagram, code generation will fail.

8.2.7.8 Start symbol

In all cases, no code is generated for a start symbol. It is only used to figure out the begin-
ning of the start transition.

There is however a specific piece of code generated in SDL projects for processes with
parameters: These parameters are actually passed to the process using a pseudo-mes-
sage, named RTDS_<process name>_start_message, which accepts as parameters the pro-
cess parameters. When the instance starts, it goes into a specific internal state and waits
for this message before actually executing its start transition. However, if such an
instance is created at system stratup, this message is not sent to the instance, since no
parameters can be specified in this case. A piece of code is then generated figuring out if
the instance was created at startup or dynamically created by testing the value of its PAR-
ENT variable, and if it was created at startup, send the start pseudo-message with default
values for its parameters to itself before changing to the state where it waits for this mes-
sage.

The full prototype for the procedure
is inserted in the C header file gener-
ated for the parent diagram. Since the

parameters and return type are not
present in the symbol, but required in

the prototype, the declaration sym-
bols in the diagram for the procedure

are parsed to find them in the FPAR
and RETURNS declarations.

As in SDL-RT, the prototype is pre-
fixed with extern and an additional

parameter with type
RTDS_GlobalProcessInfo is added.

Table 11: Procedure declaration symbol translations

Language Symbol contents Translation
PragmaDev Studio V6.0 Page 159

Reference Manual
In all cases, a specific construct is also generated around the start transition itself to be
able to handle the following case:

In this case, there is no easy way to generate the C code: The common part after the deci-
sion (“Action 3 and next state to StateA) has to be put after the if testing the variable i,
but the ELSE branch must not execute it. To avoid generating a goto, the following code is
generated:
do/* Dummy do/while(0) to be able to do 'break's */

{
if (i == 0)

{
/* Action 1 */
}

else if (i == 1)
{
/* Action 2 */
}

else
{
RTDS_SDL_STATE_SET(StateB);
break;
}

/* Action 3 */
RTDS_SDL_STATE_SET(StateA);
break;
} while (0);

The do/while(0) block allows to insert a break statement after all state changes, which
will go out of the block without the need for a label and a goto. This way, the generated
code has exactly the behavior described in the diagram.

8.2.7.9 State symbol

When they are not next-state symbols, state symbols do not directly generate any code.
They will be translated as cases in a switch statement in the part handling continuous
signals, the part handling message input, or both. See the corresponding paragraphs
“Message input” on page 161 and “Continuous signal” on page 163.
Page 160 PragmaDev Studio V6.0

Reference Manual
8.2.7.10 Composite state

Composite states are not supported in code generation. If a composite state declaration
or definition symbol is present in a diagram, the code generation will fail.

8.2.7.11 Message input

As explained in paragraph “Bricks” on page 146, the actual acquisition of the next mes-
sage to consider in a given process or procedure is done in the code of a brick
(RTDS_Proc_middle.c). So the code generated for a message input does not actually get
the message, but only tests its type and gets in parameters into the variables specified in
the symbol.

More precisely, the generated code for message inputs includes two parts:

• A case entry in the inner level of a double switch statement, the outer level being
the test of the current state;

• An optional call to the macro decoding the received message parameters in the
specified variables. This macro is called RTDS_MSG_RECEIVE_<message name> and
is described in paragraph “Additional generated types & macros for message
handling” on page 152. This call is inserted only if the message has parameters.

There is a special case when the message input symbols contains the text “*”: The gener-
ated entry in the switch is then the default case, and parameter decoding is never per-
formed.
PragmaDev Studio V6.0 Page 161

Reference Manual
Here is an example of the generated double-switch in a simple case:

A special handling has to be done in the case where message inputs are present on a state
symbol containing “*” or “*(<state 1>, <state 2>, …)”. For this case, a special indica-
tor named RTDS_transitionExecuted remembers if a “normal” transition has been exe-

/* Double switch state / signal */
RTDS_transitionExecuted = 1;
switch(RTDS_currentContext->sdlState)

{
/* Transitions for state StateA */
case StateA:

switch(RTDS_currentContext->currentMessage->messageNumber)
{
/* Transition for state StateA - message m1 */
case m1:

break;
/* Transition for state StateA - message m2 */
case m2:

RTDS_MSG_RECEIVE_m2(i);

break;
default:

RTDS_transitionExecuted = 0;
break;

} /* End of switch on message */
break;

/* Transitions for state StateB */
case StateB:

switch(RTDS_currentContext->currentMessage->messageNumber)
{
/* Transition for state StateB - message m3 */
case m3:

break;
/* Transition for state StateB - message m4 */
case m4:

RTDS_MSG_RECEIVE_m4(x);

break;
/* Transition for state StateB - message * */
default:

break;
} /* End of switch on message */

break;
default:

RTDS_transitionExecuted = 0;
break;

} /* End of switch(RTDS_currentContext->sdlState) */
Page 162 PragmaDev Studio V6.0

Reference Manual
cuted during the double-switch. If that isn’t the case, the inputs on “*(…)” states are
considered via a secondary switch on the received message like follows:

8.2.7.12 Message priority input

Priority inputs are not supported in code generation. If such a symbol is present in a dia-
gram, the code generation will fail.

8.2.7.13 Continuous signal

The code block handling continuous signals is inserted before getting the next message to
handle, as explained in paragraph “Bricks” on page 146. This means that for SDL, the
semantics of continuous signals is different from the one described in the Z.100 stan-
dard: The standardized behavior is to consider continuous signals only if there are no
pending messages for the instance. Since RTOSes usually do not offer a way of checking
if there is any pending message in a message queue, the behavior had to be changed to
consider continuous signals before any message reception, whether there is a pending
message or not. Note this is the standard way to handle continuous signals in SDL-RT.

Note however that all continuous signals will be considered at most once for each state: If
the condition for a continuous signal is still true after the corresponding transition has
been executed, and if the instance stayed in the same state, the condition will not be
reevaluated again, and the continuous signal transition will not be executed again. This
mechanism has been introduced to avoid getting into an infinite loop. Note that this
behavior is not the standard one in SDL, where the continuous signal transition would be
executed again and again, until a message is received by the instance. Note also that if the
instance changes its state in a continuous signal transition, the continuous signals for the
new state will be taken into account.

if (! RTDS_transitionExecuted)
{
switch(RTDS_currentContext->currentMessage->messageNumber)

{
case m5:

/* Transition for state * - message m5 */

break;
case m6:

/* Transition for state *(StateA) - message m6 */
if ((RTDS_currentContext->sdlState != StateA))

{

break;
} /* End of state test for *(...) state */

} /* End of switch on message */
} /* End of transition execution test */
PragmaDev Studio V6.0 Page 163

Reference Manual
The following diagram shows the generated code for a simple example:

The outer while loop ensures that if the instance changes its state, the continuous signals
for the new state will be considered. In each state case, all conditions for all continuous
signals are tested successively, in the order of their priority. For the less prioritary con-
tinuous signals, a test is also made to make sure the previous transitions didn’t change
the instance’s state.

Continuous signals for a “*” or “*(…)” state are handled simply by testing the condition
for the continuous signal after all others have been considered, only if the state hasn’t
changed in the previously executed transitions:

/* Continuous signals treatment */
RTDS_savedSdlState = 0;
while (RTDS_currentContext->sdlState != RTDS_savedSdlState)

{
RTDS_savedSdlState = RTDS_currentContext->sdlState;
switch(RTDS_currentContext->sdlState)

{
/* Continuous signals for state StateA */
case StateA:

if (cond1)
{
do /* Dummy do/while(0) to be able to do 'break's */

{

break;
} while (0);

} /* End of last continuous signal "if" in state */
break;

/* Continuous signals for state StateB */
case StateB:

if (cond2)
{
do /* Dummy do/while(0) to be able to do 'break's */

{

break;
} while(0);

} /* End of "if" for previous continuous signal */
if (cond3 && (RTDS_currentContext->sdlState == RTDS_savedSdlState))

{
do /* Dummy do/while(0) to be able to do 'break's */

{

break;
} while (0);

} /* End of last continuous signal "if" in state */

/* Continuous signals treatment */
RTDS_savedSdlState = 0;
while (RTDS_currentContext->sdlState != RTDS_savedSdlState)

{
RTDS_savedSdlState = RTDS_currentContext->sdlState;
switch(RTDS_currentContext->sdlState)

{
/* … */
} /* End of switch(RTDS_currentContext->sdlState) */

if (RTDS_currentContext->sdlState == RTDS_savedSdlState)
{
if (cond4)

{
do /* Dummy do/while(0) to be able to do 'break's */

{

break;
} while (0);

} /* End of "if" for last continuous signal */
} /* End of if(RTDS_currentContext->sdlState == RTDS_savedSdlState) */

} /* End of while (RTDS_currentContext->sdlState != RTDS_savedSdlState) */
Page 164 PragmaDev Studio V6.0

Reference Manual
Note also that the transitions for continuous signals use the same C construct as the start
transition to be able to get out of the transition with a break statement after each state
change. See paragraph “Start symbol” on page 159 for more details.

8.2.7.14 Message save

Here is the translation for a save symbol:

8.2.7.15 Task block

The contents for a task block in a SDL-RT project is simply copied to the generated code.
In SDL projects, it is translated according to the rules described in “SDL to C translation
rules” on page 107.

8.2.7.16 Message output

Here are the translations for a message output symbol in all cases:

Table 12: Save symbol translation

Symbol contents Translation

RTDS_MSG_SAVE(RTDS_currentContext->currentMessage)
This line is inserted in place of the message parameter

decoding line using the RTDS_MSG_RECEIVE_message_name
macro, as no parameter decoding for a message is needed to
be able to save it. This line is always the only one in the case
for the message in the state/message double-switch for the

process.

Table 13: Message output symbol translations

Language Symbol contents Translation

RTDS_MSG_SEND_cnx_failed_TO_ID(
SENDER, 42, reason)

This macro is generated in the file
RTDS_messages.h (see “Additional generated

types & macros for message handling” on
page 152) and ends up calling the generic

macro RTDS_MSG_QUEUE_SEND_TO_ID defined in
RTDS_MACRO.h.
PragmaDev Studio V6.0 Page 165

Reference Manual
RTDS_MSG_SEND_cnx_failed_TO_NAME(
“p_controller”,
RTDS_process_p_controller,
42, reason)

This macro is generated in the file
RTDS_messages.h (see “Additional generated

types & macros for message handling” on
page 152) and ends up calling the generic

macro RTDS_MSG_QUEUE_SEND_TO_NAME defined
in RTDS_MACRO.h.

This form of the message output is actually
handled within the code generator: The possi-
ble receivers for the message are figured out

statically, and if it resolves to a unique process
name, the translation is the same as for the

TO_NAME form with the found process name. In
all other cases, the code generation will fail.

The code generation has this militation since
no information about the system architecture

is present in the generated code. So the
instances have no information about their par-

ent block, or the channel connected to it and
their connections. So everything has to be

resolved statically.

Same case as the output VIA a channel: All pos-
sible receivers are figured out and the output is

generated as a TO_NAME if possible.

RTDS_MSG_SEND_cnx_failed_TO_ENV(
42, reason)

This macro is generated in the file
RTDS_messages.h (see “Additional generated

types & macros for message handling” on
page 152) and ends up calling the generic

macro RTDS_MSG_QUEUE_SEND_TO_ENV defined
in RTDS_MACRO.h.

Note the build will fail if no process named
RTDS_Env is present in the system. This process
can be explicitely defined, or generated auto-
matically by checking the “Generate environ-

ment process” checkbox in the the “Code gen.”
tab of the generation options.

Table 13: Message output symbol translations

Language Symbol contents Translation
Page 166 PragmaDev Studio V6.0

Reference Manual
8.2.7.17 Message priority output

Priority outputs are not supported in code generation. If such a symbol is used in a dia-
gram, code generation will fail.

This form of output is generated differently
depending on whether the checkbox “Commu-

nicate with environment via macros” is
checked or not in the “Code gen.” tab of the

generation options.
If it isn’t, the code is generated like for a plain

TO_ENV with no macro name.
If it is, the generated code is:

RTDS_MSG_SEND_cnx_failed_TO_ENV_W_MACRO(
SEND_TO_ENV, 42, reason)

which will actually just pack the parameters in
a transport structure and call the macro

SEND_TO_ENV (see “Additional generated types
& macros for message handling” on page 152).

Generated differently depending of <some-
thing>:

• If <something> is ENV, the generated
code is the same as for a TO_ENV in
SDL-RT (see above).

• If <something> is a single name which
isn’t a variable of type PID in the cur-
rent context, the generated code is the
same as for a TO_NAME in SDL-RT (see
above).

• In all other cases, the generated code is
the same as for a TO_ID in SDL-RT (see
above).

Generated exactly the same way as in SDL-RT,
with the same limitations (see above).

Generated exactly the same way as in SDL-RT,
with the same limitations (see above).

Table 13: Message output symbol translations

Language Symbol contents Translation
PragmaDev Studio V6.0 Page 167

Reference Manual
8.2.7.18 Dynamic process instance creation

Here are the translations for a process instance creation symbol in all cases:

Table 14: Process instance creation symbol translations

Language Symbol contents Translation

RTDS_PROCESS_CREATE(
“child_process”,
RTDS_process_child_process,
child_process, 5)

RTDS_PROCESS_CREATE is defined in
RTDS_MACRO.h. RTDS_process_child_process

is the constant for the process defined in
RTDS_gen.h and child_process is the function

implementing it, prototyped in RTDS_gen.h
(see “Generated constants and prototypes

(RTDS_gen.h)” on page 152).

RTDS_PROCESS_CREATE(
“my_instance”,
RTDS_process_MyProcessClass,
MyProcessClass,
RTDS_DEFAULT_PROCESS_PRIORITY)

For the dynamic creation of a process class
instance, the instantiated process is the

process class. If no priority is specified, the
generated code uses the constant

RTDS_DEFAULT_PROCESS_PRIORITY, defined in
RTDS_MACRO.h.

RTDS_PROCESS_CREATE(
“p”, RTDS_process_p, p,
RTDS_DEFAULT_PROCESS_PRIORITY)

then:
RTDS_MSG_SEND_RTDS_p_start_message_TO_ID
(OFFSPRING, 42, “foo”)
The pseudo-message RTDS_p_start_message
is automatically created when seeing the pro-
cess p has parameters. It is used to transfer

the parameters to the newly created instance.
If an instance of this process is started at sys-
tem startup, it will automatically send its start

message with default parameter values to
itself (see “Start symbol” on page 159).

Since there is no process priority in SDL, the
one passed to the macro

RTDS_PROCESS_CREATE will always be
RTDS_DEFAULT_PROCESS_PRIORITY.
Page 168 PragmaDev Studio V6.0

Reference Manual
8.2.7.19 Procedure call

A procedure call is just transformed into the call to the function implementing the proce-
dure, with an additional parameter which is the context of the caller (pointer on the local
variable RTDS_currentContext, which is the RTDS_GlobalProcessInfo for the current pro-
cess or procedure; See “Procedure declaration symbol” on page 158).

This translation is also performed for SDL procedure calls in expressions using the CALL
keyword.

8.2.7.20 Macro call

Macro calls are not supported in code generation. If such a symbol is used in a diagram,
code generation will fail.

8.2.7.21 Timer set

Here is the translation for a timer set in all cases:

Table 15: Timer set symbol translations

Language Symbol contents Translation

RTDS_SET_TIMER(AnswerTimeOut, 42)
The macro RTDS_SET_TIMER in defined in

RTDS_MACRO.h. The constant AnswerTimeOut
is the one defined for the timer in

RTDS_gen.h (see “Generated files” on
page 143).

Same translation as above, using the delay
specified in the timer’s declaration. If no

timer declaration exists for AnswerTimeOut,
the code generation fails.

RTDS_SET_TIMER(AnswerTimeOut, 1)
See explanations for SDL-RT equivalent.

Please note that the SDL form uses the abso-
lute time for the timer end. The macro
RTDS_SET_TIMER uses the delay. So the

expression for the timer time-out is actually
decoded and the “NOW +” part removed. This
means that an expression that is not an addi-

tion between NOW and a duration cannot be
translated.

Same translation as above, using the delay
specified in the timer’s declaration. If no

timer declaration exists for AnswerTimeOut,
the code generation fails. Note that the dec-

laration actually specifies a delay, so no
translation has to be performed in this case.
PragmaDev Studio V6.0 Page 169

Reference Manual
8.2.7.22 Timer reset

Here is the translation for a timer reset in all cases:

8.2.7.23 Object creation

Here is the translation for the SDL-RT specific object creation symbol in all cases:

Table 16: Timer reset symbol translations

Language Symbol contents Translation

RTDS_RESET_TIMER(AnswerTimeOut)
The macro RTDS_RESET_TIMER is defined in
RTDS_MACRO.h. The constant AnswerTimeOut

is the one defined for the timer in
RTDS_gen.h (see “Generated files” on

page 143).

RTDS_RESET_TIMER(<timer name>)
See explanations for SDL-RT equivalent.

Table 17: Semaphore take symbol translation

Symbol contents Translation

my_ctrlr = new Controller(SELF);

No macro in RTDS_MACRO.h is called. This supposes that the
class Controller has been linked with the current process in
a class diagram, for example like follows:

For more details on passive classes and how the code is gen-
erated for them, see paragraph “C++ code generation for
passive classes (UML)” on page 187.
Page 170 PragmaDev Studio V6.0

Reference Manual
8.2.7.24 Semaphore take

Here are the translations for the SDL-RT specific semaphore take symbol in all cases:

8.2.7.25 Semaphore give

Here is the translation of the SDL-RT specific semaphore give symbol in all cases:

8.2.7.26 Dynamic semaphores

The semaphore handling symbols described in paragraphs “Semaphore declaration sym-
bol” on page 157, “Semaphore take” on page 171 and “Semaphore give” on page 171 only
allow static semaphores: A semaphore has to be defined by its name in a semaphore dec-
laration symbol, then this name is used in semaphore take or give symbols. This cannot
be used when dynamically defined semaphores have to be used, or to create arrays of
semaphores, for example.

PragmaDev Studio allows such dynamic semaphores by allowing the semaphore defini-
tion macros to be called as many times as needed with the same parameters. To do so, it
is necessary to use a user-defined semaphore number, making sure that it will not be

Table 18: Semaphore take symbol translation

Symbol contents Translation

RTDS_SEMAPHORE_NAME_TAKE(
“ResourceOK”, ResourceOK,
RTDS_SEMAPHORE_TIME_OUT_FOREVER)

The macros RTDS_SEMAPHORE_NAME_TAKE and
RTDS_SEMAPHORE_TIME_OUT_FOREVER are defined in

RTDS_MACRO.h. The constant ResourceOK is the one defined
for the semaphore in RTDS_gen.h (see “Generated files” on

page 143).

available = RTDS_SEMAPHORE_NAME_TAKE(
“ResourceOK”, ResourceOK,
RTDS_SEMAPHORE_TIME_OUT_NO_WAIT)

The macro RTDS_SEMAPHORE_TIME_OUT_NO_WAIT is defined
in RTDS_MACRO.h.

available = RTDS_SEMAPHORE_NAME_TAKE(
“ResourceOK”, ResourceOK, 200)

Table 19: Semaphore give symbol translation

Symbol contents Translation

RTDS_SEMAPHORE_NAME_GIVE(“ResourceOK”, ResourceOK)
The macro RTDS_SEMAPHORE_NAME_GIVE is defined in

RTDS_MACRO.h. The constant ResourceOK is the one defined for
the semaphore in RTDS_gen.h (see “Generated files” on

page 143).
PragmaDev Studio V6.0 Page 171

Reference Manual
reused by PragmaDev Studio for a static semaphore. Then, to defined for example an
array of semaphores, the following code can be written in a task-block:
RTDS_SemaphoreId my_semaphores[MAX];
...
for (i = 0; i < MAX; i++)

{
my_semaphores[i] = RTDS_MUTEX_SEMAPHORE_CREATE(

“UserDefinedSem”, 100, RTDS_SEMAPHORE_OPTION_FIFO);
}

This performs the equivalent of the following semaphore declaration symbol:

on all semaphores in the array my_semaphores, assigning the semaphore name
“UserDefinedSem” and the number 100 to all of them.

After that, all semaphores in the array will have the same name and number, so the
manipulation macros described above cannot be used, since they only take a semaphore
name and number as identifiers. So two additional macros are defined in RTDS_MACRO.h
to take or give semaphores dynamically defined:

• RTDS_SEMAPHORE_ID_TAKE(semaphore_id, time_out)
This macro takes the semaphore with the identifier semaphore_id, which is a
RTDS_SemaphoreId, with the time-out specified in time_out, allowing the same
special values as in “Semaphore take” on page 171. In the example, semaphore_id
would be an element in the array my_semaphores.

• RTDS_SEMAPHORE_ID_GIVE(semaphore_id)
This macro gives the semaphore with the identifier semaphore_id, which is a
RTDS_SemaphoreId. In the example, it would be an element in the array
my_semaphores.

If a dynamically defined semaphore has to be deleted, PragmaDev Studio also provides a
macro to do so, also defined in RTDS_MACRO.h:
RTDS_SEMAPHORE_DELETE(semaphore_id)

deletes the semaphore with the identifier semaphore_id, which is a RTDS_SemaphoreId
(element of the array my_semaphores in the example).
Page 172 PragmaDev Studio V6.0

Reference Manual
8.2.7.27 Decision

A decision is translated to a simple sequence of if / else if statements, as shown in the
following example:

The order of the if statements are always the graphical order of the decision branches, so
in the example above, the if (i < 4) will never be generated before the if (i == 0).

If branches in the decision rejoin, the generated code will avoid the use of goto state-
ments as much as possible, as in the following example:

if (i == 0)
{

break;
}

else if (i < 4)
{

break;
}

else
{

break;
}

if (i == 0)
{

}
else if (i < 4)

{

}
else

{

break;
}

break;
PragmaDev Studio V6.0 Page 173

Reference Manual
The code for the common part for the branches i == 0 and i < 4 is generated after the
if / else if block to avoid a goto. Some cases will however generate a goto anyway,
when there is no way to avoid it, like in the following example:

In this case, one of the common parts for either i == 1 and i == 2, or i == 3 and i == 4
has to generate a goto to be handled.

8.2.7.28 Transition option

Here are the translations for a transition option in all cases:

Table 20: Timer reset symbol translations

Language Symbol contents Translation

#if MY_MACRO == 1
...
#else
#if MY_MACRO == 2
...
#else
...
#endif
#endif

In the general case, the value of the
expression in the transition option sym-

bol is tested via #if directives.

#ifdef MY_MACRO
...
#else
...
#endif

The case where the values on the
branches are booleans is a special case

in SDL-RT: The generated code will
then only test the macro’s existence;

and not its value.
Page 174 PragmaDev Studio V6.0

Reference Manual
8.2.7.29 Connector out (JOIN)

Here is the translation for a connector out symbol:

8.2.7.30 Connector in (label)

Here is the translation for a connector in symbol:

#if MY_SYNONYM == 1
...
#else
#if MY_SYNONYM == 2
...
#else
...
#endif
#endif

In SDL, the value for the synonym is
always tested and there is no special

case for boolean values.

Table 21: Connector out symbol translation

Symbol contents Translation

goto Loop;
The Loop label is defined when the corresponding connector in is

encountered.

Table 22: Connector in symbol translation

Symbol contents Translation

Loop:

Table 20: Timer reset symbol translations

Language Symbol contents Translation
PragmaDev Studio V6.0 Page 175

Reference Manual
8.2.7.31 Nextstate

Here is the translation for a nextstate symbol:

8.2.7.32 Process kill

Here is the translation for a process kill symbol:

8.2.8 Memory allocation
The code directly generated by PragmaDev Studio contains no dynamic memory alloca-
tion, except in the macros sending a message with parameters: Since a transport struc-
ture is needed to contain the parameters, this one is dynamically allocated before
sending the message. The allocated buffer is freed by the receiver after the message has
been treated.

If dynamic memory allocation is not desirable, some RTOS integrations offer the possi-
bility to avoid it. Please note that this is indeed a feature of the integration itself: If the
code in the integration uses dynamic memory allocation, it is useless to generate a code
that doesn’t.

Integrations supporting this feature will have the option malloc set to forbidden in their
DefaultOptions.ini file (see “Mandatory files” on page 145). In this case, the code gener-
ation will do the following:

• In addition to the transport structures generated for the messages, a type called
RTDS_MessageData will be generated, which is a union of all transport structures
generated for all messages.

• The type for the buffer for message parameters in the macro
RTDS_MSG_DATA_DECL, which is normally a simple unsigned char*, will be
changed to RTDS_MessageData.

Table 23: Nextstate symbol translation

Symbol contents Translation

RTDS_SDL_STATE_SET(StateX)
The macro RTDS_SDL_STATE_SET is defined in RTDS_MACRO.h; The
constant StateX is the one generated for the state in RTDS_gen.h
(see “Generated constants and prototypes (RTDS_gen.h)” on

page 152).

Table 24: Process kill symbol translation

Symbol contents Translation

RTDS_PROCESS_KILL
The macro RTDS_PROCESS_KILL is defined in RTDS_MACRO.h.
Page 176 PragmaDev Studio V6.0

Reference Manual
• The macros for sending messages will be changed to use this statically allocated
RTDS_MessageData for the message parameters instead of performing a dynamic
memory allocation.

This way, neither the integration nor the generated code will contain any dynamic mem-
ory allocation. So if the code in the diagram doesn’t contain any either, there won’t be a
single one in the generated executable.

In PragmaDev Studio V6.0, the only integration supporting this feature is the integration
rtosless, used to generate fully scheduled systems without a RTOS.

8.2.9 Build process
The build process is usually done in two steps:

• If needed, a first partial makefile is generated allowing to produce a file used by
PragmaDev Studio to generate the code for message encoders and decoders.
These are used only when the support for the MSC Tracer or the PragmaDev Stu-
dio debugger is turned on. As this step uses the same mechanisms as the actual
build, it is described in the last paragraph of this section (“Pre-build action: Mes-
sage encoders & decoders generation” on page 185).

• The actual makefile is generated.

• The build process is launched using the generated makefile.

8.2.9.1 Makefile generation principles

The process for the generation of the makefile is the following:

• The name for the makefile itself is taken from the build command options:

• Makefile variables are created to hold the options found in the generation
options, such as the code generation directory, the RTOS integration integration
directory, the preprocessor, compiler and linker commands, and so on…

• PragmaDev Studio figures out the options to use for each stage: preprocessing,
compiling, linking. It does so by identifying which services are required depend-
ing on the options activated in the “Debug/trace” tab of the generation options.
PragmaDev Studio V6.0 Page 177

Reference Manual
To each of these services corresponds a directory in $RTDS_HOME/share/ccg. Here
are the available services:

• When the required services are identified, PragmaDev Studio reads all the files
DefaultOptions.ini and addrules.mak in the directories for all services, the
RTOS integration directory and the common directory ($RTDS_HOME/share/ccg/
common). These files are those described in section “Mandatory files” on page 145.

• In all identified DefaultOptions.ini files, PragmaDev Studio looks for the ones
containing the following sections:
• [common] in all cases;
• [tracer] if the “Debug” option is set to “MSC Tracer”;
• [debug] if the “Debug” options is set to “PragmaDev Studio debugger”.
These sections are used to produce the preprocessor and/or compiler options, as
described below.

• If any of these sections contains an option named debug set to 1, the compiler
option for producing a debug build is used. This options can be found in the gen-

Table 25: Code generation services

Service Directory Description Activated when:

Backtrace …/backtrace Allows to record the back-
trace of a given number of

events in a buffer within the
debugged program.

Command
interpreter

…/commandinterpreter Allows to interpret the com-
mands that can be sent by

the PragmaDev Studio
debugger to the running

system.

Trace
format

…/formattrace Allows to format the events
that happen in the system in
a format suitable to send to
an external tracer, like the
PragmaDev Studio debug-

ger or the MSC Tracer.
Requires a socket connec-

tion with the debugged pro-
gram to send the trace.

Not required when the back-
trace is active, since the cor-

responding buffer is then
directly read by PragmaDev

Studio.

or
Page 178 PragmaDev Studio V6.0

Reference Manual
eration options dialog by using the “Options…” button under the compiler name
in the “Build” tab:

• The options defines in all considered sections in all DefaultOptions.ini files are
parsed and compiler options defining all macros in all options are generated,
using the “Define macro” option in the compiler options:

If a preprocessor command is defined in the generation options, the same option
is added to the preprocessor options in the makfile, using this time the “Define
macro” option from the preprocessor options in the generation options:
PragmaDev Studio V6.0 Page 179

Reference Manual
• The same is done for all options includes found in all considered sections in all
DefaultOptions.ini files, using this time the option for the include path in the
preprocessor and/or compiler options:

• All the object files that will have to be linked together to produce the final execut-
ables are figured out. These files are those for all generated source files, and all
those listed in the files addrules.mak for the RTOS integration and all identified
services.
An additional file is added if no process named RTDS_Env is generated, and if the
option “Generate environment process” is checked in the “Code gen.” tab of the
generation options. In this case, the file RTDS_Env.c from the RTOS integration is
integrated in the build.

• The list of additional files to link are copied from the generation options to the
makefile if necessary.

• The external makefile set in the generation options is included in the makefile if
necessary.

• The rule for the final link is written to the makefile, using the information
described above. This rule is only written if the option “Generate EXE rule” in
Page 180 PragmaDev Studio V6.0

Reference Manual
the build command options in the generation options are set to “yes” (the
default):

• All rules to compile individual source files are then inserted, using the dependen-
cies figured out by the code generation, or found in the addrules.mak files. The
compilation commands themselves also use the options found in the compiler
options (options “Compile only” and “Output file”) and the option “Rule first
dep.” found in the build command options.

• Rules to clean the generation directories are inserted.

8.2.9.2 Generated makefile example

Here is a summarized example of a generated makefile, showing where the different
parts come from. This makefile has been generated with PragmaDev Studio debugger
support (option “Debug” set to “PragmaDev Studio debugger” in the “Debug/trace” tab
in the generation options), therefore selecting the formattrace and commandinterpreter
services:
RTDS_GEN_DIR=c:\users\administrateur\documents\sdl-rt-symbols\ccg

RTDS_CLASSES_DIR=c:\users\administrateur\documents\sdl-rt-symbols\ccg

RTDS_TEMPLATES_DIR=z:\project\workspace\rtds_rel\share\ccg\windows

RTDS_CC=mingw32-gcc

RTDS_LNK=$(RTDS_CC)

RTDS_CC_INCLUDES=-I"." -I"${RTDS_TEMPLATES_DIR}" -I"${RTDS_HOME}\share\ccg\trace\formattrace" \
-I"${RTDS_HOME}\share\ccg\common" -I"${RTDS_HOME}\share\ccg\trace\commandinterpreter" \
-I"$(RTDS_CLASSES_DIR)"

RTDS_CC_OPTIONS=-DRTDS_FORMAT_TRACE -I"." -I"${RTDS_TEMPLATES_DIR}" \

-I"${RTDS_HOME}\share\ccg\trace\formattrace" -I"${RTDS_HOME}\share\ccg\common" \

-g -DRTDS_SIMULATOR -DRTDS_CMD_INTERPRETER \

-I"${RTDS_HOME}\share\ccg\trace\commandinterpreter" -I"$(RTDS_CLASSES_DIR)" \

-DRTDS_SOCKET_IP_ADDRESS=10.211.55.5 -DRTDS_SOCKET_PORT=49250

RTDS_LNK_OPTIONS=

RTDS_RM=cmd /c del

RTDS_OBJECTS = \

rtds_env.o \

rtds_start.o \

pstatesinputscontsigs.o \

rtds_encdecmsgdata.o \

RTDS_String.o \

RTDS_Set.o \

rtds_os.o \

rtds_tcp_client.o \

rtds_cmdinterpreter.o \

rtds_formattrace.o
PragmaDev Studio V6.0 Page 181

Reference Manual
RTDS_ADDL_OBJECTS = \

Z:/Project/WORKSPACE/rtds_rel/share/3rdparty/MinGW/lib/libws2_32.a

RTDS_EXT_OBJECTS =

RTDS_TARGET_BASE_NAME=StatesInputsContsigs

RTDS_TARGET_EXTENSION=.exe

all: $(RTDS_TARGET_BASE_NAME)$(RTDS_TARGET_EXTENSION)

$(RTDS_TARGET_BASE_NAME)$(RTDS_TARGET_EXTENSION): $(RTDS_OBJECTS) $(RTDS_ADDL_OBJECTS) $(RTDS_EXT_OBJECTS)

$(RTDS_LNK) $(RTDS_LNK_OPTIONS) -o "$@" $(RTDS_OBJECTS) $(RTDS_ADDL_OBJECTS) $(RTDS_EXT_OBJECTS)

rtds_env.o: $(RTDS_TEMPLATES_DIR)\rtds_env.c Makefile

$(RTDS_CC) $(RTDS_CC_OPTIONS) -c -o "$@" "$<"

rtds_start.o: $(RTDS_GEN_DIR)\rtds_start.c Makefile

$(RTDS_CC) $(RTDS_CC_OPTIONS) -c -o "$@" "$<"

pstatesinputscontsigs.o:$(RTDS_GEN_DIR)\pstatesinputscontsigs.c $(RTDS_GEN_DIR)\rtds_gen.h \

$(RTDS_GEN_DIR)\pstatesinputscontsigs.h $(RTDS_GEN_DIR)\rtds_messages.h \

$(RTDS_GEN_DIR)\statesinputscontsigs.h $(RTDS_GEN_DIR)\rtds_string.h \

$(RTDS_GEN_DIR)\rtds_set.h Makefile

$(RTDS_CC) $(RTDS_CC_OPTIONS) -c -o "$@" "$<"

(...)

rtds_os.o: $(RTDS_TEMPLATES_DIR)\rtds_os.c Makefile

$(RTDS_CC) $(RTDS_CC_OPTIONS) -c -o "$@" "$<"

rtds_tcp_client.o: $(RTDS_TEMPLATES_DIR)\rtds_tcp_client.c Makefile

$(RTDS_CC) $(RTDS_CC_OPTIONS) -c -o "$@" "$<"

rtds_cmdinterpreter.o: $(RTDS_HOME)\share\ccg\trace\commandinterpreter\rtds_cmdinterpreter.c Makefile

$(RTDS_CC) $(RTDS_CC_OPTIONS) -c -o "$@" "$<"

rtds_formattrace.o: $(RTDS_HOME)\share\ccg\trace\formattrace\rtds_formattrace.c Makefile

$(RTDS_CC) $(RTDS_CC_OPTIONS) -c -o "$@" "$<"

Table 26: Origin of makefile parts

Main origin Origin details

Generation options 





Page 182 PragmaDev Studio V6.0

Reference Manual
 Set to the same thing as the compiler since the field
“Linker” in the “Build” tab is empty.

 All options taken from compiler options in the “Buidl”
tab:

 In the “Debug/Trace” tab:

The IP adress for the current host is figured out and
put in the macro RTDS_SOCKET_IP_ADDRESS.

 In the “Debug/Trace” tab:

The field being empty, the default port number is used
for RTDS_SOCKET_PORT.

 In the “Build” tab:

 Linker options in the “Build” tab:

Table 26: Origin of makefile parts

Main origin Origin details
PragmaDev Studio V6.0 Page 183

Reference Manual
 Build command options in the “Build” tab:

GenerationOptions.ini
files

 Options taken from the contents of the file in
$RTDS_HOME/share/ccg/trace/formattrace:

[common]
includes=${RTDS_HOME}/share/ccg/trace/format-
trace
defines=RTDS_FORMAT_TRACE

 Options taken from the contents of the file in the RTOS
integration:

[common]
includes=.;${RTDS_TEMPLATES_DIR}
[debug]
debug=1
defines=RTDS_SIMULATOR

 Options taken from the contents of the file in
$RTDS_HOME/share/ccg/common:

[common]
includes=${RTDS_HOME}/share/ccg/common

 Options taken from the contents of the file in
$RTDS_HOME/share/ccg/trace/commandinterpreter:

[debug]
includes=${RTDS_HOME}/share/ccg/trace/commandin-
terpreter
defines=RTDS_CMD_INTERPRETER

addrules.mak files  Options taken from the contents of the file in RTOS
integration:

RTDS_OS.o: $(RTDS_TEMPLATES_DIR)/RTDS_OS.c
RTDS_TCP_Client.o: $(RTDS_TEMPLATES_DIR)/
RTDS_TCP_Client.c

 Options taken from the contents of the file in
$RTDS_HOME/share/ccg/trace/commandinterpreter:

RTDS_CmdInterpreter.o: $(RTDS_HOME)/share/ccg/
trace/commandinterpreter/RTDS_CmdInterpreter.c

Table 26: Origin of makefile parts

Main origin Origin details
Page 184 PragmaDev Studio V6.0

Reference Manual
8.2.9.3 Actual build

The build is run by using the options found in the “Build” tab of the generation options:

• If anything is present in the “Before build command” field, it is run first through
a shell.

• The actual build command is created by concatenating the values in the fields
“Exe/options”, “Target” and “Add’l args”, separated by spaces. This command is
then executed through a shell.

• If anything is present in the “After build command” field, it is run through a
shell.

If any of the commands return an error, the build process is stopped. If after the build
command, the expected generated executable is not found in the generation directory,
the build is stopped too and an error is reported.

8.2.9.4 Pre-build action: Message encoders & decoders generation

To send or receive the message parameters to or from the MSC Tracer or the PragmaDev
Studio debugger, the generated code uses an encoded form. For example, if a message
has 2 parameters, an int, and a struct containing the fields x and y, both of type double,
the encoding could be:
|{param1|=3|,param2|=|{x|=1.0|,y|=0.0|}|}

When this form is sent to the tracer or debugger, the encoding is actually produced in the
debugged program. When it is received from the debugger, the encoded form is received
and has to be decoded in the debugged program.

 Options taken from the contents of the file in
$RTDS_HOME/share/ccg/trace/formattrace:

RTDS_FormatTrace.o: $(RTDS_HOME)/share/ccg/
trace/formattrace/RTDS_FormatTrace.c

Generated code  Generated environment process, actually taken from
the RTOS integration.

 Common generated files, not attached to a diagram.

 Code generated from diagrams.

 Code used to translate SDL concepts, copied from
$RTDS_HOME/share/sdlconv.

Table 26: Origin of makefile parts

Main origin Origin details
PragmaDev Studio V6.0 Page 185

Reference Manual
To do so, a set of encoding and decoding functions is generated in the file
RTDS_encDecMessageData.c and linked with the final executable.

The principles to generate this file is the following:

• A “dummy” C source file named RTDS_includes4StructMsg.c is generated in the
generation directory. This source file only contains the global includes for the
project, and the includes of the header files generated for all agents defining a
message.

• A temporary makefile is produced in the generation directory. This makefile has
the same name as the final one and the contantes is the same, except it contains a
single rule which runs the C preprocessor on RTDS_includes4StructMsg.c. If no
preprocessor command is set, it uses the compiler command with the “Prepro-
cess only” option:

• A pre-build is launched, using the options set in the “Build command” options,
except the target is set to the results of the preprocessing (via a dummy target
named RTDS_STRUCT_MSG).

• The result of the preprocessing, named RTDS_includes4StructMsg.i, is analysed
by PragmaDev Studio to get all types for the message paramaters and all types
they use, and so on, recursively.

• PragmaDev Studio uses the analysis of these types to produce the encoder and
decoder functions for all message parameters and write these functions to
RTDS_encDecMessageData.c.
The encoder function for the type T has the name RTDS_typeDataToString_T and
produces the string corresponding to a variable of this type in the form described
above.
The decoder function for the type T has the name RTDS_typeStringToData_T and
fills a variable with type T with the data found in a string in the format described
above.
Two top-level functions, named RTDS_messageDataToString and
RTDS_stringToMessageData, perform the decoding of any set of message parame-
ters depending on the numerical identifier generated for the message in
RTDS_gen.h (see “Generated files” on page 143).

• This file RTDS_encDecMessageData.c is then added as an additional file to com-
pile in the general build, and the actual build process is run.
Page 186 PragmaDev Studio V6.0

Reference Manual

PragmaDev Studio V6.0 Page 187

8.3 - C++ code generation for passive classes (UML)
The generated code for passive classes described in UML class diagrams is described in
PragmaDev Studio User Manual. Note that the whole code is generated directly by Prag-
maDev Studio; No bricks are involved, and no part of any RTOS integration is used. The
only external files that are required are those located in $RTDS_HOME/share/ccg/cpptem-
plates.

There is no specific build process for C++ files generated for passive classes: They are
integrated in the makefile used for the SDL-RT / SDL diagrams. This means that the
compiler specified in the generation options has to be able to compile C++:

• Either it should be a C++ compiler; The code generated by PragmaDev Studio is
guaranteed to compile with a C++ compiler. Note however that some RTOS inte-
grations do not support C++ (e.g CMX).

• Or the compiler should recognize the source file language from its extension. All
C files are generated with an extension .c, and all C++ files with an extension
.cpp.

Note that in all cases, all generated C functions are surrounded by an “extern “C”” block,
so compiling them with a C++ compiler will keep them callable from C.

Reference Manual
8.4 - C++ code generation with or without a RTOS

8.4.1 Objectives
The C++ code generation has been introduced for SDL-RT and SDL projects to be able to
put several process instances in a single thread. The instances will then be scheduled in
the thread.

The C++ language has been chosen to allow easier handling of process instance context,
mainly for its local variables. By generating process local variables as attributes in a C++
class, code in SDL-RT task blocks do not need to be analysed or modified: A local vari-
able i in a function implementing a process in “normal” code generation will be handled
exactly the same way as an attribute named i in a class implementing it in C++.

8.4.2 Principles
In C++ code generation, processes are generated as classes which are all subclasses of a
class named RTDS_Proc, defined in files RTDS_Proc.h & RTDS_Proc.c, in $RTDS_HOME/
share/ccg/cppscheduler. This means that the code generation do not use the bricks
defined in the RTOS integration: The code generated for the process will only contain the
parts that are specific to the process, and all common parts are handled in the super-class
RTDS_Proc. Some bricks are still used, but only for the common includes
(RTDS_Include.c) and to generate the startup task (RTDS_Startup_*.c).

This class is defined as follows:

The class has an operation for each of the RTOS services. For C++ code generation, each
call to such a service will actually call this operation, and not the corresponding macro.
The operation may itself call the macro when the service actually has to be handled by the
RTOS, but may also handle the service locally, typically when the impacted instances are
executed within the same scheduler.
Page 188 PragmaDev Studio V6.0

Reference Manual
To be consistent with the code generation in C, a RTDS_Proc instance will always have an
attribute named RTDS_currentContext which is the same as the local variable with the
same name in C code generation, giving the context for the current instance.

Each RTDS_Proc instance is executed within a scheduler; Even if the instance has its own
thread, it will actually be scheduled alone in this thread. A scheduler is implemented as
an instance of a class named RTDS_Scheduler, defined in the files RTDS_Scheduler.h &
RTDS_Scheduler.c, in $RTDS_HOME/share/ccg/cppscheduler:

Running the scheduler is done via its run operation. This operation will contain the infi-
nite loop getting all the pending messages, either from its internalQueue (for messages
sent from other instances in the scheduler) or from its externalQueue (for messages sent
from instances outside the scheduler or from the environment). An incoming message
will then trigger the corresponding transition in its receiver instance. A scheduler knows
the instances it schedules via a chained list of type RTDS_ScheduledInstances and identi-
fies them by an instance number.

The scheduler also implements the operation for sending a message and creating a new
process instance:

• To send a message, the scheduler actually figures out wether it schedules the
receiver instance or not. If it is, it just puts the message in its internal queue. If it
isn’t, it uses the regular macros to send the message.

• The creation of a process instance is limited to the processes run in the current
scheduler. The process to instantiate is identified by its process number, as the
one handled in the C code generation (see “Generated files” on page 143). This
PragmaDev Studio V6.0 Page 189

Reference Manual
instantiation is a bit tricky, since the class to instantiate has to be dynamically
figured out. To do this, a specific class named RTDS_InstanceManager is used:

For each generated process, a function is created instantiating the class for the
process and return the instance. This function is then recorded in a statically cre-
ated RTDS_InstanceManager instance, along with the process number. The class
RTDS_InstanceManager records all its instances in the chained list
RTDS_InstanceManagerList.
Whenever the scheduler has to create an instance of the process identified by
processNumber, it calls the class operation createInstance on
RTDS_InstanceManager, which finds the corresponding RTDS_InstanceManager
instance recorded in the chained list, and calls the corresponding creation func-
tion, returning a new instance of the appropriate class.

8.4.3 Generated code

8.4.3.1 Processes

As explained above, all processes are generated as a subclass of RTDS_Proc. In addition to
those inherited from RTDS_Proc, the attributes for this class are the process’s local vari-
ables, and one operation is generated for each transition. A common entry point is also
Page 190 PragmaDev Studio V6.0

Reference Manual
generated for all transitions, named RTDS_executeTransition and another for all contin-
uous signals, named RTDS_continuousSignals:

The operation for each transition contains the same code as the corresponding case in
the double-switch generated in C (see “C translation for symbols” on page 155). There
are only a few things handled differently:

• Procedure calls can interrupt the transition and are handled in a special way. See
“Procedures” on page 192 for more details.

• In SDL-RT, semaphore takes can also interrupt the transition are may be han-
dled in a special way. See “Semaphore handling (SDL-RT)” on page 194 for more
details.

• Process kills cannot be handled as in threaded C code and are indicated via the
return value of the operation: If this value is true, the instance has killed itself.
The actuall killing is handled by the calling scheduler.

The entry point for all transitions RTDS_executeTransition takes the received message as
parameter. It records it in the instance context (RTDS_currentContext) and calls the
appropriate operation for the transition, depending on the received message and on the
instance state. It returns the value returned by the transition operation.

The entry point for all continuous signals RTDS_continuousSignals takes as parameter
the lowest priority for the executed continuous signals in the current state. If there is any
continuous signal with a lowest priority left to execute, it executes its code and sets back
the lowest priority to this signal’s priority. This operation is called repeatedly by the
PragmaDev Studio V6.0 Page 191

Reference Manual
scheduler until the lowest priority is the same after the call as before it. The return value
for the operation also indicates if the instance has killed itself.

Note that contrarily to the C code generation, bricks are almost not used in C++ code
generation, as the common part for all processes is very small. The only bricks actually
used are:

• RTDS_Include.c to ensure that the correct includes are always done for the cur-
rent integration;

• RTDS_Startup_begin.c, RTDS_Startup_begin_cpp.c and RTDS_Startup_end.c to
generate the startup task. RTDS_Startup_begin_cpp.c is specific to the C++ code
generation and contains code starting a scheduler.

A special header file named RTDS_ADDL_MACRO.h must also be present in the integration,
defining a few macros that are not needed in C code generation, but are used in a sced-
uled context:

• RTDS_CREATE_TASK just creates a task in the RTOS without registering it as a SDL
process. This is needed to create tasks for schedulers.

• RTDS_FORGET_INSTANCE_INFO removes the descriptor for the current instance
from RTDS_globalProcessInfo without trying to delete its task. This is needed to
forget process instances that are actually run in a scheduler and not in their own
task.

• RTDS_NEW_MESSAGE_QUEUE creates a new message queue and returns it. This is
needed to create the external message queue for a scheduler.

• RTDS_READ_MESSAGE_QUEUE reads the next message from a given queue. This
macro is used to read the next message on a scheduler’s external queue. It is
needed because the starndard RTDS_MSG_QUEUE_READ macro only works in the
context of a process instance.

• RTDS_SETUP_CURRENT_CONTEXT gets the current context in a task created for a sin-
gle instance. In C code generation, this is done in the brick
RTDS_Process_begin.c, which cannot be used in scheduled tasks.

• RTDS_GET_MESSAGE_UNIQUE_ID and RTDS_RELEASE_MESSAGE_UNIQUE_ID are used to
compute a new unique identifier for a message sent in a scheduler’s internal or
external queue. These macros are needed because the unique identifier for a
message is computed within the standard macros for sending a message in C
code generation, and these macros only work in the context of a process instance
in a single task.

8.4.3.2 Procedures

Since procedures can have states and handle incoming messages in transitions, they are
also managed as a subclass of RTDS_Proc and their code is generated the same way as pro-
cesses.

However, there is a specific problem with procedure calls, as they can do a state change,
which will interrupt the transition of the calling process and should give control back to
the scheduler. So the caller’s transition will be interrupted in the middle of an instruc-
tion, and all messages it receives should then be forwarded to the procedure it has called.
Page 192 PragmaDev Studio V6.0

Reference Manual
To handle this, specific attributes are added to the class RTDS_Proc:

• Whenever it calls a procedure, a process or procedures instantiates the generated
class for the called procedure and records it in its RTDS_calledProcedure
attribute.

• The calling transition then calls the procedure’s initial transition, which returns
either 1 if the procedure did a RETURN, or 0 if it went into a state and is now
expecting messages.
In the first case, the procedure’s return value if any can be retrieved via its public
attribute RTDS_return_value, which is generated since its type depends on the
procedure.
In the last case, the calling transition returns control back to the scheduler.

• When the operation RTDS_executeTransition is called with an incoming mes-
sage, the first thing it does it to figure out if a procedure was called by testing the
RTDS_calledProcedure attribute. If there is one, the message is just forwarded to
the procedure by calling its own RTDS_executeTransition operation.

• As for processes, the RTDS_executeTransition operation then returns 0 if the
procedure just changed its state, or 1 if it did a RETURN. In this last case, the call-
ing transition in the caller must then be resumed just after the procedure call. To
do so, the generated code includes a special mechanism:
• Whenever a procedure is called, a specific label identifier is stored in an

attribute called RTDS_nextLabelId;
• Each transition calling a procedure always starts with the following piece of

code:
switch(this->RTDS_nextLabelId)

{
case 1: goto RTDS_procedure_return_1;
case 2: goto RTDS_procedure_return_2;
…
}

• The generated code for the procedure call itself looks like:
RTDS_calledProcedure =

new RTDS_<procedure>_proc(RTDS_parentScheduler, <parameters>);
RTDS_calledProcedure->RTDS_currentContext =

this->RTDS_currentContext;
if (! RTDS_calledProcedure->RTDS_executeTransition(NULL))

{
RTDS_nextLabelId = <i>;
return 0;
}

RTDS_procedure_return_<i>:
<code after procedure call>
PragmaDev Studio V6.0 Page 193

Reference Manual
The first line creates the instance of the subclass of RTDS_Proc implementing
the procedure. The constructor parameters are the parent scheduler for the
caller and the procedure’s own parameters if any.
The second line makes the procedure inherit its context from its caller. This
allows to share process-based information such as the process id.
The third line executes the procedure’s start transition. If it doesn’t do a
RETURN, the RTDS_nextLabelId attribute is initialized to the label id for this
procedure call and the caller transition returns.
Whenever the procedure does a RETURN, the operation for this transition will
be called again, and the switch/case described above will do a goto to
RTDS_procedure_return_<i>. The execution will then resume just after the
procedure call.
NB: Since all variables are stored in attributes, the caller context is preserved.
The only thing that may have changed is the message triggering the transition.
This one is actually saved when each transition is executed and restored by the
RTDS_executeTransition operation if the currently called procedures does a
RETURN.

8.4.3.3 Semaphore handling (SDL-RT)

Like procedure calls, taking semaphores may interrupt a transition in the middle of its
execution. The problem is actually far more complex than for procedures, as the process
instance holding the semaphore when a take happens may or may not be in the same
RTOS task as the instance attempting the take. And of course, several takes can be
attempted by different instances, either in the same RTOS task or not.

Since the only way to handle semaphores properly when instances are not in the same
RTOS task is by using the semaphores provided by the RTOS, the choice has been made
in PragmaDev Studio to always use them, even in partially or fully scheduled systems.
This may lead to problems as taking a semaphore may block an entire scheduler and not
a single process instance. This also can cause problems when using mutex semaphores,
as several instances may be seen as a single task. So care should be taken when the sys-
tem is designed if it mixes semaphores and scheduling.

The only case when semaphores are handled in a specific way is when no RTOS is avail-
able. This case is described in details in paragraph “Whole system scheduling with no
RTOS” on page 194.

8.4.4 Whole system scheduling with no RTOS
The scheduling of a whole system with no RTOS is handled in a specific integration
located in PragmaDev Studio installation directory, subdirectory share/ccg/rtosless. In
this integration:

• This integration only supports C++ code generation in fully scheduled mode.

• Only malloc, free and memcpy system calls are used. No other service is required.
In the context of debugging, the generated code may however need socket man-
agement services (socket, send, recv, …).

• Message queues are handled as chained lists of messages.
Page 194 PragmaDev Studio V6.0

Reference Manual
• Message saving is handled by the scheduler, with save queues stored in instance
contexts.

• Timers are handled via two specific functions named RTDS_SystemTick and
RTDS_incomingSdlEvent:
• RTDS_SystemTick should be called regularly to make the system time increase.

It will typically be called by an interrupt.
• RTDS_incomingSdlEvent must be written by the user. It takes as argument a

pointer to a preallocated RTDS_MessageHeader variable and a time left before
the next timer should time-out. The function should acquire external events if
any before the time-out time expires. It should then return true if an external
message has arrived, or false if the acquisition timed-out.
A default implementation is provided by PragmaDev Studio in debug mode,
which just calls RTDS_SystemTick to make time increase. This implementation
should not be used in production code.

• Semaphores are actually handled like pseudo-processes:

Taking and giving semaphores then consist in sending messages to the corre-
sponding pseudo-process: RTDS_takeSemaphore to take it, RTDS_cancelTake to
cancel the take if a time-out occurs, RTDS_giveSemaphore to give it back. The
answer to a take is also handled via a message, named RTDS_takeSucceeded. If
the take fails, the semaphore process just doesn’t answer.
PragmaDev Studio V6.0 Page 195

Reference Manual
Taking a semaphore can then be handled via a regular SDL-RT procedure:

This procedure is implemented in the rtosless integration in the files
RTDS_SemaphoreTakeProcedure.h and RTDS_SemaphoreTakeProcedure.cpp. It is
called in the generated code just like any other procedure (see “Procedures” on
page 192).
Giving back a semaphore is implemented by just sending the
RTDS_giveSemaphore message to the process implementing it.
Page 196 PragmaDev Studio V6.0

Reference Manual
8.5 - C++ code generation for deployment simulation
C++ code generated for deployment simulation provides a seamless integration with the
ns-3 network simulator libraries. The aim is to transparently interface the SDL-RT or
SDL system with the set of communication functionalities provided by the ns-3 libraries.
At its core this integration uses the C++ code generated for a fully scheduled system
without RTOS (see “Whole system scheduling with no RTOS” on page 194). This ensures
generation of a single task executable without any parallelism involved, which is neces-
sary for correct integration with ns-3.

8.5.1 Basic principles
Although it is based on fully scheduled C++ generation, the code for deployment simula-
tion brings some differences and additions. These include the introduction of Node,
Component, and Proxy concepts, in addition to modifications introduced in
RTDS_Scheduler and RTDS_Common. Due to these modifications, this integration does not
make use of the source files in $RTDS_HOME/share/ccg/common and $RTDS_HOME/share/
ccg/cppscheduler. Instead, all files are placed in the same directory, i.e., that of the inte-
gration and namely $RTDS_HOME/share/ccg/ns3.

8.5.2 Nodes and components
Deployment node and components are represented by the RTDS_DeplNode and
RTDS_DeplComponent classes, defined in RTDS_Deployment.h & RTDS_Deployment.cpp as
follows:
PragmaDev Studio V6.0 Page 197

Reference Manual
A global numerical identifier is used for each node (nextNodeUniqueId). This identifier is
automatically updated and assigned to the node during its instantiation. The actual iden-
tifier (e.g., the IP address) is stored in the nodeId attribute.

Each node maintains the list of all its attached components in componentList. Similar
identification means are used also for every component, i.e., the nextComponentUniqueId
and componentId (e.g., the TCP port). The component keeps a list of contained processes
in processList and a reference to the RTDS_Scheduler, which is responsible for manag-
ing the instances of those processes. In addition, the componentNumber is the numerical
identifier for the component name. Possible values are added to the definitions in
RTDS_gen.h (see “Generated constants and prototypes (RTDS_gen.h)” on page 152).
The name of the constants is formed by the name of the node and component, separated
by ‘_’ and prefixed with RTDS_depl_component_. These constants are used by the code
generator to associate processes (and number of startup instances) to the component.

The createProcess operation will create a new entry in the component’s processList,
and call the createInstance operation of the scheduler to create the startup instance for
that process.

8.5.3 The scheduler
The class RTDS_Scheduler is defined in RTDS_Scheduler.h and RTDS_Scheduler.cpp as
follows:

Running the scheduler is done via its run operation. However, unlike the behavior
described in “Principles” on page 188, this operation will not contain an infinite loop,
Page 198 PragmaDev Studio V6.0

Reference Manual
because it would indefinitely block the simulation. Instead, the loop-like behavior is
achieved using the ns-3 scheduling mechanism.

8.5.3.1 Messages

The run operation starts by checking the inputQueue, and if it is not empty, it will pop the
first message and handle it accordingly. Afterwards, if there are still messages left in the
queue, it will re-schedule itself (via ns-3 scheduler) to be called again.

If a message is addressed to a local instance (i.e., in the same scheduler or component),
then it will trigger the corresponding transition in its receiver instance. However, if this
is not the case (i.e., receiver is not in the same scheduler or component), the message will
be forwarded to the proxyInstance for handling (see “The proxy” on page 199).

The envInstance is used to facilitate access to the environment process instance needed
for handling external messages as described in “External messages” on page 200.

8.5.3.2 Timers

When there are no messages left in the inputQueue, the run operation will continue with
the timers (if any) in timerList. If the timeoutValue of the first timer in the list is less
than or equal to the current time (i.e., this time is directly retrieved from ne ns-3 simula-
tor), then the timer is removed from the list, a timer expire message is pushed into the
inputQueue, and the run operation is re-scheduled so that it can handle such message
accordingly. If the timer has not expired yet, then the run operation will be re-scheduled
again, but this time with a delay equal to the time left for the timer to expire.

8.5.4 The proxy
The proxy is a special process that is available only in deployment simulation. The class
RTDS_Proxy is defined in RTDS_Proxy.h and RTDS_Proxy.cpp as follows:

The operations of this class interface the SDL-RT or SDL system with the ns-3 communi-
cation layers via ns-3 sockets. For every message received, the proxy will try to establish a
connection to the remote peer. In case of failure the message will discarded (and consid-
ered lost). The parameters required for the connection (e.g., IP address and TCP port)
PragmaDev Studio V6.0 Page 199

Reference Manual
are obtained using the information in RTDS_MessageHeader and the operations provided
by RTDS_DeplNode and RTDS_DeplComponent.

8.5.5 Process instance identifier
In deployment simulation it is required for every process instance to be uniquely identi-
fied not only inside the scheduler (RTDS_Scheduler), but also in the entire distributed
infrastructure, i.e., nodes and components. For this a redefinition of the
RTDS_SdlInstanceId is necessary. This class is defined in RTDS_Common.h and
RTDS_Common.cpp as follows:

The addition of componentNumber (numerical identifier of the RTDS_DeplComponent)
makes sure that every instance is uniquely identified also throughout all the components.
As information about process instances “travels” through the underlying ns-3 communi-
cation layers, it is important to ensure its correctness. For this a set of C++ features are
used that allow correct copy-construct, assignment, and comparison (for equality only)
of process instance identifiers.

8.5.6 External messages
Handling of external messages (i.e., messages coming from the environment) in deploy-
ment simulations is very different compared to scheduling with or without RTOS. This is
due to the nature of ns-3 simulations, where every event (e.g., message send and receive)
must be scheduled using the ns-3 scheduler. This implies that messages coming from the
environment must be made available to the scheduler before running the simulation.

The information is provided by the user in CSV format (see PragmaDev Studio User
Manual), and consists of the message name, its parameters, the component it is
addressed to, and the time it will be scheduled to be sent. The
RTDS_MSG_SEND_<message_name>_TO_NAME or RTDS_MSG_QUEUE_SEND_TO_NAME macros are
used to schedule the sending operation, depending on whether the message should be
scheduled with or without parameters. Each macro call consists of two ns-3 scheduling
operations:

• the RTDS_msgQueueSendToName operation of the environment instance (i.e., the
envInstance in RTDS_Scheduler), which will trigger the sending, and

• the run operation of the RTDS_Scheduler, which will make sure that the message
is received.
Page 200 PragmaDev Studio V6.0

Reference Manual
8.5.7 ns-3 default setup
The code for deployment simulation includes a pre-defined ns-3 setup that is necessary
for running any simulation. This “setup” can be found in RTDS_Startup_begin_cpp.c
brick (in $RTDS_HOME/share/ccg/ns3/bricks) and:

• It creates a set of ns-3 nodes, based on the number of total RTDS_DeplNode-s.

• It attaches a ns-3 network device to every node.

• It installs the stack of ns-3 network protocols on all nodes.

• It creates ns-3 network interfaces, binds them to the corresponding address, and
attaches them on the devices.

• It configures ns-3 routing for all nodes.

8.5.8 Simulation tracing
Tracing is an important part of deployment simulation. During execution, every event
(e.g., messages, state-changes, timers, semaphores, etc.) is stored in a file in XML format
to be interpreted by the PragmaDev Deployment Simulator tool, found in $RTDS_HOME/
share/3rdparty/demoddix. Some of these events are displayed in the tool itself, and oth-
ers are formatted and forwarded to the PragmaDev Tracer.

The XML trace file is divided in two parts:

• The first part includes all static information generated by PragmaDev Studio in
form of defined constants in RTDS_gen.h. These include states, processes, sema-
phores, timers, and messages. The macro RTDS_DEPL_SIMULATOR_TRACE_START
(defined also in RTDS_gen.h) will format and include such information in the
trace file. The macro is called in RTDS_Startup_begin_cpp.c and completed with
additional information on nodes and components.

• The second part is the list all events generated during simulation. The code that
generates such events is embedded in RTDS_Scheduler, RTDS_Proc, and
RTDS_Proxy, based on the type of event.
PragmaDev Studio V6.0 Page 201

Reference Manual
8.6 - C code generation with PragmaDev Studio C sched-
uler
This feature allows to generate a partially or fully scheduled code for a system just as the
feature described in “C++ code generation with or without a RTOS” on page 188, except
the generated code is in C instead of C++.

8.6.1 Process instance context handling
C++ allows to handle the contexts of the instances transparently, since a variable v can be
translated to a class attribute v in a C++ class. This cannot be done in C, so explicit man-
agement of process instance contexts is required. This is done in different ways, depend-
ing on the language used in the project:

• For SDL projects, a full code analysis is performed and allows to figure out when
local variables are manipulated. The local variables are not represented as local
variables in the code, but as fields in an explicitely managed process context,
passed to each function implementing a transition.

• For SDL-RT projects, no code analysis is performed, so the instance context is
handled another way: Each function implementing a transition redefines the
local variables and copies them from the instanc context before executing the
transition code. When the transition ends, the local variables are copied back to
the instance context.
Please note this has an impact on the memory consumption of the generated
code, since each local variable will require twice the space it should consume:
One in the instance context, and one as an actual local variable in the currently
executing transition. This also forbids some use of local variables, like storing
their address anywhere: This would store the address of the duplicate local vari-
able, and not the address of the variable in the instance context.

8.6.2 General architecture
The general architecture of the generated code and built-in scheduler is the same as the
one for C++ code generation, replacing the C++ classes by a C struct type containing its
attributes and a set of C functions replacing the class’s operations. For example, the C++
class for the scheduler becomes a C struct type with the same name and the void run()
operation becomes a function:
void RTDS_Scheduler_run(RTDS_Scheduler * scheduler);

The C functions are prefixed with the C++ class name to avoid name clashes, and always
take an additional first parameter with the corresponding struct type, corresponding to
the implicit this in C++.

Like the C++ code generation, the C code generation for scheduling uses very few bricks,
and needs the same additional macros defined in RTDS_ADDL_MACRO.h (see “Processes” on
page 190). For the startup task, the brick RTDS_Startup_begin_cpp.c is replaced by the
brick RTDS_Startup_begin_c.c.

There are a few differences in the way some features are implemented, due to the lack of
some possibilities in C:
Page 202 PragmaDev Studio V6.0

Reference Manual
• Classes constructor are translated to specific functions: RTDS_Scheduler_init for
RTDS_Scheduler and RTDS_Proc_createInstance for RTDS_Proc. These construc-
tors accept as first parameter a pointer on a RTDS_Scheduler or RTDS_Proc
(respectively) which should reference a preallocated variable.

• Process instance creation are handled differently than in C++: Since it is impos-
sible to use the same mechanism of a class registering its statically created
instances, creating an instance of a process p is always explicitely done via a func-
tion named RTDS_Proc_p_createInstance. Therefore, there is no function
RTDS_Scheduler_createInstance corresponding to the createInstance opera-
tion in the RTDS_Scheduler class: the function RTDS_Proc_p_createInstance calls
RTDS_Proc_createInstance to initialize fields defined in the RTDS_Proc struct
type, then calls a specific function called RTDS_Scheduler_registerInstance in
its parent scheduler, which only registers the already existing instance as sched-
uled by this scheduler.

• Since inheritance is not available in C, another mechanism is used to specialize
RTDS_Proc into the instances of the different generated processes: the RTDS_Proc
type contains an additional field called myLocals with the type
RTDS_ProcessLocals, which is a generated type. RTDS_ProcessLocals is a union
between types generated for each process, named RTDS_Proc_<process
name>_Locals, containing one field for each local variable in the process. The
name for the option in the union is the name of the process itself. So a local vari-
able v in a process p can be adressed in the corresponding RTDS_Proc proc by
proc.myLocals.p.v. The type RTDS_ProcessLocals is generated in a special
header file, called RTDS_all_processes.h, only present in C code generation for
scheduling.

8.6.3 Whole system scheduling with no RTOS
As for C++, a specific integration named crtosless is provided with PragmaDev Studio
allowing to generate code from a SDL or SDL-RT project without any RTOS. This inte-
gration is based on exactly the same principles as the one available for C++, described in
“Whole system scheduling with no RTOS” on page 194, except the code is written in C
and not in C++.

8.6.4 Limitations
The specialization of process classes that was naturally handled by the C++ code genera-
tion does not work in C. So specialized process classes do not work in C code generation
for scheduling.

8.6.5 Memory footprint
The C scheduler memory footprint coming with RTDS V4.4 has been measured with 16
bitsTasking C166 v8.9r1 compiler. After analyzing the memory map the scheduler
requires 4,709 bytes in ROM among which 1,626 are used for semaphore handling. The
full map is displayed below.
TASKING C166/ST10 linker/locator v8.9r1 Build 280 SN 00096364 Date: Nov 15 2013 Time: 11:22:31 Page: 1
tabletennis
PragmaDev Studio V6.0 Page 203

Reference Manual

Memory map :

Name No. Start End Length Type Algn Comb Mem T Group Class Module

RTDS_START_ID_NB........... 9 000422h 000427h 000006h LDAT WORD GLOB RAM CINITIRAM........ RTDS_START_C..
RTDS_OS_ID_NB.............. 12 000428h 00042Fh 000008h LDAT WORD GLOB RAM CINITIRAM........ RTDS_OS_C.....

RTDS_PROC_2_CO............. 20 000430h 000438h 000009h LDAT WORD GLOB ROM CROM............. RTDS_PROC_C...
RTDS_START_1_PR............ 7 000FDAh 00111Bh 000142h CODE WORD GLOB ROM CPROGRAM......... RTDS_START_C..
RTDS_START_IR_NB........... 8 00111Ch 001121h 000006h PDAT WORD GLOB ROM CINITROM......... RTDS_START_C..
RTDS_OS_IR_NB.............. 11 001154h 00115Bh 000008h PDAT WORD GLOB ROM CINITROM......... RTDS_OS_C.....
RTDS_OS_3_PR............... 13 00115Ch 0015D7h 00047Ch CODE WORD GLOB ROM CPROGRAM......... RTDS_OS_C.....

RTDS_BINARYSEMAPHOREPROCESS 14 0015D8h 001709h 000132h CODE WORD GLOB ROM CPROGRAM......... RTDS_BINARYSEM
_1_PR APHOREPROCESS_
 C.............
RTDS_COUNTINGSEMAPHOREPROCE 15 00170Ah 00183Fh 000136h CODE WORD GLOB ROM CPROGRAM......... RTDS_COUNTINGS
SS_1_PR EMAPHOREPROCES
RTDS_MUTEXSEMAPHOREPROCESS_ 16 001840h 0019C1h 000182h CODE WORD GLOB ROM CPROGRAM......... RTDS_MUTEXSEMA
1_PR PHOREPROCESS_C
RTDS_SEMAPHOREPROCESS_1_PR. 17 0019C2h 001A87h 0000C6h CODE WORD GLOB ROM CPROGRAM......... RTDS_SEMAPHORE
 PROCESS_C.....
RTDS_SEMAPHORETAKEPROCEDURE 18 001A88h 001C31h 0001AAh CODE WORD GLOB ROM CPROGRAM......... RTDS_SEMAPHORE
_1_PR TAKEPROCEDURE_
 C.............
RTDS_PROC_1_PR............. 19 001C32h 001E75h 000244h CODE WORD GLOB ROM CPROGRAM......... RTDS_PROC_C...
RTDS_SCHEDULER_1_PR........ 21 001E76h 002267h 0003F2h CODE WORD GLOB ROM CPROGRAM......... RTDS_SCHEDULER
 _C............

Error report : total errors: 0, warnings: 0
Page 204 PragmaDev Studio V6.0

Reference Manual
8.7 - C code generation with external C scheduler (SDL
only)
This feature allows to generate C code for a single process from PragmaDev Studio so
that this code can be easily integrated within an existing external scheduler. This is an
option in the C code generation for scheduler, so it only works for SDL projects, not SDL-
RT ones.

The typical setup for this feature is a set of PragmaDev Studio projects, each containing a
single process. Data and signals are usually shared via a package exported as a subtree
(see PragmaDev Studio User Manual). Each project has its own generation options with
the ‘Partial code generation’ checkbox turned on. It is better to have each project gener-
ate into its own code generation directory and gather generated files from each one into a
single directory later (e.g via a global makefile).

With this feature turned on in the generation options, PragmaDev Studio avoids as much
as possible to generate any global information and the generated files are almost only the
ones for the process itself. However, there are still a few global definitions that are
required, and a few files are generated differently than in the “normal” code generation:

• PragmaDev Studio still requires global identifiers for the messages sent and
received by the processes, as well as for the processes themselves. It also needs to
generate a correct definition for the type RTDS_ProcessLocals used to store
instance local variables.
Due to this requirements, the list of all message and process names used by Prag-
maDev Studio that will end up in the final system must be specified in the gener-
ation options. For this, two options are available, named respectively ‘File
containing all process names’ and ‘File containing all message names’, that
should be set to the full name of a file containing all process and message names
respectively, one name per line, in any order. The names appearing must be only
the ones visible to PragmaDev Studio: Processes defined in and generated by
PragmaDev Studio, and messages sent or received by these processes. If a name
is missing, or if a name of a process or message not generated by PragmaDev
Studio appears in the files, the generated code may fail to compile.
Note that using these files is not mandatory: If the generated code for each Prag-
maDev Studio project is compiled separately, no global identifier for processes or
messages will be needed. Note however that in this case, the generated identifi-
ers will be different for each project, and that they cannot be used to identify the
process or message globally.

• Some global files such as RTDS_gen.h will still be generated in all projects. If the
lists of all process and message names are used, these will actually always be the
same in each code generation.

• Some information will be generated in different places in full and partial code
generation. This is typically the case for state numerical identifiers: They are
generated globally in RTDS_gen.h in full code generation, but are generated
directly in the C source file for the process using them in partial code generation.

• Some global files in full code generation cannot be global anymore in partial code
generation and therefore have their name changed. This is the case for the file
RTDS_messages.h, containing the macros used to send and receive messages with
PragmaDev Studio V6.0 Page 205

Reference Manual
structured parameters. This file is renamed RTDS_<project name>_messages.h in
partial code generation.

• Since the whole architecture is not known by PragmaDev Studio when it gener-
ates the code, a message output should always be specified with no receiver spec-
ification (no TO, no VIA). They will always be translated to the call of a specific
macro:
RTDS_MSG_SEND_<message name>(<parameter1>, <parameter2>, …)
These macros have to be provided externally, as the mechanism for sending mes-
sages should be the one used in the external scheduler and not PragmaDev Stu-
dio’s.

The table below shows a summary of the files generated in full and partial code genera-
tion. A file generated and needed is marked with a ; a file generated, but not needed in
the final build is marked with a , and a file not generated at all is marked with a :

Table 27: Generated files in full and partial code generation

File name

Code
generation Comment

Full Partial

<system>.h   Definitions in the project, mainly data
types shared by all processes. In par-
tial code generation, all these files are
used, so system names must be differ-

ent for each project.

<process>.h   Definitions in the process itself.

<process>_decl.h   Declaration for the struct type imple-
menting the process.

<process>_locals.h   Definition of the type
RTDS_Proc_<process>_locals.

<process>_tmpvars.h   Temporary variables used by the pro-
cess. Included in the process body.

<process>.c   Implementation for the process itself.
Contains numerical identifiers for

states in partial code generation, but
not in full one.

RTDS_all_processes.h   In partial code generation, based on
the list of all process names specified

in the generation options.
Page 206 PragmaDev Studio V6.0

Reference Manual
RTDS_gen.h   Based on the list of all process and
message names specified in the gener-

ation options. Contains numerical
identifier for states in full code gener-

ation, but not in partial one.

RTDS_messages.h   In full code generation, contains types
and macros to handle sending and
receiving messages with structured

parameters.

RTDS_<project>_messages.h   Equivalent of RTDS_messages.h in par-
tial code generation, but only contains

the messages used in the current
project.

RTDS_Start.c   Startup task; not generated in partial
code generation.

Makefile   Not used for build in partial code gen-
eration, but needs to be generated to

build the file
RTDS_<project>_messages.h.

RTDS_gen.ini   Same comment as for RTDS_gen.h; not
used in partial code generation.

RTDS_gen.inf   Same comment as for RTDS_gen.h; not
used in partial code generation.

Table 27: Generated files in full and partial code generation

File name

Code
generation Comment

Full Partial
PragmaDev Studio V6.0 Page 207

Reference Manual
8.8 - Integration with external C code

8.8.1 Function call
In SDL-RT projects, calling an external C function is quite straightforward: If you include
the C header and source files for the function, you can just include the header in any dia-
gram and call the function directly, since the source file will be automatically compiled
and linked by the build process. Calling a C function in an external library is simple too:
It just requires the header file to be accessible for include, either by putting it in the
project, or via a compiler option, and the library must be added as an additional file to
link.

In SDL projects, C functions cannot be called directly. To be able to call external C code,
an operator in a SDL NEWTYPE must be defined and implemented in C. This operator’s sig-
nature will be translated to C according to the rules described in “OPERATORS conver-
sion” on page 111. Its implementation should be put in an external object file or library,
and added in the generation options in the additional files to link.

In both cases, if a RTOS integration is used, please note that the function will be executed
in the calling task’s context, so the stack size must be sufficient to handle all local vari-
ables.

8.8.2 Message exchange
Communication with SDL-RT active objects described through finite state machines is
done through messages. Both communication ways are possible: From the SDL-RT /
SDL system to the outside, or from the outside to the system.

8.8.2.1 Sending messages from the SDL-RT / SDL system

The outside of the system is represented in PragmaDev Studio by the environment pro-
cess, called RTDS_Env. This environment process can be either generated automatically if
the option “Generate environment process” is checked in the generation options, or
implemented explicitely by creating a process named RTDS_Env at system level. In this
case, there should be no channels connecting to the system diagram’s frame; All should
go to the process RTDS_Env. This way, if a message is sent TO_ENV / TO ENV in the system, it
will automatically be sent to the process named RTDS_Env. This process should then han-
dle the communication with the outside of the system:

• In SDL-RT, it can do so by calling C functions.

• In SDL, it can do so by calling a procedure declared as external with its imple-
mentation written in C.

In SDL-RT, there is also an easier way to communicate with the environment: If a mes-
sage is sent TO_ENV with a macro name behind the TO_ENV clause, the actual communica-
tion can be handled via this macro. This feature is also designed to work both on target
and in debugging environment:

• On target, the generation profile should have its option “Communicate with envi-
ronment via macros” checked. This way, whenever a message is sent TO_ENV with
a macro name, the macro will actually be called.
Page 208 PragmaDev Studio V6.0

Reference Manual
• In debugging environment, another generation profile should be used, with the
option “Communicate with environment via macros” unchecked. This way, when
a message is sent TO_ENV with a macro name, the macro is actually ignored and
the message is sent to the process RTDS_Env.

8.8.2.2 Sending messages to the SDL-RT / SDL system

8.8.2.2.1 Identifying the receiver by its name

The best way to send message to an instance of a process with a given name is via the
macros generated for message output, described in “Additional generated types & mac-
ros for message handling” on page 152. So for example, for a message declared like fol-
lows:
MESSAGE m_query(int, MyStructType)

in SDL-RT, or:
SIGNAL m_query(Integer, MyStructType)

in SDL, sending a message to a process named my_process with the parameters i and str
should be done via:
RTDS_MSG_SEND_m_query_TO_NAME(“my_process”, RTDS_process_my_process, i, str);

This macro is defined in the generated file RTDS_messages.h, so it must be included in the
caller.

However, this macro is supposed to be called in the context of a PragmaDev Studio pro-
cess instance, so it requires some variable to be defined:

• The macro uses the context for the sender to identify it. This context is always
present in PragmaDev Studio process instances in a variable named
RTDS_currentContext, with the type RTDS_GlobalProcessInfo*. So such a vari-
able has to exist, or the macro call won’t compile.
In addition, it is safer to initialize the whole RTDS_currentContext variable with
zeros before sending any message. This way, if the message receiver ever
attempts sending a message back to the sender, the generated code will handle
the error cleanly, and not crash with a segmentation fault or send the message to
a random instance. This initialization can be done safely via a memset, or by using
calloc instead of malloc if the variable is dynamically allocated.

• The macro also uses a buffer to contain message parameters that has to be
declared in the caller. This declaration is done through the macro
RTDS_MSG_DATA_DECL, which has to be called before the message output macro
can be used.

Note that for messages that do not accept any parameter, no macro RTDS_MSG_SEND_… is
generated, and that the generic macro found in RTDS_MACRO.h should be used. For exam-
ple, for a message m_ping with no parameters:
RTDS_MSG_QUEUE_SEND_TO_NAME(

m_ping, 0, NULL, “my_process”, RTDS_process_my_process
);

8.8.2.2.2 Other ways to identify message receivers

There might be cases where identifying the reciver of a message by its name is not conve-
nient or impossible:
PragmaDev Studio V6.0 Page 209

Reference Manual
• If the message is sent to a specific instance of a process that has several ones, the
macros shown above will take a random instance of this process, which might
not be the one that is supposed to be the receiver.

• In most RTOS integrations, finding an instance of a process with a given name
requires access to a global list of running instances, which is protected by a
semaphore. This means that the call can block on this semaphore. This might not
be possible in some contexts, for example if the message is sent by an ISR.

In the first case, there must be a way for the instance that should receive the message to
transmit its RTDS_SdlInstanceId to the external sender. It can do so by sending a mes-
sage to the environment: The field sender in the received RTDS_MessageHeader will auto-
matically contain the RTDS_SdlInstanceId for the sender instance. Then the external
message can be sent via the …_TO_ID macros, similar to the ones described above. In other
very specific cases, the instance might have to publish its RTDS_SdlInstanceId in a global
variable. This is not the recommended way, but it is sometimes the only solution.

The second case is trickier, since almost all macros used for message sending have to
manipulate global variables, which are always protected by semaphores. This is done for
example to check if the receiver instance still exists. In this case, the only way to send a
message is to avoid using the high-level macros and to rely on the low-level mechanisms
in the RTOS integration. This requires to analyse how the macros and the functions they
call are implemented and do the same thing in the external code, removing all critical
sections. This means that the external code will be RTOS-specific.
Page 210 PragmaDev Studio V6.0

Reference Manual
8.9 - PragmaDev Studio footprints

8.9.1 Static memory footprint
The following figures have been measured with gcc V 2.95.3-5 on a Pentium computer
under Windows 2000 with an empty process (start transition only) called pEmpty.

.text 0x00401000 0x1400

.text 0x00401000 0x230 pEmpty.o
 0x00401000 pEmpty
.text 0x00401230 0x180 RTDS_Start.o
 0x0040127c RTDS_Start
.text 0x004013b0 0xd4 RTDS_Env.o
 0x004013b0 RTDS_Env
.text 0x00401484 0xc4 RTDS_Utilities.o
 0x004014a8 RTDS_StringLength
 0x004014dc RTDS_StringCompare
 0x00401484 RTDS_MemAlloc
.text 0x00401548 0xce0 RTDS_OS.o
 0x00401eec RTDS_Sem_Info_Insert
 0x00402164 RTDS_GetSemaphoreId
 0x00401584 RTDS_GetTimerUniqueId
 0x00401660 RTDS_WatchDogFunction
 0x00401a58 RTDS_ProcessCreate
 0x004016e4 RTDS_StartTimer
 0x00401904 RTDS_GetProcessQueueId
 0x00401868 RTDS_StopTimer
 0x00402130 RTDS_SemaphoreIdTake
 0x00402084 RTDS_Sem_Delete
 0x00401cf8 RTDS_ProcessKill
 0x004019c4 RTDS_MsgQueueSend
 0x00401a34 RTDS_MsgQueueReceive
.data 0x00403000 0x8 RTDS_Start.o
 0x00403004 RTDS_globalSemaphoreInfo
 0x00403000 RTDS_globalProcessInfo
.bss 0x00404000 0x20
 0x00404000 __bss_start__=.
*(.bss)
*(COMMON)
COMMON 0x00404000 0x20 RTDS_Start.o
 0x0 (size before relaxing)
 0x00404000 RTDS_globalSystemSemId
 0x00404010 RTDS_globalStartSynchro
 0x00404020 __bss_end__=.

To be summarized as:

• 4 436 bytes in ROM (note RTDS_Env is not included in this figure),

• 40 bytes in RAM
PragmaDev Studio V6.0 Page 211

Reference Manual
8.9.2 Dynamic memory allocation

VxWorks uItron3.0 uItron4.0 Windows CMX

compiler gcc armelf-gcc armcc gcc cc166

target SimSparcSol ARM7TDMI ARM7TDMI Win32 Sim167CS

ROM
pEmpty

RTDS_Start
RTDS_Utilitie

s
RTDS_OS
TOTAL

696
264
424

4528
5912

768
224
316

6212
7520

308
160
112

3140
3720

540
304
196

4816
5856

346
108
56

2142
2652

RAM 8 14 C 10 10

Allocated when Size Freed when

Sending an SDL
message

0 -

Receiving an
SDL message

sizeof(RTDS_MessageHeade
r)

SDL transition is executed
Note: not freed if signal is

saved.

Starting a timer sizeof(RTDS_TimerState) When cancelled if watchdog
has been fully deleted.

Anyway when timer message
is executed.

Table 28: Size of allocated memory by the PragmaDev Studio kernel

32 bits CPU 16 bits CPU

SDL message
sizeof(RTDS_MessageHeader)

28 22

SDL process info
sizeof(RTDS_GlobalProcessInf

o)

40 16
Page 212 PragmaDev Studio V6.0

Reference Manual
SDL timer
sizeof(RTDS_TimerState)

28 20

32 bits CPU 16 bits CPU
PragmaDev Studio V6.0 Page 213

Reference Manual
8.10 - RTOS integrations

8.10.1 Common features

8.10.1.1 Process information handling

The relevant information on a process is stored in a structure that is placed in a global
chained list. When a process is created, a pointer to its structure is passed. The structure
of an element in the chained list is RTDS_GlobalProcessInfo described in “Common types
- RTDS_Common.h” on page 148. The PragmaDev Studio debugger uses this chained list
to display internal information regarding a process.

8.10.1.2 Semaphore information handling

Semaphores are defined and manipulated using their names in the SDL description.
Since most of the time the operating system does not identify semaphore by names but
by addresses, the generated code updates a list of all the semaphore ids and their corre-
sponding names. The structure of an element is RTDS_GlobalSemaphoreInfo and is usu-
ally defined in the integration’s RTDS_BasicTypes.h file (see “RTOS-specific types -
RTDS_BasicTypes.h” on page 151). It contains the semaphore id and the related sema-
phore name.

When a semaphore is created, a new element is added in the chained list. When a sema-
phore is deleted the corresponding element is removed. When a semaphore is taken or
given away the chained list is read to determine the semaphore address.

8.10.1.3 Saved messages handling

The handling of saved messages is very complex for the following reasons:

• A saved message should only be considered when the SDL state changes other-
wise it would be saved again;

• The order in which the messages arrived must be respected. In fact the SDL con-
cept is more or less like leaving the message in the queue if it is saved. So when
the SDL state changes, the saved messages must be considered first.

To do so the PragmaDev Studio kernel manipulates 2 save queues:

• One queue to write messages to save (field writeSaveQueue in type
RTDS_GlobalProcessInfo);

• One queue to read messages that have been saved (field readSaveQueue in type
RTDS_GlobalProcessInfo).

Both are chained list of messages, with the type RTDS_MessageHeader (see “Common
types - RTDS_Common.h” on page 148 for more details).

The basic algorithm is the following:

• When executing, the automaton will first check if there is any message in the
readSaveQueue. If not it will read from the RTOS message queue.

• When a message needs to be saved, it is put in the writeSaveQueue.

• When the SDL state changes:
Page 214 PragmaDev Studio V6.0

Reference Manual
• The readSaveQueue is put at the end of the writeSaveQueue to keep the mes-
sages order;

• The readSaveQueue takes the value of the writeSaveQueue that now contains
all saved messages;

• The writeSaveQueue is emptied.

8.10.1.4 Timers information handling

Handling timers with the semantics defined in SDL-RT or SDL is tricky to do with an
RTOS for the following reasons:

• When a SDL-RT or SDL timer goes off, it generates a message sent to the task
that started the timer. This is not how most of operating systems work. For
example, in VxWorks, timers are implemented using watchdogs that call a func-
tion when it goes off.

• When a SDL-RT or SDL timer is cancelled, it is cancelled even if the timer mes-
sage is already in the task’s queue. That makes implementation quite tricky to be
sure the timer is properly cancelled.

The PragmaDev Studio timer implementation supports SDL timer concepts and works
the following way:

• Each task has its own timer information chained list (field timerList in
RTDS_GlobalProcessInfo - see “Common types - RTDS_Common.h” on
page 148);

• Each element of the chained list has the type RTDS_TimerState, defined in the
integration’s RTDS_BasicTypes.h file, and which usually contains at least the fol-
lowing information:
• The timer id, which is the message number of the timer;
• A unique id so that if the same timer is started 20 times, it is possible to distin-

guish the timer instances. This identifier is actually unique within a task, since
it is not possible to start the same timer several times within a task;

• The SDL instance id of the instance that started the timer;
• The state of the timer (is it valid or has it been cancelled);
• The watchdog id of the timer instance.

When a timer is started:

• All other instances of the same timer are cancelled;

• Aunique timer id is calculated;

• A watchdog is created;

• A new element of the chained is allocated and inserted in the list;

• The watchdog is started with the new element as a parameter of the timeout
function.

When a timer is cancelled:

• The corresponding information is retrieved from the chained list;

• The watchdog is stopped if possible.
PragmaDev Studio V6.0 Page 215

Reference Manual
• If it couldn’t be stopped because it already was, this means the watchdog
already went off. The corresponding element in the chained list is then
marked as cancelled;

• If it could be stopped, the element is removed from the chained list.

When the timer message is read from the task message queue:

• The corresponding information is read from the chained list;

• The corresponding element is removed from the chained list and freed;
• If the timer is marked as cancelled the corresponding message is discarded;
• If the timer is valid it is processed.

8.10.1.5 Automaton structure

The implementation of SDL automatons is made of an initialization part including the
SDL start transition followed by an infinite loop that is the core of the task. The infinite
loop usually does roughly the following:
for (;;)

{
/* Continuous signals treatment - see “Continuous signal” on page 163 */

if (messages to read in the save queue)
retrieve the next message in the save queue

else
read the message queue

if (message is a timer)
if (timer is cancelled)

discard it (message = NULL)

/* Message input treatment - see “Message input” on page 161 */

free message memory space
if (SDL state has changed)

reorganize save queue
}

8.10.1.6 Critical sections

As described above the generated processes manipulate global variables to handle pro-
cess and semaphore information. Since all processes are manipulating the same chained
lists an PragmaDev Studio system critical section has been introduced. It uses a binary
semaphore so that only one process at a time manipulates one of the chained list. It is
made of 6 parts:

• RTDS_CRITICAL_SECTION_DECL
Declaration of the system semaphore id global variable:
RTDS_globalSystemSemId.

• RTDS_CRITICAL_SECTION_PROTO
Prototype of the declaration of the system semaphore id global variable.

• RTDS_CRITICAL_SECTION_INIT
Creation and initialisation of the system semaphore made by the start up pro-
cess.

• RTDS_CRITICAL_SECTION_START
Page 216 PragmaDev Studio V6.0

Reference Manual
A system critical section starts, a blocking attempt to take the semaphore is done.
• RTDS_CRITICAL_SECTION_STOP

A system critical section ends, the semaphore is given back.
• RTDS_CRITICAL_SECTION_POSTAMBLE

Deletes the system semaphore. Used when the system terminates.

8.10.1.7 Startup synchronization

An SDL process can send a message to another process in the start transition. This will
fail if the receiver instance is not yet created. Therefore, at startup time, a synchroniza-
tion semaphore is created and all created processes are put on wait. When initialisation
is done, the semaphore is flushed and all tasks start running.

This handling is based on 6 macros:
• RTDS_START_SYNCHRO_DECL

Declaration of the synchronization semaphore id global variable :
RTDS_globalStartSynchro.

• RTDS_START_SYNCHRO_PROTO
Prototype of the declaration of the synchronization semaphore id global variable.

• RTDS_START_SYNCHRO_INIT
Creation and initialisation of the system semaphore made by the start up pro-
cess.

• RTDS_START_SYNCHRO_WAIT
A newly created task waits for the semaphore to be freed.

• RTDS_START_SYNCHRO_GO
The startup task flushes the semaphore.

• RTDS_START_SYNCHRO_POSTAMBLE
Deletes the synchronization semaphore. Used when the system terminates.

The same mechanism is used when tracing execution. The same semaphore is used to
hold the newly created process until the process create trace is updated. This is to handle
the case where the created task priority is higher that its parent. For this purpose 2 extra
macros have been created:

• RTDS_START_SYNCHRO_HOLD
The semaphore is taken so that the newly created task is put on hold.

• RTDS_START_SYNCHRO_UNHOLD
The semaphore is released so that the newly created task can run.

Note this is only done when the PragmaDev Studio debugger support is activated in the
generation options. For a “plain” code generation, it is not needed.

8.10.1.8 Environment task

When debugging, the environment surrounding the SDL-RT system is represented by an
RTOS task: RTDS_Env. Messages going out or coming in the system are actually
exchanged with RTDS_Env. Since RTDS_Env receives the messages coming from the system,
it might be wise to have it to free the parameters of the messages. Defining
PragmaDev Studio V6.0 Page 217

Reference Manual
RTDS_ENV_FREE_PARAMETER in the compiler options will free parameter pointers in auto-
matically generated RTDS_Env.

RTDS_Env can also be a user-defined process. In that case freeing memory is up to the user
in the design.

8.10.1.9 Error handling

If an error is detected in the Real Time Developer Studio kernel the RTDS_SYSTEM_ERROR C
macro is called with an error code. The error codes are listed and explained in the
RTDS_Error.h file.

The RTDS_SYSTEM_ERROR C macro needs to be defined by the user to react properly to sys-
tem errors. By default it is defined in RTDS_MACRO.h.

8.10.2 Creating a new RTOS integration for PragmaDev Studio
Creating a new integration basically consists in creating all required files for PragmaDev
Studio in a directory so that it can be used as the code templates directory in a project’s
generation options. Required files are described in “Mandatory files” on page 145.

The best way to do so is to actually take an existing integration and adapt it to the new
RTOS. A good candidate for this is the VxWorks integration, since it almost supports all
the features implemented in PragmaDev Studio. The POSIX or Windows integrations are
however quite bad candidates for this, because since these are not “real” RTOSes, a lot of
features are actually missing from their API and have been implemented directly in the
integration.

We strongly recommend to avoid modifying the existing integrations directly: Always
create a separate directory for each new integration. This will avoid losing the original
integration if you ever need it, and allows to keep a clean base for other customizations as
well.
Page 218 PragmaDev Studio V6.0

Reference Manual
8.10.3 VxWorks integration

8.10.3.1 Version

All VxWorks function and macro definitions are available in the RTOS profile directory:
$(RTDS_HOME)/share/ccg/vxworks/

The VxWorks integration is based on version 5.4.2 of VxWorks (Tornado V2.0.2). It has
been developed and tested with VxSim on Windows 2000 and Solaris 7.

8.10.3.2 Timers

SDL-RT timers are implemented using VxWorks watchdogs. When the timer goes off, the
watchdog function RTDS_WatchDogFunction will receive as a parameter the address of the
RTDS_TimerState structure related to the timer. This structure is in the RTDS_TimerState
chained list of the task that has started the timer.

It is possible to set the system time with the set time shell command. It does it in two
ways:

• set the vxTicks global variable value,

• call VxWorks tickSet() function.
It is important to know that changing the system value will not make the timer go
off before their dead line. This is due to the fact that the code generator uses
watch dogs; when a watch dog is set it decreases its time out value without refer-
ring to the system time value.

8.10.3.3 Make process

VxWorks profile requires a specific make process to be able to generate an executable
whatever the target CPU is. To do so the WindMake.inc makefile needs to be included at
the end of the generated makefile. The make utility should be the one from Wind River
and specify the target CPU. For example when using VxSim on PC host, the make com-
mand should be:
make CPU=SIMNT

A list of the available CPU can be found in:
$(WIND_BASE)/host/include/cputypes.h

8.10.3.4 Tornado integration

8.10.3.4.1 Architecture

The SDL-RT debugger allows you to execute your SDL system and the associated C code.
To do so Real Time Developer Studio generates the code necessary to execute the SDL
processes and uses Tornado’s compiler, debugger and RTOS (VxWorks) or RTOS simu-
lator (VxSim).

Tornado architecture is done so that the tools on host interface with the Target server.
The Target server is a unique interface whatever the target is including VxSim. Wind
River has an API to connect to its Target server: WTX (Wind River Tool eXchange proto-
PragmaDev Studio V6.0 Page 219

Reference Manual
col). But not all information can be retrieved from WTX so a modified version of gdb is
also running at the same time. This modified version is different depending on the target
architecture. For example gdb to debug an application running on VxSim under Win-
dows is gdbsimnt.

8.10.3.4.2 Launching process and target connection

When debugging with a Tornado debug environment selected, after compilation is done,
PragmaDev Studio will automatically:

• Check if WIND_BASE environment variable is properly defined

• Check if Tornado Registery is started. If not the SDL-RT debugger will try to
start one

• If more than one Target servers are found

SDL-RT generated
C code

external
C code

gccC code

VxSim
or VxWorks

gdb
Target
server

SDL-RT
debugger

+

WTX

SDL-RT
editor

MSC
editor

Text
editor

Real Time Developer Studio tools
Wind River tools
Source code
Binary code

binary

Target or host
Page 220 PragmaDev Studio V6.0

Reference Manual
• A pop up window will list the existing target server and ask the user to select
one

• Connects to the selected Target server
• Restarts the target

• If only one Target server is found
• Connects to the existing Target server
• Restarts the target

• If no target server can be found
• Starts VxSim
• Starts a Target server
• Connects to the Target server

• Download the executable

• Starts Wind River gdb and WTX protocol

• Starts the executable with a breakpoint on it so it will stop at the entry point of
the executable

8.10.3.4.3 Configuring VxWorks image to debug on target

Wind Debug agent

The Tornado integration uses System mode debugging facility. To be able to debug on
target with PragmaDev Studio SDL-RT debugger the VxWorks image must be config-
ured to support that mode.

• In the development tools component / WDB agent components / Select WDB
connection:
• WDB END driver connection should be selected

• In the development tools component / WDB agent components / Select WDB
mode:
• WDB system debugging
and
• WDB task debugging
PragmaDev Studio V6.0 Page 221

Reference Manual
should both be selected.
Page 222 PragmaDev Studio V6.0

Reference Manual
Symbol table

The symbol table should be built-in the executable:
PragmaDev Studio V6.0 Page 223

Reference Manual
8.10.4 Posix integration
All Posix function and macro definitions are available in the RTOS profile directory:
$(RTDS_HOME)/share/ccg/posix/

Posix integration has been tested with the following compilers and debuggers:

• Solaris 7
• gcc v2.95
• gdb v5.2

• Linux Mandrake 8.0 and Red Hat 7.2
• gcc v2.96
• gdb v5.2

8.10.4.1 SDL-RT task

SDL-RT tasks are mapped to Posix threads.

8.10.4.2 Message queue

SDL-RT messages are not implemented using the Posix mqueue library. The message
queue is defined as a chained list protected by 2 semaphores; the first one to avoid con-
flicting access and the second one to allow to wait for messages. In order to exchange
messages between threads the following structures and functions have been defined

8.10.4.2.1 Internal structures:

• Queue Control Block: RTDS_Profile_QCB
This structure contains:
• pointer on the chained list semaphore (Mutex protecting chained list)
• pointer on blocking semaphore (Binary allowing to wait for a message)
• pointer on the first message

• Chained List Messages: RTDS_Chained_Message
This structure contains:
• pointer on message data (*message)
• size of data
• pointer on the next chained message

8.10.4.2.2 Functions:

• Message queue create: RTDS_Profile_msgQCreate

• Message queue delete: RTDS_Profile_msgQDelete

• Message queue send: RTDS_Profile_msgQSend

• Message queue read: RTDS_Profile_msgQRead

8.10.4.3 Semaphore

The SDL-RT mutex semaphore is mapped to pthread mutex semaphores. Binary and
counting semaphores are mapped to standard Posix semaphores (semaphore.h).
Page 224 PragmaDev Studio V6.0

Reference Manual
8.10.4.4 Timer

PragmaDev Studio Posix profile implements its own timer mechanism. Each SDL-RT
timer is a nanosleep function call in a separate thread. Timer’s thread priority is 59 for
Solaris and 99 for Linux.

• The timer information structure RTDS_Profile_TimerInfo contains:
• timer delay
• timer thread ID
• pointer on the SDL-RT send message function
• pointer on the SDL-RT send message function’s parameter

• Timer function:
Create timer: RTDS_Profile_TimerCreate
Delete timer: RTDS_Profile_TimerDelete
Start timer: RTDS_Profile_TimerStart
Timer thread function: RTDS_Profile_TimerThread
PragmaDev Studio V6.0 Page 225

Reference Manual
8.10.5 Windows integration
PragmaDev Studio windows integration files are in the directory below:
$(RTDS_HOME)/share/ccg/windows/

Windows integration is designed to work with the MinGW toolchain, which is included
in the installation. The included version is v3.21, which provides the following:

• gcc/g++ v4.8.1;

• gdb v7.6.1;

• GNU make v3.82.90.

These are the versions the integration has been tested with.

8.10.5.1 SDL-RT task

SDL-RT tasks are mapped to Windows threads.

8.10.5.2 Message queues

Windows API does not provide any messaging functionnality for threads. A simple mes-
sage queue has been implemented in the PragmaDev Studio profile files for communica-
tion among the generated threads.

A message queue is implemented as a chained list with 2 semaphores: the first one to
avoid conflicting access to the list, and the second one to wait for messages. A Prag-
maDev Studio message queue is a pointer to a Queue Control Block structure (RTDS_QCB)
that contains the following fields:

• pointer on the mutex semaphore protecting the chained list access;

• pointer on the blocking binary semaphore to wait for messages;

• pointer on the first message.

8.10.5.3 Semaphores

SDL-RT semaphores are mapped to Windows semaphores. An internal structure
RTDS_SemaphoreInfo used to identify the semaphores contains the following fields:

• Windows handle on the semaphore,

• the semaphore type.

8.10.5.4 Timers

PragmaDev Studio Windows profile implements its own timer mechanism. Each SDL-
RT timer is a Sleep function call in a separate thread. Timer’s thread priority is
THREAD_PRIORITY_TIME_CRITICAL.

There are however very specific mechanisms that have been introduced because the Win-
dows API function TerminateThread that is supposed to kill a thread from the outside
does not work properly: it apparently fails to free some memory space that was allocated
for the thread, causing memory leaks that will end up being a problem if a lot of timers
are started & cancelled. This causes issues in 3 cases:
Page 226 PragmaDev Studio V6.0

Reference Manual
• When a timer is cancelled: since its timer thread cannot be killed, it will eventu-
ally time-out anyway;

• When a process instance dies while timers are still running: again, its timer
threads are still running, so they can end up trying to send the time-out message
to an instance that no more exists;

• When a timer is forced from the debugger window: the timer thread is still run-
ning, but the timer must not be triggered a second time.

The solutions for these 3 cases are detailed in the following paragraphs.

8.10.5.4.1 Timer cancel

Since the timer thread cannot be killed when a timer is cancelled, the state filed of its
RTDS_TimerState is used to indicate that the timer is no more running by setting it to the
value RTDS_TIMER_CANCELLED. The timer thread eventually triggers the sending of the
time-out message, but on reception, the receiver instance checks this field and discards
the message when its state is RTDS_TIMER_CANCELLED.
PragmaDev Studio V6.0 Page 227

Reference Manual
Here is a more detailed description of how things happen as a MSC diagram:

8.10.5.4.2 Instance kill

The mechanism used to cancel a timer cannot be used here, because when the timer
thread eventually makes the timer time-out, there is no more an instance to send the
message to. So another value for the state field of the RTDS_TimerState is used, named
RTDS_TIMER_DEAD. This value is set by the process instance when it dies and tries to kill
the timer threads, which fails. When the timer thread reaches the time-out time, it tests
this state, and if it is RTDS_TIMER_DEAD, it doesn’t send the message. It also frees the
RTDS_TimerState, which cannot be freed by the instance when it dies because the timer
thread still has a reference on it.

Timer OK

Timer cancelled

Timer dead

Timer sent
Page 228 PragmaDev Studio V6.0

Reference Manual
Here is a more detailed description of how things happen as a MSC diagram:

8.10.5.4.3 Timer forcing

When a timer is forced from the debugger interface, the same kind of problem happens:
the time-out message is sent at once, but its timer thread cannot be killed, so it will even-
tually reach the time-out time, and should not send the time-out message again. There is
an even trickier case for this issue: just after the timer is forced, it is possible that it times
out just at this moment, so the thread that wakes up is the timer thread, and not the
thread for the process instance that started the timer.

To workaround this problem, another value for the state field of the RTDS_TimerState is
used, named RTDS_TIMER_SENT. This value is set just after the time-out message for the
timer is sent by the timer forcing. After that, there are 2 cases:

• The most common case is when the thread for the process instance wakes up first
and receives the message. In this case, when seeing RTDS_TIMER_SENT as the value
for the timer state, it simply sets it to RTDS_TIMER_DEAD, does not free the
RTDS_TimerState and handles the message normally. So once the timer thread
reaches the time-out time, it will see the timer state set to RTDS_TIMER_DEAD and
simply free the RTDS_TimerState without sending a message.

Timer OK

Timer cancelled

Timer dead

Timer sent
PragmaDev Studio V6.0 Page 229

Reference Manual
• The other case is when the timer thread reaches the time-out time before the
process instance has had a chance to handle the message. In this case, the timer
thread simply sets the state field of the RTDS_TimerState to RTDS_TIMER_OK, does
not send a message and exits. This way, when the time-out message is actually
received by the process instance, it will handle the timer normally, freeing the
RTDS_TimerState.

Here is a more detailed description of how things happen as MSC diagrams:
Page 230 PragmaDev Studio V6.0

Reference Manual
• Usual case: process instance wakes up first:

Timer OK

Timer cancelled

Timer dead

Timer sent
PragmaDev Studio V6.0 Page 231

Reference Manual
• Other case: timer thread wakes up first:

Timer OK

Timer cancelled

Timer dead

Timer sent
Page 232 PragmaDev Studio V6.0

Reference Manual
8.10.6 CMX RTX integration

8.10.6.1 Version

All CMX RTX function and macro definitions are available in the RTOS profile directory:
$(RTDS_HOME)/share/ccg/cmx/

The CMX RTX integration is based on version 5.3 of the RTOS. It has been developed
and tested with Tasking cross compiler and debugger with the 167 instruction set simula-
tor (C167CS) on Windows 2000 SP2 host.

8.10.6.2 File organization

8.10.6.2.1 RTDS_Cmx.c

This file contains some very specific functions needed to support CMX RTX. It defines:
• TickTimerInit

Initialize timer with predefined values. This function can be removed by the user
if timer functions are already existing on its system.

• TickTimerInt
Timer 2 interrupt service routine. This function can be removed by the user if
timer functions are allready existing on its system.

• RTDS_globalSemaphoreId
RTDS_globalSemaphoreId is an array of short used to keep track of available
semaphores in the system. If element n of the array is 1 the semaphore n is not
available, if it is 0 it is available.

• RTDS_initResourceId
This function initialize the RTDS_globalSemaphoreId array.

• RTDS_semaphoreIdGet
This function retrieves an available semaphore id from the
RTDS_globalSemaphoreId array.

• RTDS_semaphoreIdFree
This function frees a semaphore id and make it available in the
RTDS_globalSemaphoreId array.

8.10.6.2.2 CMX files

Since CMX is delivered as source code, the following files should be compiled and linked
with the generated code in order to get a working executable (small memory model) :

• cmx_init.c

• cxskv5s.src

• liba66s.lib

The examples included in the distribution show how to include these files in the make
process using an external makefile.
PragmaDev Studio V6.0 Page 233

Reference Manual
8.10.6.2.3 Defines

The generated C macros definition file (RTDS_MACRO.h) includes Cxconfig.h and
Cxfuncs.h files. Please note a basic stack size verification is done so that the sum of all
tasks stack is not superior to the total available stack.

8.10.6.2.4 main function

CMX expects the application to have a main() function. It has been introduced in
RTDS_Startup_begin.c and replaces the RTDS_Start() function.

The main difference with a classical RTDS_Start() are:

• K_OS_Init() is called at the beginning of the main function
(RTDS_Startup_begin.c) to initialize CMX,

• TickTimerInit() is called to initialize system tick count interrupt function
defined in RTDS_Cmx.c,

• K_OS_Start() is called at the very end of the main function to start the RTOS.

8.10.6.3 Task slot and mailbox numbering

CMX RTOS handles static mailboxes. Since no dynamic creation is possible, the task slot
id given back by CMX RTX is also used as the mailbox id. That means the generated code
considers the corresponding mailbox id is available. So if the application running on
CMX handles mailboxes from external C code, the external modules should use higher
mailbox id than the maximum number of SDL-RT tasks.

8.10.6.4 Task context

In the generated code, when a task is started, it needs to know about its context. That is
the address of its RTDS_GlobalProcessInfo structure in the RTDS_globalProcessInfo
chained list.

Since CMX does not allow to give parameters when creating a task, the following is done
at the beginning of the task (bricks/RTDS_Proc_begin.c):

• the newly created task reads its own task slot id with K_OS_Task_Slot_Get()
function,

• the task reads the RTDS_globalProcessInfo chained list until the processId field
of the RTDS_GlobalProcessInfo structure correspond to its slot id. Then the task
knows it is its own context structure.

8.10.6.5 Semaphores

8.10.6.5.1 Types

CMX supports only counting semaphores with a FIFO queueing mechanism. SDL-RT
mutex and binary semaphores have been mapped to counting semaphore with an initial
value of:

• 0 when the semaphore is created not available

• 1 when the semaphore is created available
Page 234 PragmaDev Studio V6.0

Reference Manual
The SDL-RT debugger Semaphore list window will display the RTOS type of semaphore.
That means that whatever type of semaphore you have created in SDL-RT, they will be
displayed as counting semaphores with FIFO queue type in the Semaphore list window.
That ensures the user does not have a distorted view of the generated code.

8.10.6.5.2 Identification

Semaphore are handled statically in CMX; there is no dynamic semaphore creation.
Since the generated code is based on a dynamic creation mechanism, functions have
been implemented to handle dynamically allocated semaphore ids in $(RTDS_HOME)/
share/ccg/cmxRTDS_Cmx.c as described in paragraph “RTDS_Cmx.c” on page 233.

8.10.6.6 Timers

CMX cyclic timers are used to implement SDL-RT timers. To understand this integration
it is important to clearly separate the different identifiers manipulated:

• SDL-RT timer id
That is the SDL-RT message number. It is defined in RTDS_gen.h file.

• CMX cyclic timer id
This the global timer id for the whole application. The application can handle up
to C_MAX_CYCLIC_TIMERS separate cyclic timers.

• CMX event number related to the timer
When the timer goes off, it is identified by the event number received by the task.
There can be 16 different events per task. But event number 1 is reserved for nor-
mal messages, so event number 2 to 15 can be used for timers. That means an
SDL-RT system can only handle 15 simultaneous timers.

To handle timers in this integration, an global array of void pointers has been added:
void *RTDS_globalTimerEvent[C_MAX_CYCLIC_TIMERS];

That array is used to relate the CMX cyclic timer id to the corresponding CMX event
when the timer goes off and to the SDL-RT timer id. The main steps are:

• get a CMX timer id
A free position in the array is searched. The resulting position is used as the
cyclic timer id. The address of the corresponding RTDS_TimerState is stored in
the array at this position.

• create the timer
A timer is created using the previously defined id. The id is also used to define
the corresponding event left shifting of 0x0002. For example, that means if id is 2,
the event id is 0x0002<<2=8. If id is 0, the event id is 0x0002<<0=2.

• start the timer
The CMX cyclic timer is started.

When an event is received, if not a normal message, the main steps are:

• retrieve CMX timer id
The event id is used to find back the CMX timer id. The number of right shift to
get to 0x0002 is CMX timer id.
PragmaDev Studio V6.0 Page 235

Reference Manual
• get the timer information
Since the CMX timer is the position in the array the necessary information is at
hand to inform the SDL-RT system.

• Send a timer message to the SDL-RT system

8.10.6.7 Event handling

Because cyclic timers only manipulate events, tasks are waiting for events, not directly
for messages on their respective mailboxes. When a task is created, the parent task uses
the K_Mbox_Event_Set() function so that the task receives an event when a message is in
the mailbox. The event id used for messages is 0x0001 (RTDS_MBOX_EVENT in RTDS_OS.h).

8.10.6.8 Examples

8.10.6.8.1 Installation

In the examples provided in PragmaDev Studio distribution it is assumed:

• CMX has been installed in c:\cmx directory

• Tasking environment has been installed in c:\c166 directory

If CMX or Tasking have been installed in other directories the Tasking generation profile
and the extra.mak makefile should be modified to fit the environment.

8.10.6.8.2 Utilities

The Tasking ieee166 utility is used to create a downloadable executable in the after com-
pil command field of the Generation profile. If the name of the SDL-RT system changes,
the command needs to be modified.

8.10.6.8.3 Restrictions

Some of the examples can not run as delivered because it is not possible to send messages
to the system from the debugger.

8.10.6.8.4 Tutorial

Since it is not possible to send messages to the system, a test scenario needs to be pre-
defined inside the system. To do so it is possible to create a process that will replace the
environment. This process needs to be named RTDS_Env. Such a process already exist
in the example but is not defined in the SDL-RT system. To add it to replace the environ-
ment

• open the system definition,
Page 236 PragmaDev Studio V6.0

Reference Manual
• add a process named RTDS_Env,

• open the process definition, a window will ask to add the definition element:

• Click OK, the Add child element window will open:

• Click on Open and select the existing file:
$(RTDS_HOME)/examples/tutorial/RTDS_Env.rdd
PragmaDev Studio V6.0 Page 237

Reference Manual
The element will be added in the Project manager.

• The new process should now be connected to the existing architecture the follow-
ing way:

When debugging the system the RTDS_Env process will run a basic scenario automatically.

8.10.6.8.5 Access Control System

Since it is not possible to send messages to the system, a test scenario needs to be pre-
defined inside the system. To do so it is possible to create a process that will replace the
environment. This process needs to be named RTDS_Env. Such a process already exist
in the example but is not defined in the SDL-RT system. To add it to replace the environ-
ment

• open the system definition,
Page 238 PragmaDev Studio V6.0

Reference Manual
• add a process named RTDS_Env,

• open the process definition, a window will ask to add the definition element:

• Click OK, the Add child element window will open:

• Click on Open and select the existing file:
$(RTDS_HOME)/examples/AccessControl/RTDS_Env.rdd
PragmaDev Studio V6.0 Page 239

Reference Manual
The element will be added in the Project manager.

• The new process should now be connected to the existing architecture the follow-
ing way:

When debugging the system the RTDS_Env process will run an endless scenario automati-
cally:

• Enter supervisor card

• Enter supervisor code

• Register new user card

• Register new user code

• Wait 5 seconds

• Use new card and code

• Go back to wait 5 seconds and so on...
Page 240 PragmaDev Studio V6.0

Reference Manual
8.10.7 uITRON 3.0 integration
All profile functions and macro definitions are available in the RTOS profile directory:
$(RTDS_HOME)/share/ccg/uitron3_0/

uITRON integration has been tested with the following compilers and debuggers:

• Solaris 7
• arm-elf-gcc PragmaDev build
• XRAY v4.4dgd and the Armulator

• Windows 2000
• arm-elf-gcc PragmaDev build
• XRAY v4.6ap and the Armulator

8.10.7.1 ID affectation

The maximum number of task, semaphore, message queue and timer are statically
defined therefore the uITRON profile implement functions to get and release IDs.

8.10.7.2 SDL-RT task

SDL-RT tasks are mapped to uITRON task and handled using cre_tsk, sta_tsk and
exd_tsk

8.10.7.3 Message queue

SDL-RT messages are mapped to uITRON mailbox.

8.10.7.4 Semaphore

All semaphore are based on uITRON counting semaphore and handled using cre_sem,
sig_sem, twai_sem, preq_sem functions.

8.10.7.5 Timer

SDL-RT timers use uiTRON alarm mechanism. When an eCos alarm goes off, a pre-
defined function is called and a specific procedure is used to read parameters. According
to the uITRON specification the alarm should be defined using DALM structure but instead
of using uITRON almatr field eCos use the RTOS specific extinf field to send parame-
ters.

8.10.7.6 Using uITRON from eCos

Building tools

• All required information can be found in the following web pages:
• if using Windows: http://sources.redhat.com/ecos/install-windows.html
• if using Linux: http://sources.redhat.com/ecos/install-linux.html

• Building compiler: depending on the microprocessor what will be used the com-
piler should be re-compiled according to the building procedure available on the
eCos website

• Building eCos library: this build should be made without the -g option
PragmaDev Studio V6.0 Page 241

http://sources.redhat.com/ecos/install-windows.html
http://sources.redhat.com/ecos/install-linux.html

Reference Manual
Configuration to use eCos :

• Install "uITRON compatibility" package in order to use uITRON interface

The eCos uITRON configuration can be made using the eCos configuration tool or chang-
ing the header file.

Task configuration:

• declare maximum number of task (CYGNUM_UITRON_TASK)

• set CYGNUM_UITRON_TASK to the start task ID

• declare task prototype for each task

for example if an SDL-RT system is using 4 tasks:
CYGDAT_UITRON_TASK_EXTERN = \
extern "C" void RTDS_Start(unsigned int); \
 static char stack1[CYGNUM_UITRON_STACK_SIZE], \
 stack2[CYGNUM_UITRON_STACK_SIZE], \
 stack3[CYGNUM_UITRON_STACK_SIZE], \
 stack9[CYGNUM_UITRON_STACK_SIZE],\
 stack10[CYGNUM_UITRON_STACK_SIZE];
and
CYGDAT_UITRON_TASK_INITIALIZER = \
CYG_UIT_TASK("t1", 1, RTDS_Start, &stack1, CYGNUM_UITRON_STACK_SIZE), \
CYG_UIT_TASK_NOEXS("t2", &stack2, CYGNUM_UITRON_STACK_SIZE), \
CYG_UIT_TASK_NOEXS("t3", &stack3, CYGNUM_UITRON_STACK_SIZE), \
CYG_UIT_TASK_NOEXS("t4", &stack4, CYGNUM_UITRON_STACK_SIZE), \
CYG_UIT_TASK_NOEXS("t5", &stack5, CYGNUM_UITRON_STACK_SIZE), \

Semaphore configuration:

• declare maximum number of semaphores (CYGNUM_UITRON_SEMAPHORE)

Timer configuration:

• declare maximum number of timers (CYGNUM_UITRON_TIMER)

Message queue configuration (CYGNUM_UITRON_MBOXES)

• declare maximum number of message queues

8.10.8 uITRON 4.0 integration
All profileì functions and macro definitions are available in the RTOS profile directory:
$(RTDS_HOME)/share/ccg/uitron4_0/

uITRON integration has been tested with the following compilers and debuggers:

• Windows 2000
• MinGW gdb V6.5.50

8.10.8.1 ID affectation

The maximum number of task, semaphore, message queue and timer are statically
defined but ID affectation is dynamic.
Page 242 PragmaDev Studio V6.0

Reference Manual
8.10.8.2 SDL-RT task

SDL-RT tasks are mapped to uITRON task and handled using acre_tsk and ext_tsk

8.10.8.3 Message queue

SDL-RT messages queue are mapped to uITRON mailbox and handled using acre_mbx,
isnd_mbx, snd_mbx, rcv_mbx, del_mbx functions.

8.10.8.4 Semaphore

Binary and counting semaphores are based on uITRON counting semaphore and han-
dled using acre_sem, sig_sem, del_sem, ref_sem, wai_sem, twai_sem functions. But
mutexes are not supported.

8.10.8.5 Timer

SDL-RT timers use uiTRON alarm mechanism. They are handled using acre_alm,
sta_alm, del_alm functions.

8.10.8.6 Using uITRON 4 from NUCLEUS

The uITRON 4.0 integration has been tested with NUCLEUS uITRON 4 API with the fol-
lowing utilities:

• C compiler :
mingw32-gcc

• Compiler options :
-mno-cygwin -I"$(SIMTEST_ROOT)\..\nucleus"
-I"${RTDS_HOME}\share\ccg\uitron4_0\Miplus"

• Linker :
-L"$(SIMTEST_ROOT)\..\nucleus\lib\mingw" -lsim -lplus -lvt -lwinmm
-luiplus -mno-cygwin

• Make utility :
mingw32-make

• Make options
mingw32-make utility should be run with all as a target and with a path to the
Makefile.mk file:
mingw32-make -f "%RTDS_HOME%/share/ccg/uitron4_0/MIPlus/Makefile.mk"
PragmaDev Studio V6.0 Page 243

Reference Manual
8.10.9 Nucleus integration

8.10.9.1 Version

All Nucleus function and macro definitions are available in the RTOS profile directory:
$(RTDS_HOME)/share/ccg/nucleus/

The Nucleus integration is based on version 1.3.2 of the EDGE Development Environ-
ment. It has been developed and tested with SimTest V1.3.2 on Windows 2000 and
MinGW gdb V6.5.50.

8.10.9.2 Task context
In the generated code, when a task is started, it needs to know about its context. That is
the address of its RTDS_GlobalProcessInfo structure in the RTDS_globalProcessInfo
chained list.

Nucleus task creation allows to give parameters when creating a task, the following is
done at the beginning of the task (bricks/RTDS_Proc_begin.c):

8.10.9.3 Semaphores

Nucleus only supports counting semaphores. Thus SDT-RT mutex semaphores are not
supported . However SDL-RT binary semaphores have been mapped to counting sema-
phore with an initial value of:

• 0 when the semaphore is created not available

• 1 when the semaphore is created available

8.10.9.4 SDL-RT system start

Nucleus application entry point is Application_Initialize function which is defined in
the RTDS_OS.c file. Application_Initialize creates the RTDS_Start task that will creates
and starts all SDL-RT processes present at startup.

8.10.9.5 Message queue

Message queue in Nucleus is a memory area identified by an id. All created processes
have a message queue in PragmaDev Studio. The creation of the message queue is
located in the RTDS_ProcessCreate function located in the RTDS_OS.c file.

8.10.9.6 Memory management

The memory management in Nucleus relies on the functions NU_Allocate_Memory et
NU_Deallocate_Memory. These fonctions allocate and deallocate memory from a memory
pool created by the SDL-RT system. The creation of this memory pool is located in the
Application_Initialize function in the RTDS_OS.c file. The size of the memory pool is
defined by the SYSTEM_MEMORY_SIZE macro defined in the RTDS_OS.h file.

8.10.9.7 Testing environment

The Nucleus integration has been tested with the following utilities:

• C compiler :
mingw32-gcc
Page 244 PragmaDev Studio V6.0

Reference Manual
• Compiler options :
-mno-cygwin -I"$(SIMTEST_ROOT)\..\nucleus" -DNU_SIMULATION

• Linker :
-L"$(SIMTEST_ROOT)\..\nucleus\lib\mingw"
-lsim -lplus -lvt -lwinmm -mno-cygwin

• Make utility :
mingw32-make

• Make options
mingw32-make utility should be run with all as a target and with a path to the
Makefile.mk file:
mingw32-make -f "%RTDS_HOME%/share/ccg/nucleus/make/Makefile.mk"
PragmaDev Studio V6.0 Page 245

Reference Manual
8.10.10 OSE Delta integration

8.10.10.1 OSE 4.5.1

8.10.10.1.1 Version

All OSE function and macro definitions are available in the RTOS profile directory:
$(RTDS_HOME)/share/ccg/ose/

The OSE integration is based on version 4.5.1. It has been developed and tested with OSE
soft kernel on Solaris and gdb V5.2.

8.10.10.1.2 Socket support

Socket communication with the target is supported. It allows for example to debug a soft
kernel application on host easily and to display an MSC Trace of the target execution.

When debugging with socket support a RTDS_SocketProcess task is created to handle
commands coming from the SDL-RT debugger going to the target.

8.10.10.1.3 printf support

Please note it is not possible to use dbgprintf with gdb because the application print out
will get mixed up with gdb control information.

8.10.10.1.4 Timers

SDL-RT timers are based on OSE Time-Out Server (TOSV). As OSE kernel is pretty close
to SDL concept of timer, when the timer goes off it is already translated as a signal (or
message) in the process queue. Still a timer list is kept for each process in case cancella-
tion of the OSE timer does not succeed. That would mean the timer is already in the
queue; PragmaDev Studio implementation will take care of cancelling it anyway.

8.10.10.1.5 Make process

The OSE build process is based on dmake utility and makefile.mk and userconf.mk make-
files. When using OSE code generation, PragmaDev Studio generates pragmadev.mk
makefile in the code generation directory. The makefile.mk and userconf.mk should be
put somewhere else because they are not generated file and makefile.mk must include
the generated pragmadev.mk file. For example:
include .$/pragmadev.mk

In the generation profile:

• The compiler should be defined as:
$(CC)

• The compiler options should be set to:
$(CFLAGS) $(DEFINES) $(STDINCLUDE) $(INCLUDE) $(CCOUT)
plus any extra user options.

• External specific OSE makefile should be included:
${RTDS_HOME}\share\ccg\ose\make\OseMake.inc

• dmake utility should be run with RTDS_ALL as a target and with a path to the
makefile.mk file:
dmake -f ../makefile.mk RTDS_ALL RTDS_HOME=%RTDS_HOME%
Page 246 PragmaDev Studio V6.0

Reference Manual
8.10.10.1.6 Error handling

OSE kernel handles errors implicitly. Therefore there is no need to check return values of
each system call in the integration files. When an PragmaDev Studio integration error
occurs the OSE error2 primitive is called so that all errors are raised the same way.
Explanations for the system error code are in RTDS_Error.h.

8.10.10.1.7 Task context
In the generated code, when a task is started, it needs to know about its context. That is
the address of its RTDS_GlobalProcessInfo structure in the RTDS_globalProcessInfo
chained list.

Since OSE does not allow to give parameters when creating a task, the following is done
at the beginning of the task (bricks/RTDS_Proc_begin.c):

• the newly created task reads its own task slot id with current_process() func-
tion,

• the task reads the RTDS_globalProcessInfo chained list until the processId field
of the RTDS_GlobalProcessInfo structure correspond to its own process id. Then
the task knows it is its context structure.

8.10.10.1.8 Semaphores

OSE only supports counting semaphores. SDL-RT mutex and binary semaphores have
been mapped to counting semaphore with an initial value of:

• 0 when the semaphore is created not available

• 1 when the semaphore is created available

8.10.10.1.9 SDL-RT system start

SDL-RT system entry point is RTDS_Main function defined in generated RTDS_Start.c.
The OseMake.inc defines RTDS_Main as the only OSE static process. RTDS_Main calls
RTDS_Start that will create all SDL-RT static processes (processes present at startup).
Once they are all created, RTDS_Start will start them to guarantee synchronization.
Then RTDS_Start stops because OSE does not allow OSE static processes to die.

8.10.10.1.10 Signal queue

Signal queues in OSE are implicit. The signal queue id in PragmaDev Studio process con-
text will be the same as the process id.

8.10.10.1.11 Signal output

When using SDL-RT OUTPUT TO_NAME the current OSE integration uses its internal infor-
mation to find the receiver. It would be possible to use the OSE hunt system call to find a
receiver.

8.10.10.2 OSE 5.2

8.10.10.2.1 Version

All OSE function and macro definitions are available in the RTOS profile directory:
$(RTDS_HOME)/share/ccg/ose52/
PragmaDev Studio V6.0 Page 247

Reference Manual
The OSE integration is based on version 5.2. It has been developed and tested with OSE
soft kernel on Windows 2000 and gdb V6.3. There are few differences between OSE 5.2
and OSE 4.5.1 integration, the following chapters will discuss these differences.

8.10.10.2.2 Socket support

Socket communication with the target is supported. It allows for example to debug a soft
kernel application on host easily and to display an MSC Trace of the target execution.

When debugging with socket support a RTDS_SocketProcess task is created to handle
commands coming from the SDL-RT debugger going to the target. OSE 5.2 and OSE
4.5.1 integrations use different primitives for socket communication: inet_send()
replaces write() function and recv() replace read() function. In OSE 4.5.1 the socket
descriptor is a static variable defined in RTDS_Trace.c file and it is shared by all pro-
cesses. This is not possible with OSE 5.2; thus to share a socket descriptor in this integra-
tion, efs_clone()function is called in RTDS_ProcessCreate function. This function copies
all the file descriptors for a target process.

8.10.10.2.3 Make process

The OSE build process is based on make utility and main.mk, RTDS.mk and Makefile
makefiles. When using OSE code generation, PragmaDev Studio generates RTDS.mk
makefile in the code generation directory. This file contains all the rules to build the
object files and the final library which is linked with the OSE soft kernel. After having
generated RTDS.mk and before calling the build command, the code generation directory
is exported to CURDIR environment variable with the following command : sh -c
"CURDIR=`pwd`".

Then, the RTDS_ALL rule is called on the main.mk makefile. This rule generates

• the osemain.con file which defines RTDS_Main as the only OSE static process,

• the Makefile file which contains the dependancy to the RTDS.mk makefile,

• a makefile that is named like the code generation directory with .mk extension;
in which the CURDIR variable is used to override OSEMAICON and LIBS variables.

The SDL-RT system is built as a library via the command make all FLAVOR=debug
XMOD=$(CURDIR) USE_CPLUSPLUS=$(USE_CPLUSPLUS) after entering in <OSE_ROOT>/ref-
sys/rtose/sfk-win32 directory (for Win32 integration). When using a C/C++ compiler
the USE_CPLUSPLUS must be set to yes in OSE52 profile. Then, after linking the library
to the OSE soft-kernel, the final executable can then be debugged with SDL-RT debug-
ger.

On Linux and Solaris2 integration, environment variables OSE_ROOT and REFSYS_ROOT
must be set in file .bashrc. Moreover, to avoid potential conflict on Solaris2 and Linux,
the ports indicated in the file rtose5.conf can be changed. For instance this line
surfer=port:80 can be changed to surfer=port:1205. On Solaris2, ethernet device is
named hme0,so all references of this device in the file rtose5.conf have to be replaced by
hme0.
Page 248 PragmaDev Studio V6.0

Reference Manual
8.10.11 OSE Epsilon integration

8.10.11.1 Version

All OSE function and macro definitions are available in the RTOS profile directory:
$(RTDS_HOME)/share/ccg/oseepsilon/

The OSE integration is based on version 3.0 for C166. It has been developed and tested
with Tasking Cross View Pro C166 instruction set simulator on Windows 2000.

8.10.11.2 Timers

SDL-RT timers are based on OSE Time-Out Server (TOSV). As OSE kernel is pretty close
to SDL concept of timer, when the timer goes off it is already translated as a signal (or
message) in the process queue. OSE Epsilon does not allow to pass parameters to the
timer so a timer list is kept for each process and when the timer goes off the list is used to
fill in the corresponding PragmaDev Studio message header. Cancelling a timer that is
already in a message queue is not possible in this integration unlike what is done with
OSE Delta.

8.10.11.3 Dynamic process creation

OSE Epsilon does not support dynamic process creation. All processes are created at
startup by OSE.

8.10.11.4 Make process

The make process is a bit tricky because the OSE Epsilon kernel is static and needs to be
re-configured every time a build is done. To do so, it is recommanded to use an awk
script to parse the RTDS_gen.inf generated file in order to extract the necessary informa-
tion and generate an os166.con file (in the case of a 166 target). An example script is pro-
vided in $(RTDS_HOME)/share/ccg/oseepsilon/make directory. The script requires
Cygwin installation to be run and foes through the followin steps:

• It first copies a pre-defined os166.con preamble that contains RTDS_Start task:
 %PRI_PROC RTDS_Start,C,1024,40,1

• adds the list of static processes with the .con syntax out of the RTDS_gen.inf,

• copies the os166.con postamble at the end of the file.

This file is used by conf166.exe called from TaskingOseMake.inc that should be inlcuded
in the generation profile.

In the example generation profile based on Tasking, the Cygwin make is used instead of
Tasking make in order to be as generic as possible:

• The compiler should be defined as:
cc166

• The compiler options should be set to:
$(C_FLAGS)
plus any extra user options.

• The linker options should be set to:
PragmaDev Studio V6.0 Page 249

http://sources.redhat.com/cygwin/

Reference Manual
$(D_FLAGS)
plus any extra user options.

• External specific OSE makefile should be included:
${RTDS_HOME}\share\ccg\oseepsilon\make\TaskingOseMake.inc

• make utility should be run with all as a target:
make all

8.10.11.5 Error handling

OSE kernel handles errors implicitly. Therefore there is no need to check return values of
each system call in the integration files. When an PragmaDev Studio integration error
occurs the RTDS_ErrorHandler function is called and the OSE error primitive is called so
that all errors are raised the same way. Explanations for the system error code are in
RTDS_Error.h. For OSE errors the PragmaDev Studio error code is combined with the
OSE error code. For example:
Error. System error on target no: 0x3004, in task: 0x0, at: 0x6f ticks

with:
#define RTDS_ERROR_OSE_ERROR_HANDLER 0x3000 /*The first byte is the OSE error number (ERR_MSG[0]) */

Means OSE error number 0x04.

8.10.11.6 Task context

In the generated code, when a task is started, it needs to know about its context. That is
the address of its RTDS_GlobalProcessInfo structure in the RTDS_globalProcessInfo
chained list.

Since all processes are started statically by the system, each process creates its own con-
text and stores it in the global chained list.

8.10.11.7 Semaphores

OSE only supports counting semaphores. SDL-RT mutex and binary semaphores have
been mapped to counting semaphore with an initial value of:

• 0 when the semaphore is created not available

• 1 when the semaphore is created available

8.10.11.8 SDL-RT system start

SDL-RT system entry point is usually RTDS_Start that dynamically creates all sema-
phores and static processes. With OSE Epsilon, processes are all created by the kernel
but not the semaphores. So RTDS_Start is defined as a static process with a very high
priority to create the semaphores.

Also, since the processes generate their own context, a small delay has been introduced at
process startup in order to give time to all processes to allocate their context.

8.10.11.9 Signal queue

Signal queues in OSE are implicit. The signal queue id in PragmaDev Studio process con-
text will be the same as the process id.
Page 250 PragmaDev Studio V6.0

Reference Manual
8.10.11.10 Priorities

OSE Epsilon highest priority level is 0 and lowest priority level is 31.
PragmaDev Studio V6.0 Page 251

Reference Manual
8.10.12 ThreadX integration

8.10.12.1 Version

All ThreadX function and macro definitions are available in the RTOS profile directory:
$(RTDS_HOME)/share/ccg/threadx/

The ThreadX integration is based on version G4.0a.4.0a for MIPS R3000 processors. It
has been developed and tested with Green Hills Multi 2000 V 3.5 for MIPS with the
included instruction set simulator on Windows 2000.

8.10.12.2 General considerations

The ThreadX philosophy is to let the user controls as much implementation details as
possible in order to maximize performance and memory footprint. Therefore, in compar-
ison with other RTOS integrations a lot of things need to be done manually. For example:

• when creating a thread
• queue control block memory allocation
• message queue memory allocation
• thread control block memory allocation
• thread stack memory allocation

• when deleting a thread
• thread stack memory liberation
• thread control block memory liberation
• message queue memory liberation
• queue control block memory liberation

8.10.12.3 Timers

SDL-RT timers use ThreadX timers:
• tx_timer_create

• tx_timer_activate

• tx_timer_delete

• tx_timer_deactivate

When the timer goes off the RTDS_WatchDogFunction is called to translate the timer in an
SDL-RT message. Note the message header has already been allocated when the timer
was started so the RTDS_WatchDogFunction is basically a tx_queue_send followed by a
tx_timer_deactivate.

8.10.12.4 Make process

The ThreadX build process includes specific kernel and processor files. In PragmaDev
Studio distribution the ThreadX integration supports MIPS. The following file:
$(RTDS_HOME)/share/ccg/threadx/make/ThreadX.inc

is included in the make process to compile reset.mip and tx_ill.mip that are necessary
to build a ThreadX application with Green Hills compiler.
Page 252 PragmaDev Studio V6.0

Reference Manual
8.10.12.5 Memory management

By default PragmaDev Studio ThreadX integration uses a unique ThreadX memory byte
pool -similar to a standard C heap-. The pool is created in tx_application_define func-
tion situated in RTDS_startup_begin.c (building brick for RTDS_Start.c). Since the
tx_byte_allocate function does not return a pointer value but uses a pointer address to
return the allocated value; the memory allocation macro calls a C function defined in
RTDS_Utilities.c.

The ThreadX memory management functions used are:
• tx_byte_pool_create

• tx_byte_allocate

• tx_byte_release

• tx_byte_pool_delete (commented out in the main function after
tx_kernel_enter)

8.10.12.6 Synchronization

The synchronization semaphore RTDS_START_SYNCHRO has been removed from the
ThreadX integration because:

• during dynamic creation threads are created suspended,

• and because at startup we know tx_application_define function will be fully
executed before all tasks start.

So synchronization of dynamic process creation is done by the process creator (PAR-
ENT).

8.10.12.7 Thread management

8.10.12.7.1 Priority

Threads default priority is 15 and preempt_threshold has the same value as priority.

8.10.12.7.2 Thread deletion

A pStack and a pQueue fields have been added to RTDS_GlobalProcessInfo struct in order
to free the stack and the queue when the thread dies. So when a thread dies it frees its
stack and queue and terminates itself; but since a thread can not delete itself, the thread
deletion is done in the next thread creation. Therefore threads about to be deleted are
still listed in the Process information window of the SDL-RT debugger with an N/A state.

8.10.12.7.3 Thread creation

In the thread creation function RTDS_ProcessCreate() in RTDS_OS.c threads to be deleted
are detected because their pStack field in the RTDS_globalProcessInfo list has been set to
NULL. The PragmaDev Studio process context (RTDS_GlobalProcessInfo structure in the
RTDS_globalProcessInfo list) is then freed and the thread is deleted at ThreadX level.
PragmaDev Studio V6.0 Page 253

Reference Manual
8.10.13 FreeRTOS integration

8.10.13.1 Version

All FreeRTOS function and macro definitions are available in the RTOS profile directory:
$(RTDS_HOME)/share/ccg/freertos/

The FreeRTOS integration is based on version 10.3.10 for the Windows simulator. It has
been developed and tested with MinGW compiler and debugger on Windows 7.

8.10.13.2 General considerations

Maybe due to the fact that FreeRTOS is free, the documentation is on-line and pretty
poor. Even a list of the files required for the integration could not be found.

The RTOS configuration file is in the profile directory: FreeRTOSConfig.h.

8.10.13.3 Timers

FreeRTOS timers use a callback function when a timer goes off. The primitives used are:
• xTimerCreate

• xTimerStart

• xTimerStop

A watchdog id is saved to identify the created timer. When the timer goes off the
RTDS_WatchDogFunction callback function is called with the watchdog id as a parameter.
It is used to find back the timer parameters and create a message.

8.10.13.4 Make process

The FreeRTOS build process includes the kernel files. In PragmaDev Studio distribution
the TCP/IP file is also included in order to debug graphically. The following file:
$(RTDS_HOME)/share/ccg/freertos/make/FreeRtosMake.inc

is included in the make process to compile tasks.c, queue.c, list.c, timers.c,
port.c and heap.c that are necessary to build a FreeRTOS application.

8.10.13.5 Synchronization

A binary semaphore is used to synchronize tasks when created through the following
macros:

• RTDS_START_SYNCHRO_INIT,

• RTDS_START_SYNCHRO_WAIT,

• RTDS_START_SYNCHRO_GO,

• RTDS_START_SYNCHRO_HOLD,

• RTDS_START_SYNCHRO_UNHOLD.
Page 254 PragmaDev Studio V6.0

Reference Manual
8.10.13.6 Thread management

8.10.13.6.1 Priority

The available levels of priority could not be determined. A default priority of 3 has been
set.
PragmaDev Studio V6.0 Page 255

Reference Manual

Page 256 PragmaDev Studio V6.0

9 - Debugger integrations

9.1 - Tasking Cross View Pro debugger integration

9.1.1 Version
PragmaDev SDL-RT debugger is interfaced with Tasking Cross View Pro C166/ST10
debugger version 7.5 rev. 2. It has been developed and tested with Tasking 167 instruc-
tion set simulator (C167CS) on Windows 2000 SP2 host. This integration is only avail-
able on Windows platform.

9.1.2 Interface
CrossView Pro provides a COM object interface on MS-Windows PragmaDev Studio con-
nects to. When starting up PragmaDev Studio SDL-RT debugger does the following:

• xfw166 -RegServerS command line
Activates the COM object

• Calls the Init() method on the COM object to pass the debugger options
The debugger options should contain the debug configuration file such as in the
example provided: -tcfg C:\c166\ETC\SIM167CS.CFG

• Load the executable file in Tasking debugger with the abs extension.

• If unsuccessful, tries to load the executable with the default extension (exe).

• Step once to get into the main function.

9.1.3 Make utility
The generated makefile is not supported by Tasking make utilities. The gnu make should
be used instead such as the one distributed in our distribution in Cygwin environment.

9.1.4 Restrictions
Because Tasking Cross View Pro debugger does not allow to call functions on target, it is
not possible to send an SDL-RT message to the system running on the target. An SDL-RT
test process can be used to do so. In that case the test process should be called
RTDS_Env so that it is not generated for a non SDL-RT debug profile.

Reference Manual
9.2 - gdb debugger integration

9.2.1 Version
PragmaDev SDL-RT debugger is interfaced with gdb debugger version 2002-04-11-cvs
on Windows and version 5.2 on Unix. It has been tested on Windows 2000 SP4 host,
Solaris 7, Solaris 8, Linux Mandrake 8.0 and Linux Red Hat V7.2.

9.2.2 Interface
PragmaDev Studio is interfaced with gdb through pipes. The annotated gdb mode is used
to parse the information. When starting up PragmaDev Studio, SDL-RT debugger does
the following:

• <gdb> -quiet -annotate=2

• set height 0

• set width 0

9.2.3 Remote debugging
SDL-RT debugger also supports the remote gdb debugging facility based on gdbserver.
This integration has been tested with gdb v6.1 on Linux. When it comes to debug on tar-
get, one of the key aspect is to download the executable on the target. In the example pro-
file below, for the sake of clarity, the target is the host. So launching gdbserver on the
target is simply:
gdbserver <executable name>

On the client side, standard gdb is started and remote connection commands are pro-
vided to connect to the target:
target remote <IP address>:<port number>
PragmaDev Studio V6.0 Page 257

Reference Manual
Page 258 PragmaDev Studio V6.0

Reference Manual
9.3 - MinGW debugger integration

9.3.1 Version
PragmaDev SDL-RT debugger is interfaced with MinGW gdb debugger version 5.2.1.
This integration has been tested with MinGW gcc version 3.4.5.

9.3.2 Library
Socket communication requires to link with an external MinGW library: libws2_32.a.

9.3.3 Interface
PragmaDev Studio is interfaced with gdb through pipes. The annotated gdb mode is used
to parse the information. When starting up PragmaDev Studio, SDL-RT debugger does
the following:

• <gdb> -quiet -annotate=2

• set height 0

• set width 0

9.3.4 Console
gdb should not start a new console. The following command should be run when starting
the debugger:
set new-console no

9.3.5 Restriction
MinGW gdb only works when socket communication is available, otherwise PragmaDev
Studio will not be able to interrupt the debugger.
PragmaDev Studio V6.0 Page 259

http://www.mingw.org/

Reference Manual
Page 260 PragmaDev Studio V6.0

Reference Manual

PragmaDev Studio V6.0 Page 261

9.4 - lldb debugger integration

9.4.1 Version
PragmaDev Studio debugger is interfaced with lldb version 1000.0.38.2 on macOS. It
has been tested on macOS 10.13.6 "High Sierra".

9.4.2 Interface
PragmaDev Studio is interfaced with lldb through sockets: it communicates with a
Python script run in lldb’s embedded interpreter, sending custom commands to it and
receiving their output.

A script is passed to lldb to execute when it is launched. This script is in the file
lldb_commands.txt, in $RTDS_HOME/share/ccg/lldb_interface.

This script does the following:

• It activates lldb’s "stop hook", allowing to call something whenever the debugged
program stops. This callback is set to a function in the Python script running
within lldb. This function is called stop_callback, in the script
lldb_command_interpreter.py in $RTDS_HOME/share/ccg/lldb_interface.

• It then runs the actual interpreter, implemented in the same script (function
run), and exits once the interpreter quits.

Please refer to the command interpreter script for more information. Note that any mod-
ification of this script may prevent the lldb integration from working properly, or even
cause crashes in PragmaDev Studio.

Reference Manual
9.5 - XRAY debugger integration

9.5.1 Version
PragmaDev SDL-RT debugger is interfaced with XRAY debugger version 4.6ap. It has
been developed and tested with MiPlus (uITRON for Nucleus) and the ARMulator on
Windows 2000 SP2 host. This integration is only available on Windows platform using
XRAY in graphical mode (without -cmd command line option).

Several version of XRAY have been tested. The table below summarizes the result of
these tests.

9.5.2 Interface
Communication between PragmaDev Studio SDL-RT debugger and XRAY is done
through telnet. When starting up, PragmaDev Studio SDL-RT debugger does the follow-
ing:

Table 29: Tested versions of XRAY and gdb with Arm target and OSE

Debugger Type Host Target Mode Result Comment

XRAY RDI Win Armulato
r Run mode KO

XRAY RDI Win Armula-
tor

Freeze mode OK Time does not increase.

XRAY RDI Solari
s

Armula-
tor

Run mode KO

XRAY RDI Solari
s

Armula-
tor

Freeze mode KO

XRAY OSE
soft

kernel

Win host KO Connects automatically but a load prob-
lem has been detected. gcc for OSE can
not compile PragmaDev Studio codec

for printable traces.

gdb OSE
soft

kernel

Win host OK Requires OSE version of gcc. The sys-
tem can not be stopped on the fly

because the gdb does not receive the
Ctrl-C.

XRAY OSE
soft

kernel

Solari
s

host KO Compiles but can not debug because it
does not connect neither to the soft ker-

nel nor to the Illuminator.

gdb OSE
soft

kernel

Solari
s

host OK

XRAY RDI Win OSE
evka7

Run mode KO Load should be done through the Illu-
minator. Freeze mode is not supported
by the board. Run mode is way too dif-

ferent.

XRAY RDI Sol OSE
evka7

Run mode N/A Has not been tested.
Page 262 PragmaDev Studio V6.0

Reference Manual
• xray.inc configuration file generation that contain tcpopen <tcp_port>, where
<tcp_port> is the socket port specified in the generation options or default 49250
if not defined. This file is used by XRAY to setup the telnet connection and is gen-
erated in the code generation directory.

• XRAY is start with xray.inc as a parameter: xray -inc xray.inc

• All available targets are listed in a choice window.

• The executable file is loaded in XRAY debugger.

• A single step is done once, to get into the main function.

9.5.3 Restrictions

9.5.3.1 Using Xray debugger

Using the -cmd option when starting the XRAY debugger, change its behavior. At the
present time the only way to use the XRAY interface is to start debugger with its graphi-
cal interface.

It’s also strongly recommended to only use the PragmaDev Studio debugger and keep
Xray interface mimimized. If the XRAY interface is used to drive debug, some errors
could occur due to the fact that XRAY debugger does not send back all informations
about operations that have been done and its state.

For example:

• a breakpoint set from the XRAY debugger must be removed from the xray inter-
face.

• after a break when running program from Xray debugger : PragmaDev Studio
does not get the information and remains in the stopped state,

9.5.3.2 Sending messages

Because XRAY debugger does not allow to call several parameters functions on target, it
is not possible to send an SDL-RT message to the system running on the target. An SDL-
RT test process can be used to do so. In that case the test process should be called
RTDS_Env so that it is not generated for a non SDL-RT debug profile.

9.5.3.3 Stopping timers

For the same reason that explained on “Sending messages” on page 263, timers can’t be
stopped from the PragmaDev Studio debugger.

9.5.3.4 Message queue

The number of messages displayed in the process information area will not be updated
and remains to zero.
PragmaDev Studio V6.0 Page 263

Reference Manual

Page 264 PragmaDev Studio V6.0

9.6 - Multi 2000 debugger integration

9.6.1 Version
PragmaDev SDL-RT debugger is interfaced with Multi 2000 debugger version 4.01. It
has been developed and tested with MIPS R3000 instruction set simulator on Windows
2000 SP4 host.

9.6.2 Interface
PragmaDev Studio is connected with Multi through socket connexion (port 49248) and
Multi is launched with the -nodisplay option. The launch command is:
<multi> -nodisplay -socket 49248 <executable name>

In case of problem, the SDL-RT debugger will retry to connect to Multi every second up
to a maximum of ten times.

9.6.3 Target connexion
The target connexion is defined through commands defined in the generation profile to
be executed by the debugger. For example, to connect to the MIPS instruction set simula-
tor with a timer tick every 999 instructions the following commands should be set:
Connects to the r3000 MIPS simulator

connect simmips -cpu=r3000 -rom

Sets a simulated timer every 1000 instructions

target timer 999 1

9.6.4 Restrictions
Because Multi debugger does not allow to call functions on target, it is not possible to
send an SDL-RT message to the system running on the target. An SDL-RT test process
can be used to do so. In that case the test process should be called RTDS_Env so that it is
not generated for a non SDL-RT debug profile.

Reference Manual
10 - TTCN-3 reference guide

10.1 - Acronyms
TC Test Component

MTC Main Test Component

PTC Parallel Test Component

TSI Test System Interface

TCI TTCN-3 Control Interface

TMC Test Managment and Control

TRI TTCN-3 Runtime Interface

TE TTCN-3 Executable

SUT System Under Test

SA SUT Adaptor

TM Test Management

CH Component Handling

10.2 - TTCN-3 architecture

10.2.1 Port type
Ports are points where communications take place.

type port Myporttype{

inout Message1

}

10.2.2 Component type
Component type defines which ports are associated with a component.

type component cmp1{
PragmaDev Studio V6.0 Page 265

Reference Manual
port Myporttype P1;

port Myporttype P2;

port Myporttype P3;

}

component type cmp1

It is also possible to declare variables, constants and timers in a component type. All
these declarations would be visible in testcases, functions and altsteps runing on an
instance of this component type.

type component cmp1{

port Myporttype Myport;

var integer Myinteger;

timer Mytimer;

}

10.2.3 Test system interface
A test system interface is declared like a component. The TSI ports connect the test sys-
tem to the SUT. Every variable, constant and timer declarations in TSI will have no
effect.The TSI has no name and can be called by the special operation system. The com-
ponent type for the TSI is references by the keyword system in testcase declaration:

testcase testcase_name() runs on MTC_cmptype system TSI_cmptype {}

10.2.4 Test system
A test system is always composed of a main test component (MTC), and many possible
parallel test components (PTC).The component type for the MTC is references by the
keyword runs on in testcase declaration:

testcase testcase_name() runs on MTC_cmptype {}

MTC is automatically created when testcase is executed. The MTC has no name and can
be called by the special operation mtc. PTC are created by the MTC inside testcase:

P1

P2

P3
Page 266 PragmaDev Studio V6.0

Reference Manual
testcase testcase_name() runs on MTC_cmptype system TSI_cmptype {

var cmptype PTC1 := cmptype.create;

var cmptype PTC2 := cmptype.create;

var cmptype PTC3 := cmptype.create;

}

cmptype could be any defined component type, including MTC_cmptype and
system_cmptype. The special operation self return the component reference of the com-
ponent in which this operation is called.

10.2.5 Communication
For communication between SDL and TTCN, a SDL message with x parameters, have to
be present in TTCN has a record with x fields in the same order as the SDL parameters.
The record name is the same as the message name. The name of TSI ports have to be the
name of the SDL channels which communicate with environment. The name of the com-
ponent type used as system interface in TTCN has to be the same as the system name in
SDL.

10.2.5.1 Connection

Connections between components and test system interface are dynamically configured.

To map or unmap any test component ports to system ports:

MTC

PTC1

PTC2

PTC3

SUT

TSI
test components
PragmaDev Studio V6.0 Page 267

Reference Manual
map (TC_name:port_name, system:port_name)

unmap (TC_name:port_name, system:port_name)

To connect or disconnect test component among themselves:

connect (TC_name:port_name, TC_name:port_name)

disconnect (TC_name:port_name, TC_name:port_name)

TC_name could be predefined operator mtc, system or self.

10.2.6 Starting PTC behaviour
PTC behaviour are described into functions. A specific clause runs on is required during
the function declaration to signal the component type:

function f_name(parameters) runs on cmptype

To start execution of the behaviour described in this function, the start operation is
called, with the function as parameter:

PTC_name.start(f_name(parameters))

MTC

PTC1

PTC2

PTC3

SUT

TSI
test components
Page 268 PragmaDev Studio V6.0

Reference Manual
PTC_name must be of the same type than the component type of the runs on clause.

10.3 - TTCN-3 test system anatomy
A TTCN-3 test system is composed of three mains entities:

• TTCN-3 Executable (TE): executes TTCN-3 module.

• TTCN-3 Control Interface (TCI): defines the interactions between the TE and the
Test Sytem User.

• TTCN-3 Runtime Interface (TRI): defines the interactions between the TE and
the System Under Test.

Structure of a TTCN-3 test system

10.3.1 TTCN-3 Control Interface
There are two types of operation that could be called inside TCI:

TTCN-3 Executable

Test System User

System Under Test

TCI

TRI

SA PA

TMC
PragmaDev Studio V6.0 Page 269

Reference Manual
• Synchronous operations will be used by the TM to collect some information.
these operation will immediatly return wanted data (getImportedModule,
tciGetModuleParameters, tciGetTestCases, ...)

• Asynchronous operations to notify TM about testcase and control part behaviour
(TestCaseStarted, TestCaseTerminated, ...)

If a control part is present inside the test module, the tciStartControl will be called to cre-
ate a thread inside module execution context, the control component. This is this compo-
nent which will create and ask for start MTC.
Page 270 PragmaDev Studio V6.0

Reference Manual
TCI

tciRootModule

module execution context

tciStartControl

TestCasesList

tciGetModuleParameters

tciGetTestCaseParameters

tciGetTestCaseTSI

MTC

TM

control
component

tciTestCaseTerminated

tciControlTerminated

tciTestCaseStarted

ModuleParametersList

TestCaseParametersList

tciGetTestCases

TestCaseSystemPortsList

static context
PragmaDev Studio V6.0 Page 271

Reference Manual
In case there is no control part, the TCI-TM will directly call the method tciStartTest-
Case to create MTC for each testcase.:

When the operation tciStartControl is called in TCI-TM, a request tciCreateTestCompo-
nentReq is called in the TCI-CH to ask creation of a component. the first parameter of
tciCreateTestComponentReq notices the type of component to create (CONTROL, MTC
or PTC).

Then TCI-CH will call tciCreateTestComponent to create wanted component. The com-
ponent identifier will be then returned to the TCI-TM. Then for creation of MTC and all

tciRootModule

tciStartTestCase

MTC

tciTestCaseTerminated

TM TCI

tciGetTestCases

tciGetModuleParameters

ModuleParametersList

TestCasesList

static context

TCI-TM TCI-CH

tciStartControl

tciCreateTestComponentReq(control)
Page 272 PragmaDev Studio V6.0

Reference Manual
PTC, the TCI-CH will call tciCreateTestComponent for each component, and the identi-
fier will be return to the control component, not to the TCI-TM. TCI-TM will just be
informed of starting and ending of testcases.

10.3.2 TTCN-3 Executable
During its creation, a PTC can be declared normal or alive:

• normal type: PTC can execute only one behaviour function and then is killed,

• alive: many behaviour functions can be execute on the PTC, which must be
explicitly killed with the kill operation.

In fact, all test component could act as alive component, but for normal component, an
implicit kill command will be send after the first and unique start of function declared as
behaviour.

The MTC will be created by the TCI or a control part inside execution module context. If
a system clause has been specified in testcase, the MTC will request to the TCI the cre-
ation of the TSI, otherwise a TSI of the same type than the MTC will be implicitly created.
Then MTC will ask to TCI the creation of all needed PTC.

.

MTC

TSI

PTC1

PTC2

mapping operations

timer1

timer

TCI
PragmaDev Studio V6.0 Page 273

Reference Manual
10.3.3 TTCN-3 Runtime Interface
The communication between the TE and the SUT takes place via the TRI.

Communication links between TE and SUT

The SUT adaptor (SA) adapts message exchange betwen the TE and the SUT and is aware
of the real mapping between TE and SUT. In the case of procedure-based communica-
tion,every operations with SUT are implemented into the SA.

There are two ways of communication:

From the TE to the SUT: a message send from a test component to the SUT will first be
send to a port of the TSI, and this is in this port execution context than TSI will call oper-
ations of TRI. TRI will then use SA to communicate with SUT.

From the SUT to the TE: every message send from the SUT will be adapted by the SA,
then, into SA execution context, operations will be called to send and enqueue message

TSI TRI

SA

TC SUT

TE

TC TSI TRI SA SUT

adaptation

TSI port execu-
tion context
Page 274 PragmaDev Studio V6.0

Reference Manual
directly in the targeted port in test component. The TSI is not involved in this mecha-
nism.

SUT SA TRI TC

SA execution
context

adaptation
PragmaDev Studio V6.0 Page 275

Reference Manual
11 - TTCN-3 concepts support in simula-
tion and generation

11.1 - Types and values

TTCN-3 concepts Simulation Generation

Basic types

integer OK OK

float OK OK

boolean OK OK

objid NOK NOK

verdicttype OK OK

bitstring OK OK

hexstring OK NOK

octetstring OK OK

charstring OK OK

universal charstring OK NOK

constant type OK OK

Structured types

record OK OK

record of OK OK

set OK OK

set of OK OK

optional field OK OK

enumerated OK OK

union OK OK

Special types and values

anytype NOK NOK

address NOK OK

Table 30: types and values
Page 276 PragmaDev Studio V6.0

Reference Manual
11.2 - Operators

port OK OK

component OK OK

default NOK NOK

recursive types NOK NOK

infinity as value NOK NOK

infinity as constraint OK OK

omit NOK OK

Type compatibility

non-structured types NOK NOK

structured types NOK NOK

component types NOK NOK

comunication operations NOK NOK

TTCN-3 concepts Simulation Generation

Arithmetic operators

addition OK OK

substraction OK OK

multiplication OK OK

division OK OK

modulo OK OK

remainder OK OK

String operators

concatenation OK OK

Relational operators

equal OK OK

Table 31: operators

TTCN-3 concepts Simulation Generation

Table 30: types and values
PragmaDev Studio V6.0 Page 277

Reference Manual
11.3 - Modular

less than OK OK

greater than OK OK

not equal OK OK

greater than or equal OK OK

less than or equal OK OK

Logical operators

logical not OK OK

logical and OK OK

logical or OK OK

logical xor OK OK

Bitwise operators

bitwise not NOK NOK

bitwise and NOK NOK

bitwise or NOK NOK

bitwise xor NOK NOK

Shift operators

shift left NOK NOK

shift right NOK NOK

Rotate operators

rotate left NOK NOK

rotate right NOK NOK

TTCN-3 concepts Simulation Generation

language clause NOK NOK

module parameters NOK PARTIALLY

Table 32: modular

TTCN-3 concepts Simulation Generation

Table 31: operators
Page 278 PragmaDev Studio V6.0

Reference Manual
11.4 - Template

groups of definitions OK OK

Importing from module

single definition NOK NOK

all definition OK OK

groups NOK NOK

definitions of the same
kind

NOK NOK

non-TTCN-3 modules NOK NOK

language clause NOK NOK

TTCN-3 concepts Simulation Generation

complex type as parame-
ter

NOK OK

global template OK OK

local template OK OK

in-line template NOK OK

modified template OK OK

template as parameters NOK OK

Template operations

match OK OK

valueof OK OK

Table 33: template

TTCN-3 concepts Simulation Generation

Table 32: modular
PragmaDev Studio V6.0 Page 279

Reference Manual
11.5 - Template matching mechanisms

11.6 - Tests configuration

TTCN-3 concepts Simulation Generation

Value

specific value OK OK

omit value NOK OK

Instead of values

complement list NOK NOK

value list on basic type OK OK

value list on complex type NOK NOK

any value (?) OK OK

any value or none (*) OK OK

range OK OK

superset NOK NOK

subset NOK NOK

pattern OK OK

Inside values

any element (?) NOK OK

any element or none (*) NOK OK

permutation NOK NOK

Attributes

length restriction NOK OK

ifpresent OK OK

Table 34: template matching mechanisms

TTCN-3 concepts Simulation Generation

non-concurent tests OK OK

Table 35: tests configuration
Page 280 PragmaDev Studio V6.0

Reference Manual
concurent tests OK OK

test-case parameters OK OK

runs on clause OK OK

with clause NOK NOK

Port type

message OK OK

signature OK NOK

mixed OK NOK

Procedure signatures

in OK NOK

out NOK NOK

inout NOK NOK

non-blocking procedure NOK NOK

nowait call NOK NOK

call NOK NOK

getreply NOK NOK

exceptions NOK NOK

timeout exception NOK NOK

Component type

multiple component NOK NOK

extends OK NOK

Component references

mtc NOK OK

system NOK OK

self NOK OK

sender NOK OK

to NOK OK

from NOK NOK

TTCN-3 concepts Simulation Generation

Table 35: tests configuration
PragmaDev Studio V6.0 Page 281

Reference Manual
11.7 - Functions and altsteps

value OK OK

TTCN-3 concepts Simulation Generation

functions OK OK

altsteps OK OK

Predefined conversion functions

int2char OK OK

int2unichar OK NOK

int2bit OK NOK

int2hex OK NOK

int2oct OK NOK

int2str OK OK

int2float OK OK

float2int OK OK

char2int OK OK

char2oct OK NOK

unichar2int OK NOK

bit2int OK NOK

bit2hex OK NOK

bit2oct OK NOK

bit2str OK NOK

hex2int OK NOK

hex2bit OK NOK

hex2oct OK NOK

hex2str OK NOK

Table 36: functions and alsteps

TTCN-3 concepts Simulation Generation

Table 35: tests configuration
Page 282 PragmaDev Studio V6.0

Reference Manual
11.8 - Statements

oct2int OK NOK

oct2bit OK NOK

oct2hex OK NOK

oct2str OK NOK

oct2char OK OK

str2int OK NOK

str2oct OK NOK

str2float OK NOK

predefined size functions

lengthof OK NOK

sizzeof OK NOK

sizeoftype OK NOK

predefined presence functions

ispresent OK OK

ischosen OK OK

predefined string handling functions

regexp NOK NOK

substr OK OK

replace OK OK

Other predefined function

rnd NOK OK

TTCN-3 concepts Simulation Generation

Basic statements

assignment OK OK

Table 37: statements

TTCN-3 concepts Simulation Generation

Table 36: functions and alsteps
PragmaDev Studio V6.0 Page 283

Reference Manual
11.9 - Operations

if-else OK OK

select case OK OK

for loop OK OK

while loop OK OK

do while loop OK OK

label and goto OK NOK

stop execution NOK OK

returning control OK NOK

logging OK OK

Statements and operations for alternative behaviours

alternative bahaviour OK OK

re-evaluation of alterna-
tive

OK OK

interleaved behaviour NOK NOK

activate a default OK OK

deactivate a default OK OK

guard conditions OK OK

TTCN-3 concepts Simulation Generation

Connection operations

connect OK OK

disconnect OK OK

map OK OK

unmap NOK OK

Test component operations

Table 38: operations

TTCN-3 concepts Simulation Generation

Table 37: statements
Page 284 PragmaDev Studio V6.0

Reference Manual
create OK OK

create alive NOK NOK

start OK OK

stop NOK OK

kill NOK OK

alive NOK OK

running NOK OK

done NOK OK

killed NOK OK

Communication operations

send OK OK

receive OK OK

any port NOK OK

all port NOK OK

trigger NOK NOK

call NOK NOK

getcall OK NOK

reply OK NOK

getreply NOK NOK

raise NOK NOK

catch NOK NOK

check NOK OK

clear NOK OK

start NOK OK

stop NOK OK

halt NOK OK

Timer operations

start OK OK

TTCN-3 concepts Simulation Generation

Table 38: operations
PragmaDev Studio V6.0 Page 285

Reference Manual
11.10 - Attributes

stop OK OK

read NOK NOK

running OK OK

timeout OK OK

Test verdict operation

setverdict OK OK

getverdict OK OK

TTCN-3 concepts Simulation Generation

display NOK NOK

encode NOK NOK

variant NOK NOK

extension NOK NOK

Table 39: attributes

TTCN-3 concepts Simulation Generation

Table 38: operations
Page 286 PragmaDev Studio V6.0

Reference Manual
12 - Mapping of SDL data types to TTCN
data types

SDL TTCN-3

Predefined types:

BOOLEAN boolean

CHARACTER and CHARSTRING charstring

INTEGER integer

NATURAL Not existing. But it can be create as sub-
type of integer.

REAL float

PID Not existing.

DURATION Not existing.

TIME Not existing.

Data types:

Syntype definition:
SYNTYPE syntypeName = typeName

CONSTANTS value1, value2, value3
ENDSYNTYPE;

type typeName syntypeName
(value1, value2, value3);

Array definition:
SYNTYPE IndexSort = Integer

CONSTANTS indexMin : indexMax
ENDSYNTYPE;
NEWTYPE ArrayType

ARRAY (IndexSort, DataType1)
ENDNEWTYPE;

type DataType1 ArrayType [indexMax];
TTCN forces index to be an integer.

Struct definition:
NEWTYPE structName
STRUCT

nameField1 field1Type;
nameField2 field2Type;
...

ENDNEWTYPE;

type record structName
{
field1Type nameField1,
field2Type nameField2,
...
}

Table 40: SDL data types to TTCN-3 data types mapping
PragmaDev Studio V6.0 Page 287

Reference Manual
Choice definition:
NEWTYPE choiceName
CHOICE

nameField1 field1Type;
nameField2 field2Type;
...

ENDNEWTYPE;

type union choiceName
{
field1Type nameField1,
field2Type nameField2,
...
}

Literals definition:
NEWTYPE literalsName
LITERALS

literal1, literal2, literal3
ENDNEWTYPE;

type enumerated literalsName
{ literal1, literal2, literal3 }

Synonym definition:
SYNONYM synonymName typeName :=

value;

const typeName synonymName := value;

Communication

SYSTEM systemName type component systemName {...}

Channel ch with signal messOut coming
out from the system sys and messIn com-

ing in the system sys

A type port should be defined like this:
type port ch_type message

{out messIn; in messOut;};
And a port should be defined in corre-

spondant component sys:
type component sys

{ port ch_type ch; };

SIGNAL signalName(typeName); type record signalName
{ typeName paramName }

Message message1 received by system on
the channel ch

ch.send(message1);

Message message2 sent by system on the
channel ch

ch.receive(message2);

SDL TTCN-3

Table 40: SDL data types to TTCN-3 data types mapping
Page 288 PragmaDev Studio V6.0

Reference Manual
13 - TTCN-3 Code generation

13.1 - Basic principles
The code generation feature for TTCN-3 has several aspects in common with the one for
SDL, as described in “Basic principles” on page 137:

• Everything in a test suite runs on a component, which is very similar to a SDL
process, as all components execute in parallel;

• Test components communicate with each other and with the SUT via messages;

• Both languages support timers.

However, there are also significant differences between the two languages in the way
they handle these concepts:

• TTCN-3 testcases are not organized in transitions. There is no concept of testcase
state in TTCN-3 where a given set of messages can be expected. A testcase is just
a continuous suite of statements that can pause its execution at any time to
receive any message.

• In SDL, the message queues are implicit and a single one is attached to each pro-
cess instance. In TTCN-3, the message queues are explicitely managed via ports,
and a component can have any number of ports, accepting different sets of
incoming and outgoing messages.

• The mechanism to handle message reception is very different in SDL and TTCN-
3:
• In SDL, if a process instance is waiting for a message, it is blocked on the read-

ing of its single incoming queue. When an actual message is received, the tran-
sition corresponding to it will execute, and then the process instance will wait
for the next message to be received.

• In TTCN-3, a message is usually received within an alt statement, which
allows to wait for messages on different ports, and/or to specify conditions for
message receptions, or to test if other kinds of events have happened. So the
mechanism is based on what is called a snapshot: A partial view of the testcase
is "frozen", including the state of message queues associated to ports, its vari-
ables used in boolean conditions, and so on… Then all conditions and events
specified in the alt statement are tested, and the execution continues with the
branch for the first one that is satisfied.
The concept of template also allows to test the contents of a message, and the
TTCN-3 semantics specifies that the message should be kept in the port’s mes-
sage queue if the condition is not satisfied.

• Timers are also handled very differently in SDL and in TTCN-3: In SDL, only the
process instance that started the timer can test for its time-out, and the corre-
sponding event is a message. In TTCN-3, any component can test for any timer
time-out, and there is a specific event for this, which is not based on a message.

Considering all of the above, the TTCN-3 code generation is done as follows:
PragmaDev Studio V6.0 Page 289

Reference Manual
• Because of the common concepts between TTCN-3 and SDL, the generated code
uses the same RTOS integration, as described in “C code generation with a
RTOS” on page 138. However, only the RTOS services implemented in the mac-
ros in RTDS_MACRO.h are used; The generated code is not based on the integration
bricks.

• The snapshot mechanism requires to have a more important level of control on
message queues that what is needed in SDL: In SDL, only a blocking wait on a
message queue is required, which is possible in every RTOS. In TTCN-3, the
snapshot and template mechanism requires to be able to test if a message is
present on a given queue, and to read the message without actually removing it
from the queue. So only the RTOS allowing to do that can be supported for
TTCN-3 code generation. Therefore, today, only the POSIX and Win32 integra-
tions are supported.

• Since TTCN-3 testcases are not transition-based, scheduling is not available.
Each component instance is mapped to a thread in the generated executable.

• TTCN-3 requires some mechanisms to be implemented which were not needed
in SDL:
• Some of these are specific to the RTOS, for example, the creation of a message

queue that is not associated to a process instance. For these, an additional file
named RTDS_TTCN_MACRO.h has been added in the integration itself.

• Some of these do not depend on the RTOS, or can use the basic mechanisms
provided in the integration. For example, the handling of the information
associated to a TTCN-3 component, or the snapshot mechanism itself. For
these, a set of files have been created in $RTDS_HOME/share/ccg/ttcn, which
will be included in all generated executables for TTCN. This directory includes
a simple implementation of regular expressions needed for TTCN-3 patterns.
Such implementation can be found in the trex subdirectory. Also, a partial
implementation of the standard TTCN-3 Control Interface (TCI) can be found
in the subdirectory tci. For more details, see “TTCN Control Interface” on
page 292.

• Some concepts such as templates are much more easily expressed using object-
orientation. So the code generated for TTCN-3 is always C++, regardless of the
language chosen in the generation options.
Page 290 PragmaDev Studio V6.0

Reference Manual
A summary of the main organization of the various files used for TTCN-3 code genera-
tion is shown on the following diagram:

For TTCN-3 code generation, the following options are also available:

• If the project also contains a SDL system, the code for the TTCN-3 and the sys-
tem can be generated together. In this case, an implementation of the Test Sys-
tem Interface is automatically provided, making the testcases and the SDL
processes communicate with each other.

• A main function can be generated with the TTCN-3 code. If this option is not
selected, no main function is generated and the generated code can only be used
as a library. The entry points for this library are the functions from the TCI
implemented by PragmaDev Studio, and optionally some other PragmaDev Stu-
dio-specific functions. More details on these functions in “TTCN Control Inter-
face” on page 292.
If a main function is generated, the file RTDS_TTCN_main.c is included in the final
build, and provides a command line interface allowing to run either the control
parts found in the TTCN modules, or any test in any module. If used with the
preceding option (TTCN + SDL co-generation), the generated executable
includes all tests with the tested system, allowing to run all tests on the system in
any order.

.rdp
.ttcn3

.cpp

profile directory

share/ccg/common

share/ccg/ttcn

 bricks


RTDS_ADDL_MACRO.h
 RTDS_BasicTypes.h
 RTDS_Env.c
 RTDS_Error.h
 RTDS_MACRO.h
 RTDS_OS.c
 RTDS_OS.h


 RTDS_Common.h
 RTDS_CommonTypes.h

 RTDS_TTCN.c
 RTDS_TTCN.h
 RTDS_TTCN_main.c
 tci

 tci.h
 tci.c
 tciRequired.hCode

generation

Main header files

Files in final build

Optional parts

 trex
 trex.h
 trex.c
PragmaDev Studio V6.0 Page 291

Reference Manual
• As for SDL, it is also possible to debug a TTCN test suite, either with or without
the tested SDL system. Note that in this case, the previous option is not signifi-
cant: A non-interactive main function is always generated, running the main
control part and the tested system if any.

13.2 - Generated Files
The generated files for a typical TTCN-3 test suite are shown on the figure below. In this
example, GetTestCases imports Imported_Mod1 and Imported_Mod1 imports
Imported_Mod2:

For each module a C++ source file and a header file are generated.

13.3 - TTCN Control Interface
Prototypes of available TCI functions can be found in the tci.h file in $RTDS_HOME/share/
ccg/ttcn directory. These functions are implemented in tci.c:

• tciRootModule: set root module.

• tciGetTestCases: returns testcases list of current root module.

• tciStartControl: starts control part.

These functions use information from the generated code provided in a specific gener-
ated file called <module name>_tci.c. Additional functions are available to browse the
generated information:

• RTDS_TTCN_GetAllRootModules returns the list of all available modules.

• RTDS_TTCN_GetModuleTestcases returns the list of all testcases available in the
specified module.

GetTestCases.cpp

GetTestCases.h

GetTestCases_tci.c

Imported_Mod1.cpp

Imported_Mod1.h

Imported_Mod2.cpp

Imported_Mod2.h

RTDS_gen.h

Files not associated with
any TTCN-3 source file

RTDS_TTCN_gen.h
RTDS_TTCN_SUT_interface.c
RTDS_TTCN_SUT_interface.h

RTDS_messages.h

Makefile

RTDS_TTCN_encdecParamData.c
RTDS_TTCN_encdecParamData.h
Page 292 PragmaDev Studio V6.0

Reference Manual
• RTDS_TTCN_GetProcessNumber returns the identifier of the control part. Returns 0
if no control part.

• RTDS_TTCN_GetProcessFunction returns the function to launch on the control
component.

• RTDS_TTCN_ExecuteTestcase starts a specific testcase.

13.4 - Automatic main function generation (RTDS_TTCN_main.c)
PragmaDev Studio allows to automatically generate main function in RTDS_TTCN_main.c.
If using this main function, generated code can be interactivly executed.

Usage of the generated executable with automatic main function:

• With no parameters, will go in interactive mode.

• '-s' or '--start' will start the control part for the default root module.

• '-s <testcase name>' or '--start=<testcase name>' will start the testcase with
this name in the default module.

Some functions required by the TCI are also defined in this file.

• tciError: Called when an error occurs in the test.

• tciControlTerminated: Called when the execution of a control part ends.

• tciTestCaseStarted: Called when the execution of a testcase starts.

• tciTestCaseTerminated: Called when the execution of a testcase ends.

13.5 - TTCN-3 module and testcase parameters
If needed, PragmaDev Studio will automatically generate encoding/decoding functions
for module and testcase parameters. These functions are found in
RTDS_TTCN_encdecParamData.c and .h. Supported TTCN-3 types are boolean, integer,
float, charstring, enumerated types, record and set (fields in record and set have to
be of supported types also). The parameters are initilized in runtime, and to do so the
generated encoders/decoders expect a parameters file. This file can be generated and
edited using the PragmaDev TTCN-3 Parameters Editor (see PragmaDev Studio User
Manual). Every line in such a file can be of the form:

for a module parameter (TTNC-3 modulepar):
MP:<configuration-name>:<module-name>:<parameter-name>:<encoded-value>

for a testcase parameter:
TP:<configuration-name>:<module-name>:<testcase-name>:<parameter-name>:<encoded-value>

The configurations allow to distinguish several values for the parameters while storing
them in the same file. The encoded values follow the format described in “Pre-build
action: Message encoders & decoders generation” on page 185.

If there are any parameters in the modules or in the test cases, the generated executable
must be called with parameters file via the command line option '-c <parameters-file>'
or '--config-file=<parameters-file>'.
PragmaDev Studio V6.0 Page 293

Reference Manual
To pre-select a configuration, the following command line option can be used:

’-n <configuration-name>’ or ’--config-name=<configuration-name>’.

13.6 - Adaptation to a target
PragmaDev Studio allows to generate TTCN alone (without SDL system). In this case, it
is required to adapt to the SUT to make possible communication between the testsuite
and the system under test.

13.6.1 Generated data types
As there is no specific message type in TTCN-3, any data type can be sent or received in a
test case via a template. The generated code for basic data types and for exchanged mes-
sages is the same. For example, a TTCN record is generated as a C structure with a field
for each field of the record :
type record mRequest { integer param1, integer param2};

will be generated as the following structure in C++ code:
typedef struct _mRequest

{
int param1;
int param2;
} mRequest;

13.6.2 Requirements
To allow communication between the TTCN and an external SUT, an adaptation layer is
required. The interface between the TTCN and the SUT has to be done in
RTDS_TTCN_SUT_interface.h file. To add this file during compilation, it is necessary to
add -DRTDS_TTCN_SUT_INTERFACE in the compilation option.

If the SUT is linked with the TTCN, this is the automatically generated main which will
start the SUT. The macro RTDS_TTCN_SUT_INIT specifies the start function of the
SUT. This macro has to be defined is the compiler option of the generation profil (e.g.: -
DRTDS_TTCN_SUT_INIT = SUT_init).

13.6.3 Communication from TSI to SUT
Communication in TTCN is done via a template.
template mRequest request := { param1 := 42, param2 := 13};

TTCN-3 templates are generated as C++ class. These classes have two methods:
• match: used to match a received message with a specified template.
• valueof: returns a pointer on the record value of the template.

For sending messages from TTCN-3 test suite to SUT, a macro for each port of the TSI is
called : RTDS_TTCN_SEND_MESSAGE_VIA_TSI_PORT_portName. Definitions of
this macro have to be done in RTDS_TTCN_SUT_interface.h file.
Page 294 PragmaDev Studio V6.0

Reference Manual
The following send command in TTCN:
sut_port.send(request);

will be generated as:
RTDS_TTCN_SEND_MESSAGE_VIA_TSI_PORT_sut_port(message);

Parameter message is of type RTDS_MessageHeader*. RTDS_MessageHeader is a transport
structure used in SDL and TTCN generated code to communicate. The messageNumber
field is the message identifier. The generated values are in RTDS_gen.h. A value is gener-
ated for each type sent through the port prefixed with RTDS_message. In our example it
would be RTDS_message_mRequest. The pData field of RTDS_MessageHeader is a pointer on
the data associated to the message. In our case, pData is the return value of the method
valueof of request template.

For example, if port sut_port of the TSI is used to send mRequest_1 and mRequest_2, the
messageNumber field is tested to identify which message has been sent. Then a specific
function is called in the SUT to deal with each message:
#define RTDS_TTCN_SEND_MESSAGE_VIA_TSI_PORT_sut_port(MESSAGE_HEADER) \

switch (MESSAGE_HEADER->messageNumber) {\
 case RTDS_message_mRequest_1: \

handleRequestMessage_1(((mRequest_1*)(MESSAGE_HEADER->pData))-
>param1); \
 break; \
 case RTDS_message_mRequest_2: \

handleRequestMessage_2(((mRequest_2*)(MESSAGE_HEADER->pData))-
>param1,((mRequest_2*)(MESSAGE_HEADER->pData))->param2); \
PragmaDev Studio V6.0 Page 295

Reference Manual
 break; \
 }

13.6.4 Communication from SUT to TSI
In generated code for TTCN, a global chained list of first element
RTDS_TTCN_systemInterfacePorts of type RTDS_TTCN_SystemInterfacePort* is declared
to store all the system interface ports.

The list of ports must be defined in the function defined by RTDS_TTCN_SUT_INIT. For
each incoming port of the TSI, a new element of type RTDS_TTCN_SystemInterfacePort*
must be inserted in the list.

For example, to add port sut_port to this list:
SUT_output_queue.portName = "sut_port";
SUT_output_queue.portMessageQueue = RTDS_NEW_MESSAGE_QUEUE;
SUT_output_queue.next = NULL;
RTDS_TTCN_systemInterfacePorts = &SUT_output_queue;

To send the message to the test case, use the
RTDS_MSG_QUEUE_SEND_TO_QUEUE_ID_FROM_SUT macro defined in RTDS_TTCN_MACRO.h.

This macro has five parameters:

• MESSAGE_NUMBER: Numerical identifier of the message.

• LENGTH_DATA: Length of the data associated with the message.

• P_DATA: Pointer on the data associated with the message.

• RECEIVER: Pointer to the message receiver instance.

• PORTID: Pointer to the queue where the message is sent.

To send a message of type AnswerMessageType to sut_port:
AnswerMessageType * message;
RTDS_MSG_QUEUE_SEND_TO_QUEUE_ID_FROM_SUT(

RTDS_message_mAnswer, sizeof(AnswerMessageType), message,
NULL, SUT_output_queue.portMessageQueue);

13.6.5 External Action
External actions in TTCN-3 will be generated as a call to the
RTDS_TTCN_EXTERNAL_ACTION macro with the expression as parameter of this
macro. Definition of the macro has to be done in RTDS_TTCN_SUT_interface.h file.

13.6.6 Log
Log statement is only supported with cahrstring as parameters. Log statement is gener-
ated as a call to the variadic macro RTDS_TTCN_LOG. A variadic macro is a macro
which can be called with a variable number of arguments. Definition of the macro has to
be done in RTDS_TTCN_SUT_interface.h file as follow :
#define RTDS_TTCN_LOG(TYPES,...)
Page 296 PragmaDev Studio V6.0

Reference Manual
The first parameter is a charstring with the type of all the parameters passed in the log
statement. The type for a charstring is ’c’. The real parameters of the log can be access
via __VA_ARGS.

13.7 - Naming convention
All file names used by the generated C code are prefixed with RTDS_TTCN_ to avoid name
clash with generated files. In these files all TTCN function names, TTCN variables and
TTCN types used internally are prefixed with RTDS_TTCN_.

13.8 - Debug information
If RTDS_TTCN_DEBUG_FILE macro is defined with a correct file path in the compila-
tion options, testcases will write relevant information of its execution in this file. Infor-
mation presents in this file are :

• start of a testcase,

• call to a function or an altstep,

• reception of a message with details on :
• message type received,
• matching details with a template.

• start of an alternative,

• details on test for each branch of the alternative,

• timed out of timers

• change the verdict value

In the debug file, all these action details are prefixed by the ttcn-3 file name and the line
where the action is done.

It is also possible to define the macro RTDS_TTCN_SIMPLE_DEBUG_FILE with a cor-
rect file path. In that case, only testcases started and final verdict will be write in the
debug file.
PragmaDev Studio V6.0 Page 297

Reference Manual
13.9 - Types used in TTCN-3 generated code - RTDS_TTCN.h

Table 41: TTCN-3 types

RTDS_TTCN_PortIdList List of every ports of a
component.

portId TriPortId* Descriptor for a port
instance needed in TRI

and TCI.

next RTDS_TTCN_PortIdList* Pointer on the next timer
Id.

RTDS_TTCN_TimerInfo Descriptor for a timer.

timerID long Identifier for the timer.

timerNumber int Numerical identifier for
the timer. This is the

timer identifier in
RTDS_TTCN_gen.h

timerUniqueID unsigned long Unique identifier for the
timer. Each timer will
have its own, even if it
has the same name as

another one. Used only
for trace.

duration TriTimerDuration Duration of the timer if a
default value has been
specified during timer

declaration.

timeoutValue TriTimerDuration System tick counter value
when timer will go off

timerStatus TimerStatusType Status of the timer (inac-
tive, running or expired).

RTDS_TTCN_TimerInfoList List of timers of current
component.

timerInfo RTDS_TTCN_TimerInfo* Descriptor for a timer.

next RTDS_TTCN_TimerInfoList* Pointer on next timer of
the list.
Page 298 PragmaDev Studio V6.0

Reference Manual
RTDS_TTCN_PortMappingInfo Descriptor for ports
instance.

queueControlBlock RTDS_RtosQueueId Identifier for the message
queue for the instance.

The type
RTDS_RtosQueueId must

be defined in
RTDS_BasicTypes.h.

currentMessage RTDS_MessageHeader* Current message of the
queue.

connectionType RTDS_TTCN_ConnectionType Type of connection of the
port (map or connect).

portStatus PortStatusType Status of the port
(started, halted, stopped

or error).

portId TriPortId* Descriptor for a port
instance needed in TRI

and TCI.

mappedPort RTDS_TTCN_PortIdList* List of all ports con-
nected to the current

port.

next RTDS_TTCN_PortMappingInfo* Pointer to the next
descriptor.

RTDS_TTCN_Template_Pool Pool of the templates
defined in current com-

ponent.

templateID RTDS_TTCN_Template* Identifier of the template.
RTDS_TTCN_Template

class has to be defined in
RTDS_TTCN.h.

next RTDS_TTCN_Template_Pool* pointer to next template
if any.

RTDS_TTCN_GlobalComponentInfo Descriptor for a compo-
nent instance.

componentID TriComponentId Identifier for the compo-
nent. The type TriCompo-
nentId has to be defined

in tci.h.

Table 41: TTCN-3 types
PragmaDev Studio V6.0 Page 299

Reference Manual
componentKindType TciTestComponentKindType Type of the component
(control, system, MTC,

PTC or alive PTC).

componentStatus ComponentStatusType Status of the component
(inactive, running, killed

or error).

componentVerdict verdicttype Local verdict of current
component.

RTDS_currentContext RTDS_GlobalProcessInfo* Descriptor for the
instance within which the

event happened.

portMappingInfo RTDS_TTCN_PortMappingInfo* Descriptor for ports
instance.

templatePool RTDS_TTCN_Template_Pool* Pool of the templates
defined in current com-

ponent.

timerInfoList RTDS_TTCN_TimerInfoList* Descriptor for timers of
the component.

cmpVariables void* Descriptor for all vari-
ables, timers and con-

stant of current
component.

next RTDS_TTCN_GlobalComponentInfo* Pointer to the next
descriptor.

RTDS_TTCN_SystemInterfacePort Descriptor for a port of
the system interface.

portName char* Name of the port.

portMessageQueue RTDS_RtosQueueId Identifier for the message
queue for the instance.

The type
RTDS_RtosQueueId must

be defined in
RTDS_BasicTypes.h.

next RTDS_TTCN_SystemInterfacePort* pointer to the next port if
any.

Table 41: TTCN-3 types
Page 300 PragmaDev Studio V6.0

Reference Manual
13.10 - Generated TTCN-3 constants and prototypes -
RTDS_TTCN_gen.h

This file defines constants for components, testcases, timers and internal messages used
in TTCN-3 system. It also defines protoypes for the functions implementing the compo-
nents.

More precisely:

• A #define’d constant is generated for each TTCN-3 component type. This con-
stant has the name of the component type prefixed with
RTDS_process_RTDS_Component_.

• A #define’d constant is generated for each testcase. This constant has the name
of the testcase prefixed with RTDS_process_RTDS_TestCase_.

• A #define’d constant is generated for the control part (if any) of each module.
This constant has the name of the module prefixed with
RTDS_process_RTDS_Control_.

• A unique #define’d constant is generated for the system component with the
name RTDS_process_System.

• A #define’d constant is generated for each timer. This constant has the name os
the timer prefixed with RTDS_TTCN_.

• #define’d constants are also generated for internal system messages.

• A prototype for each function implementing a component or a testcase. The pro-
totype is not written directly, but via a macro defined in RTDS_MACRO.h.

13.11 - External functions

13.11.1 Built-in external functions
The C implementation of the built-in functions are located in:
$(RTDS_HOME)/share/ccg/pragmalib/

13.11.2 User defined external functions
The user defined external functions are handled like in SDL.
PragmaDev Studio V6.0 Page 301

Reference Manual
14 - PragmaDev Studio commands

14.1 - pragmastudio: main application

14.1.1 Usage
The pragmastudio command actually runs PragmaDev Studio, or one of its variants. Its
syntax is the following:
pragmastudio [-specifier | -developer | -tester]\

[--no-server] [-assoc-file=<file> --assoc-line=<line>] \
[--diagram-file=<file> [--symbol-id=<id> [--symbol-line=<line>]]] \
[[--debug-element=<name> --debug-profile=<name>] <project file>] \
[--diff-diagram-file-left=<file> --diff-diagram-file-right=<file>
[--diff-logical-only]]

The meaning of the options are:

• -specifier, -developer, -tester:
If specified, runs the specified variant of PragmaDev Studio, i.e PragmaDev
Specifier, PragmaDev Developer or PragmaDev Tester, respectively. The option
must be the very first one on the command line. If none of these options are spec-
ified, the command launches PragmaDev Studio.

• --no-server:
Prevents PragmaDev Studio from opening a server connection. By default, Prag-
maDev Studio runs in server mode, which means that trying to run another Prag-
maDev Studio instance when one is already running will connect to the running
one and open the requested element in the running instance. If the first instance
was run with the --no-server option, the following one will not connect to it and
run as if it were alone.
Note that connecting to an already running instance is done only if an element is
actually opened by the command, either by passing a project name or via com-
mand line options. If PragmaDev Studio is run without options or arguments, it
will run on its own. Note also that only the first PragmaDev Studio instance run
without the --no-server option can open the server connection. If another
instance is run afterwards with no options or arguments, it will not be able to
open the connection since it is already opened.

• --assoc-file=<file> --assoc-line=<line>:
The <file> specified in the --assoc-file option must be a file generated from a
diagram, i.e. either an exported PR file or a generated C code file. The <line>
must be a valid line in the this file. Specifying these options will figure out the
project, diagram and symbol from which the line in the file have been generated,
open this project, open the diagram and highlight the symbol.
If these options are used, no project file name must be passed as argument to the
command.
If a project is already opened in PragmaDev Studio, it will be replaced by the
project from which the file was generated (a confirmation is asked).
Page 302 PragmaDev Studio V6.0

Reference Manual
• --diagram-file=<file> [--symbol-id=<id> [--symbol-line=<line>]]
The <file> must be a valid PragmaDev Studio diagram file. If the --symbol-id
option is used, the <id> must be a valid symbol internal identifier in the diagram.
If the --symbol-line option is used, the <line> must be a valid line in the symbol
identified by <id>. Specifying these options will open the requested diagram,
highlighting the symbol line if needed.
If no project is opened, the diagram will be opened alone and the project man-
ager will iconify itself. If the opened project contains the requested diagram, the
project will not be closed and the diagram will be opened inside the project. If the
opened project does not contain the diagram, a dialog box will pop up, asking if
the diagram should be opened alone or added to the current project.
If these options are used, a project file name may be passed as argument to the
command; this project must contain the specified diagram.

• --debug-element=<agent name> --debug-profile=<profile name>
If specified, indicates that a debug session must be started at PragmaDev Studio
launch. This is equivalent to select the agent named <agent name> after project
loading, and asking to debug or simulate it with the profile named <profile
name>. If the code or bytecode generation works, PragmaDev Studio will auto-
matically open the debugger or simulator window. If the agent or the profile is
not found, PragmaDev Studio displays an error message and remains open.
When specifying these options, a project file must be specified on the command
line.

• --diff-diagram-file-left=<file> --diff-diagram-file-right=<file>
If specified, indicates that PragmaDev Studio must be run in diff mode. The dia-
gram file in the --diff-diagram-file-left option will be the first diagram in the
diff, appearing on the left side of the screen, and the one in the --diff-diagram-
file-right option will be the second one, appearing on the right side. No project
file needs to be specified; if there is none, the a new one will be created and the
diagrams added to it. If a project file is specified, the diagrams will be taken from
it if they are present, or added if they aren’t.
Note that both options must be specified: if only one of them is, PragmaDev Stu-
dio will ignore it and run normally.
The diff includes all differences between the two diagrams by default. To get only
the logical differences and ignore the graphical ones, the option --diff-logical-
only can be specified on the command line. This option has no effect if Prag-
maDev Studio is not run in diff mode.

The only valid argument to the command is a project file name, specifying a project to
open. As states above, it cannot be specified with the options --assoc-file / --assoc-
line.

14.1.2 Environment variables
The following environment variables may be used by PragmaDev Studio:

• RTDS_HOME: This variable must be set to be able to run PragmaDev Studio. It must
reference PragmaDev Studio’s installation directory (the one containing the bin,
doc, share and examples sub-directories).
PragmaDev Studio V6.0 Page 303

Reference Manual
• RTDS_DEFAULT_PREF_FILE: This variable only has an effect the first time Prag-
maDev Studio is launched. It identifies the file which will be copied to the cur-
rent user’s preference file. If this variable is not set, the preferences file is copied
from:
$RTDS_HOME/share/conf/rtds.ini
If this file does not exist, PragmaDev Studio will either copy and adapt the pref-
erence file for RTDS if it exists, or create a default preference file itself.

• RTDS_FAST_SEARCH: If set, this variable must reference the utility named rtds-
Search or rtdsSearch.exe, delivered with PragmaDev Studio (in $RTDS_HOME/
bin). It allows to perform searches on diagram files faster than the built-in
search operation. It may be used for large projects with many diagrams.

14.2 - pramastudiocommand: command line interface
The command pragmastudiocommand is the single entry point for all command-line inter-
face utilities for PragmaDev Studio. The specific command is indicated by a subcom-
mand, that must be specified as first argument to pragmastudiocommand.

The available subcommands are printed when running the command with no argument.
These are:

• print_assoc: display association information for a file generated by PragmaDev
Studio.

• generate_code: runs a code generation from the command line.

• import_PR: imports a SDL-PR file as a PragmaDev Studio project.

• export_PR: exports a PragmaDev Studio project as a SDL-PR file.

• export_xLIA: exports a diagram in a PragmaDev Studio project to a xLIA file.

• generate_XML_RPC_wrappers: generates the XML-RPC wrappers for a Prag-
maDev Studio project, allowing to interface easily the simulator with external C
code implementing the SDL operators and external procedures.

• shell: allows to browse a PragmaDev Studio project and the diagram it contains
from the command line.

• simulate: runs a simulation or debug session on a diagram in a PragmaDev Stu-
dio project.

• object_server: runs a CORBA server allowing to browse a model stored in a
PragmaDev Studio project.

• diagram_diff: compares two diagrams and outputs the differences, either as
text, or as a graphical PDF report.

• auto_merge: 3-headed merge utility for PragmaDev Studio diagrams, allowing to
integrate it in configuration managment systems.

For compatibility, another way of running the commands is also available: if pragmastu-
diocommand is copied to a file with the name of a command formerly available in RTDS, it
Page 304 PragmaDev Studio V6.0

Reference Manual
will do the same as that command. On Unix, creating a symbolic or hard link to pragmas-
tudiocommand works too. The compatibility command names are:

The options for both forms of the command are exactly the same ones.

The following sections describe all available commands.

14.2.1 print_assoc: display association information
The print_assoc subcommand is used to display the project, diagram, symbol identifier
and symbol line corresponding to a line in a file generated from PragmaDev Studio (e.g.
exported PR file, generated C code file, …). Its syntax is the following:
pragmastudiocommand print_assoc [-o] <file> <line>

where <file> is the name of the file generated from PragmaDev Studio and <line> is a
valid line in this file.

The command will then print:

• the name of the project file from which the given file was generated,

• the file name for the parent diagram for the symbol corresponding to the given
line in the generated file,

• the internal identifier for this symbol,

• the line number in the symbol corresponding to the given line.

If no option is specified, the command will output a single line containg all the informa-
tion above, in this order, separated by tabs.

If the -o option is specified, the command will output a set of options that can be passed
to the pragmastudio command, i.e.:
--diagram-file=<…> --symbol-id=<…> --symbol-line=<…> <project file>

RTDS command PragmaDev Studio equivalent

rtdsPrintAssoc pragmastudiocommand print_assoc

rtdsGenerateCode pragmastudiocommand generate_code

rtdsImportPR pragmastudiocommand import_PR

rtdsExportPR pragmastudiocommand export_PR

rtdsExportxLIA pragmastudiocommand export_xLIA

rtdsGenerateXmlRpcWrappers pragmastudiocommand generate_XML_RPC_wrappers

rtdsShell pragmastudiocommand shell

rtdsSimulate pragmastudiocommand simulate

rtdsObjectServer pragmastudiocommand object_server

rtdsDiagramDiff pragmastudiocommand diagram_diff

rtdsAutoMerge pragmastudiocommand auto_merge
PragmaDev Studio V6.0 Page 305

Reference Manual
14.2.2 generate_code: code generation
This command generates and optionnaly compiles the code for a given diagram in a
given project. Its syntax is the following:
pragmastudiocommand generate_code [-c] <project file> <diagram name> \

<profile name>

<diagram name> is the name that appears for the diagram in the project tree; <profile
name> is the name of the generation profile as it appears in the generation options dialog.
A full syntax and semantics check is made before the generation, except if the -c option is
specified; in this case, the check is made in "critical only" mode.

If the specified generation profile specifies that a compilation must be made, it will auto-
matically be run by the command.

14.2.3 import_PR: PR/CIF file import
The import_PR subcommand converts a PR/CIF file to a PragmaDev Studio project. Its
syntax is:
pragmastudiocommand import_PR <options…> <pr file> <project file>

The <pr file> will be converted to a PragmaDev Studio project, which will be saved to
<project file>. All diagrams generated by the conversion are put in the same directory
as the project.

The available options are:
• -T <int> / --license-time-out=<int>

Time-out for license in seconds. If not set, command fails immediatly if license
cannot be checked out.

• -c / --case-insensitive
Make parser case insensitive for keywords. Default is to recognize keywords only
if all lowercase or all uppercase.

• -I / --ignore-cif
Ignore all CIF comments in imported file

• -v / --verbose
Verbose mode. Default is to print only warnings and errors

• -x / --allow-link-crossing
Allow link crossing in converted block and system diagrams

• -a <type> / --auto-size-texts=<type>
Forces auto-sizing for diagrams. <type> may be all, architecture or behavior

• -1 / --single-line
Put text for most symbols on a single line

• -m / --split-on-commas
Split the text for symbols on commas.

• -s <int> / --shortcut-text-threshold=<int>
Automatically create a shortcut text for symbols having more than the specified
number of lines. Default is to never create shortcut texts.

• -r <mode> / --external-references=<mode>
Mode for handling external references and Geode CIF includes. <mode> may be:
Page 306 PragmaDev Studio V6.0

Reference Manual
• k to always keep references as in the PR file
• rk to resolve references if possible and keep them if not [default]
• rd to resolve references if possible and discard them if not

• -i / --no-invisible-names
Remove names marked invisible in CIF. Ignored is CIF comments are ignored.

• -z <real> / --zoom=<real>
Zoom factor for all coordinates and dimensions in CIF. Ignored if CIF comments
are ignored.

• -h / --shift-connectors
Correct positions given by Geode for "in" connectors. Ignored if CIF comments
are ignored.

• -p / --one-partition-per-state
When CIF comments are ignored: create one partition for each state in behav-
ioral diagrams.

• --partition-diagram-type=<diagram type>
Use only when importing a partition alone to specify the type for the partition's
parent diagram. <diagram type> may be:
• sys for a system diagram;
• blk for a block diagram;
• blktype for a block class diagram;
• prcs for a process diagram;
• prcstype for a process class diagram;
• prcd for a procedure diagram;
• macro for a macro diagram;
• compstate for a composite state diagram;
• service for a service diagram.

• --partition-file-naming=<none|p|dp>
Allows to save partitions in separate files and setup naming scheme for these
files:
• none keeps the partitions in the diagram file [default]
• p stores the partition in a file named after partition alone
• dp stores the partition in a file named after diagram & partition

14.2.4 export_PR: PR file export
This command exports the PR file corresponding to a given project. Its syntax is:
pragmastudiocommand export_PR [-T <seconds>] [-h] [-f] [-s] [-c] \

<project file> <output file>

which exports the given project to the given <output file>.

The options are:

• -T <seconds>: specifies that the command should wait for the license for the
given number of seconds. The default is 0, so if the option is not specified, the
command fails immediatly if the license cannot be checked out.

• -h: generate a hierarchical PR file. This means that definitions for agents will be
generated in their parent’s code. The default is to generate a flat PR file, where
PragmaDev Studio V6.0 Page 307

Reference Manual
agents are just defined as REFERENCED in their parent’s code, and the code for the
agent is elsewhere in the generated PR file. To avoid ambiguity when several
agents have the same name, agent names are always fully qualified in flat
exported PR files.

• -f: when used with an SDL-RT project, forces a full export. This means that the
exported PR file will not be a valid PR file. Without this option, only a skeleton
of the project is exported, containing mainly the architecture and the message
exchanges. This option has no effect on SDL projects.

• -s: prevents generated SUBSTRUCTUREs in blocks to be named. By default, sub-
structures are named with the name of the block. This option should only be
used with hierarchical PR files (-h option), since qualifiers cannot include
unnamed sub-structures.

• -c: expands code for labels in behavioral diagrams at the first JOIN on the label.
The default is to put the code for the label in a separated CONNECTION block.

• -j: tries to put JOINs to labels referencing a decision in one of this decision’s
branches. This typically has an impact in the following situation:

The PR code generated by default for this diagram would be:
A:
DECISION cond1;

(true):
DECISION cond2;

(true):
TASK action1;
JOIN A;

(false):
TASK action2;
STOP;

ENDDECISION;
(false):

TASK action3;
STOP;

A

cond1

cond2

A

action1 action2

action3

(true)

(true) (false)

(false)
Page 308 PragmaDev Studio V6.0

Reference Manual
ENDDECISION;
With this option, the code will be:
A:
DECISION cond1;

(true):
DECISION cond2;

(true):
TASK action1;

(false):
TASK action2;
STOP;

ENDDECISION;
JOIN A;

(false):
TASK action3;
STOP;

ENDDECISION;
The JOIN A is then generated in a branch of the decision referenced by the label A,
which is DECISION cond1.

• -o: deterministic order for export. The PR text is exported as far as possible in an
order corresponding to the display order in diagrams.

• -w: displays a warning message if a complex DECISION cannot be exported with-
out generating an additional JOIN not in the exported diagram.

14.2.5 export_xLIA: xLIA file export
This command export the xLIA description of a given diagram in a given project. Its syn-
tax is the following:
pragmastudiocommand export_xLIA <project file> <diagram node name> \

<validation profile name> <output directory>

<diagram name> is the name that appears for the diagram in the project tree; <validation
profile name> is the name of the validation profile as it appears in the validation options
dialog; <output directory> is the directory were the xLIA will be generated. Two files
are generated, the xLIA description file and the configuration file, needed to execute
xLIA file.

14.2.6 generate_XML_RPC_wrappers: XML-RPC wrapper genera-
tion
This command generates the XML-RPC wrappers for all SDL external operators and pro-
cedures in a given PragmaDev Studio project. The exact syntax is:
pragmastudiocommand [-c] generate_XML_RPC_wrappers <project file> \

<output header file> <output C file>

The option -c allows to specify that the project must be considered as case-sensitive.
PragmaDev Studio V6.0 Page 309

Reference Manual
The generated files are:

• A C header file (.h) containing the translation to C for all SDL types used by
operators and external procedures. These types are figured out automatically
and do not require any markup. The translation rules are as follows:

SDL type C type Comment

Base
types

BOOLEAN RTDS_BOOLEAN enum type with values FALSE (0) &
TRUE (1).

NATURAL unsigned int

INTEGER int

REAL float

CHARACTER char

TIME long

DURATION long

PID unsigned long

CHARSTRING RTDS_String RTDS_String is a 2048 character
array.

SYNTYPE on
CHARSTRING

char[…] The actual size for the string is
extracted from the SIZE constraints

if any.

on other types typedef The constraints are ignored.

STRUCT types typedef struct The type for the fields are the C
translations of the filed types in the
SDL STRUCT. No pointers are used,

even if a field has a complex type.

CHOICE types typedef enum for
the present field
type + typedef
struct with

present field &
union for the actual

CHOICE.

The values in the enum type for the
present field are the names of the

field in the CHOICE prefixed with the
CHOICE type name. The union field in
the struct generated for the CHOICE

itself is called __value.

STRUCT SELECT types typedef struct
with discriminat-

ing field and union.

The union field is called __value as
for CHOICEs.
Page 310 PragmaDev Studio V6.0

Reference Manual
• A C source file containing:
• The encoding and decoding functions to and from XML-RPC for all types;
• Wrappers for all operators and external procedures defined in the project,

decoding the values for their parameters, calling their C implementation and
encoding their return values to XML-RPC;

• A main function running the XML-RPC server with the declared operators.
The library used to implement the XML-RPC server is the xmlrpc-c library,
available on http://xmlrpc-c.sourceforge.net.
The following rules are used for the C implementation of the operators and exter-
nal procedures:
• All base types and enumerated (LITERALS) types are passed by value in oper-

ators, and in all in parameters for external procedures;
• Base types and enumerated types are passed by poiners for in/out procedure

parameters;
• All complex types are passed by pointer;
• An additional parameter is passed containing a pointer on the return value.

The C function for the operator or procedure must also return this pointer.
• If an external procedure has no return type, there is no additional parameter

to the function implementing it and the return type for this function is void.

14.2.6.1 Example 1: operators in a SDL newtype

The following SDL type:
NEWTYPE Point
STRUCT

x, y INTEGER;
OPERATORS

isOrigin: Point -> BOOLEAN;
movePoint: Point, INTEGER, INTEGER -> Point;

ENDNEWTYPE;

will be translated to:
typedef struct

{
int x;
int y;
} Point;

RTDS_BOOLEAN * isOrigin(Point *, RTDS_BOOLEAN *);
Point * movePoint(Point *, int, int, Point *);

ARRAY types typedef with C
array

Array index must be an integer type.
It is always supposed to start at 0.
The constraints for its maximum

value are taken into account if possi-
ble.

Enumerated types
(LITERALS)

typedef enum

SDL type C type Comment
PragmaDev Studio V6.0 Page 311

Reference Manual
An implementation for these operators can be:
RTDS_BOOLEAN * isOrigin(Point * p, RTDS_BOOLEAN * result)

{
result = (p->x == 0 && p->y == 0);
return result;
}

Point * movePoint(Point * p, int dx, int dy, Point * result)
{
result->x = p->x + dx;
result->y = p->y + dy;
return result;
}

14.2.6.2 Example 2: external procedures

The functions implementing the following external procedures:
procedure proc1(in i Integer) -> Integer external;
procedure proc2(in/out x Real) -> Real external;
procedure proc3(in s CharString, in/out b Boolean) external;

will have the following signatures:
int * proc1(int i, int * result);
float * proc2(float * x, float * result);
void proc3(RTDS_String s, RTDS_BOOLEAN * b);

14.2.7 shell: RTDS command line interface
This command allows a minimal set of operations on a RTDS project:

• Navigating in the project tree;

• Renaming nodes in the project tree and moving their files;

• Renaming partitions in diagrams, store them in external files or in the diagram
file.

The syntax for the command is:
pragmastudiocommand shell [-i <command file> | -c <command(s)>] \

<project file>

By default, commands are read from the calling terminal. With the -i option, commands
are read from the specified file; with the -c option, the commands are read from the com-
mand line.

The available commands are:
• lsnode

Lists the available nodes in the current context. For each node is displayed its
name, its type ([D]iagram, [P]ackage, [S]ource file, [E]xternal file, [C]ode cover-
age results) and its file name if any.

• pwnode
Print current (working) node. The whole path to the node is displayed, with node
names separated with ’/’.

• chnode <node name>
Changes the current node to the one with the given name, which must exist in the
current context. There is no way to specify a full node path in this command.
Page 312 PragmaDev Studio V6.0

Reference Manual
• mvnode [-f <new node file>] <node name> [<new node name>]
Renames the node with the given name and/or moves its file. If <new node name>
is specified, the node is renamed; if -f <new node file> is specified, the node file
is moved to this file.

• lspart
Lists partitions in the current node, which must be a diagram. For each partition
is displayed its index, its name and its file if any.

• mvpart [-f <new part. file> | -d] <part. index> [<new part. name>]
Renames the partition at the specified partition index and/or moves it to a sepa-
rate file or stores it in the diagram file. If <new part. name> is specified, the par-
tition is renamed; if -f <new part.file> is specified, the partition is stored in
this file; if -d is specified, the partition is stored in the diagram file.

• help
Displays a short help on all commands.

• exit
Exit from the shell. The shell will also exit immediatly if its input stream is
closed.

Several commands can be entered on the same line separated with ’;’.

Examples:

• To rename interactively the (process) node proc in system sys to p1, also moving
its file (user input is shown in blue):
$ pragmastudiocommand shell prj.rdp
[PragmaDev Studio v5.0 shell - type 'help' for help]
> chnode sys
> lsnode
proc [D] /path/to/proc.rdd
> mvnode -f /path/to/p1.rdd proc p1
> lsnode
p1 [D] /path/to/p1.rdd

• To rename the first partition in the system sys at project top-level via the com-
mand line:
pragmastudiocommand shell -c \

’chnode sys; mvpart 1 "First partition"’ prj.rdp

14.2.8 simulate: automated simulation or debug
This command runs a script on the SDL Z.100 simulator or the SDL-RT debugger. The
syntax is:
pragmastudiocommand simulate [-c] [-q] [-f] [-b] [-l <log file>] \

[-g <profile name>] [-t <default target>] <project file> \
<diagram node name> <script file>

The options are:

• -q: quiet, no print on stdout but errors

• -c: ignore non-critical syntax/semantics errors before generation

• -f: force a full code regeneration
PragmaDev Studio V6.0 Page 313

Reference Manual
• -b: allow breakpoint hits in scenarios

• -g <profile name> is required only for SDL-RT projects

This command will load the <project file> project, select the <diagram node name> dia-
gram, start the Simulator if Z.100 or the SDL-RT debugger if SDL-RT and run the
<script file> scenario. The <script file> is a simple text file containing Simulator or
SDL-RT debugger shell commands.

Command example:
pragmastudiocommand simulate H:\Z100\PingPong.rdp mySys H:\Z100\myScript.sce

Script file example:
startMscTrace

step

step

keySdlStep

keySdlStep

keySdlStep

keySdlStep

saveMscTrace c:\tmp\MyMscTrace.rdd

stopMscTrace

By default, if the system execution stops for any reason other than the end of a command
when executing a scenario, the execution will stop with an error message. If the scenario
sets breakpoints and need to continue when a breakpoint is hit, the option -b must be
specified on the command line when running rtdsSimulate.

14.2.9 object_server: RTDS API server
This command runs the CORBA server allowing to use the RTDS standard API. For more
details, see paragraph “Model browsing API” on page 345.

14.2.10 diagram_diff: RTDS diagram diff utility
This utility allows to compute the differences between two diagrams on the command
line. The syntax for the command is:
pragmastudiocommand diagram_diff [-q|--quiet] [--grahical] \

[--export-pdf=<file>] <diagram file 1> <diagram file 2>

The options are:

• -q or --quiet: No output is produced. Typically used to know if two diagrams are
logically equivalent or not via the command return code.

• --graphical: By default, only the logical differences between the two diagrams
are analysed and/or reported. Specifying this option will analyse and report
graphical differences as well.

• --export-pdf: If specified, the command will output in the given file a PDF
report of the diff in addition to its normal text output. Tis file is identical to the
one generated via the "Generate PDF report…" button in the diff GUI.
Page 314 PragmaDev Studio V6.0

Reference Manual
The return code for the command is zero if no difference could be found. A non-zero
return code indicates that the diagrams are different, or that an error occured.

14.2.11 auto_merge: RTDS diagram merge utility
This utility is meant to be used with configuration management systems. This utility
merges automatically the modifications made in the source version and in the target ver-
sion in reference to their common ancestor diagram. The resulting diagram is saved in
the target diagram.

The syntax for the command is:
pragmastudiocommand auto_merge <common ancestor diagram> <source diagram>
<target diagram>

If successful the return code is zero. If a conflict is detected, a non zero error code is
returned and a description of the conflict is printed on stderr.

14.3 - rtdsSearch: Low-level search utility
This command is not intended to be used by end-users, but may be called from RTDS.
See “Environment variables” on page 303 for its usage. Issuing the command in a termi-
nal will not produce any user-readable results.

Ancestor

Target

Target

Source

rtdsAutoMerge
PragmaDev Studio V6.0 Page 315

Reference Manual
15 - Syntax & semantics check

The following table is a list of identifiers for warnings that can be returned by PragmaDev
Studio syntax and semantics checks. These identifiers may be used to ignore some warn-
ing types via the preferences, "Diagrams" tab. A warning identifier always consists in the
fiollowing parts:

• A single letter identifying the object type for the warning. This letter may be ’C’
for a link to symbol connector, ’D’ for a diagram, ’E’ for any element, ’L’ for a link
and ’S’ for a symbol.

• Three letters identifying the actual type for the object. For example, ’LMTH’ is a
method link in a MSC diagram; ’SBCI’ is a block class instance symbol.

• Three digits identify the warning itself. This is just a sequence number and has
no meaning.

Please note that warning can only be ignored if they are actually warnings. Some of these
warnings are actually reported as errors when the checking mode is not "critical only". In
such a case, the messages cannot be ignored.

Identifier Meaning

CASS001 Syntax warning for roles in a UML association connector.

CCHN001 Undeclared signal in a channel connector.

CCHN002 Undeclared signal list in a channel connector.

CCHN003 No gate name for a channel connector on an agent class instance.

CCHN004 Unknown gate name for a channel connector on an agent class instance.

CCHN005 Unknown channel name for a connection name in a channel connector.

CCHN006 Signal sent from a channel connector, but not from the attached agent.

CCHN007 Signal received by a channel connector, but not by the attached agent.

DCST001 Signal received by a composite state, but not by the parent process.

DCST002 Signal sent by a composite state, but not by the parent process.

DPRO001 Dead state in a process, procedure or service diagram.

DPRO002 Invalid symbol ending a transition in a process, procedure or service
diagram.

DPRO003 Missing object initializer in a process diagram.

ESEQ001 Symbol sequence problem in a diagram.

LMSG001 Syntax error in a message link in a MSC diagram.

LMSG002 Message link to a semaphore in a MSC diagram.
Page 316 PragmaDev Studio V6.0

Reference Manual
LMSG003 Incorrect received message name for a lifeline in a MSC diagram.

LMTH001 Syntax error in a method call link in a MSC diagram.

LMTH002 Semaphore calling a method in a MSC diagram.

LMTH003 Incorrect method call on a semaphore in a MSC diagram.

LMTH004 Incorrect method call on an object lifeline in a MSC diagram.

LSTX001 Syntax warning on a link.

SBCI001 Missing gate name on channel connected to a block class instance
symbol.

SBCI002 Unknown gate name on channel connected to a block class instance
symbol.

SBCI003 Incorrect sent or received message for gate on channel connected to a
block class instance symbol.

SCLA001 General purpose warning for attributes in a class symbol in a class
diagram.

SCLS001 Unknown stereotype in a class symbol.

SCLS002 Unknown property in a class symbol.

SCLS003 Consistency problem between diagrams for an active or passive class.

SCMP001 Stereotype specified for a component symbol in a deployment diagram.

SCMP002 Properties specified for a component symbol in a deployment diagram.

SCMP003 Operations specified for a component symbol in a deployment diagram.

SDCL001 Signal declared, but never used.

SDCL002 Signal declared more than once.

SFIL001 Special characters used for file name in a file symbol in a deployment
diagram.

SINP001 Timer received, but never started in current context.

SINP002 Undeclared signal in input symbol.

SINP003 Signal in an input symbol not in any incoming channel for agent, but
possibly received from self.

SINP004 Signal in an input symbol not in any incoming channel for agent that
cannot be received from self.

SINP005 Unsupported use of VIRTUAL, REDEFINED or FINALIZED in an input
symbol.

Identifier Meaning
PragmaDev Studio V6.0 Page 317

Reference Manual
SLBL001 Label defined, but never used.

SLLI001 Lifeline for non-existent semaphore in a MSC diagram.

SLLI002 Lifeline for non-existent agent or object in a MSC diagram.

SNOD001 Stereotype specified for a node symbol in a deployment diagram.

SNOD002 Properties specified for a node symbol in a deployment diagram.

SNOD003 Package specified for a node symbol in a deployment diagram.

SNOD004 Operations specified for a node symbol in a deployment diagram.

SOUT001 Explicit sending of a timer signal.

SOUT002 Undeclared signal sent.

SOUT003 Signal in an output symbol not in any outgoing channel for agent, but
possibly sent to self.

SOUT004 Signal in an output symbol not in any outgoing channel for agent that
cannot be sent to self.

SOUT005 Unknown process name after TO_NAME in output.

SPCI001 Missing gate name on channel connected to a process class instance
symbol.

SPCI002 Unknown gate name on channel connected to a process class instance
symbol.

SPCI003 Incorrect sent or received message for gate on channel connected to a
process class instance symbol.

SPRC001 Unknown procedure in a procedure call symbol.

SPRC002 C procedure called via a procedure call symbol.

SSAV001 Timer saved, but never started in current context.

SSAV002 Undeclared signal saved.

SSAV003 Signal in a save symbol not in any incoming channel for agent, but
possibly received from self.

SSAV004 Signal in a save symbol not in any incoming channel for agent that
cannot be received from self.

SSMD001 Semaphore declared, but never used.

SSMG001 Undeclared semaphore given.

SSMT001 Undeclared semaphore taken.

SSTA001 State used as NEXTSTATE, but with no transition defined.

Identifier Meaning
Page 318 PragmaDev Studio V6.0

Reference Manual
SSTA002 Transitions defined for state, but no never used as a NEXTSTATE.

SSTA003 Inconsistency between state type ("normal" / composite) and state
symbol type.

SSTR001 Unsupported use of VIRTUAL, REDEFINED or FINALIZED in a start
symbol.

SSTX001 Syntax warning in a symbol. Used only for Geode-specific syntax.

STIC001 Non-timer signal used in a timer cancel symbol.

STIC002 Timer cancelled, but never started in current context.

STIC003 Timer cancelled, but never received anywhere in the system.

STIC004 Timer cancelled, but never received in the current context.

STIS001 Non-timer signal used in a timer start symbol.

STIS002 Timer started, but never received anywhere in the system.

STIS003 Timer started, but never received in the current context.

Identifier Meaning
PragmaDev Studio V6.0 Page 319

Reference Manual
16 - Simulator XML connection

This section describes the information exchanged between the simulator or debugger
and the external tool connected to it when the connection has been initiated in XML
mode via the connectxml shell command.

16.1 - Separators
The separators for commands sent to the simulator or the answers it sends back are
either a line feed (\n) or a null character (\0). Both can be used in commands sent to the
simulator and will be recognized. For answers, the null character if always used for the
top-level tag, but inner tags may be terminated with a line feed, such as for example the
tags representing the parameter values for a message.

16.2 - Commands
The commands sent from the external tool to the simulator are usually formatted like fol-
lows:
<command text="<actual command>"/>

where <actual command> is the command as typed in the siumator shell.

For example, if the "help" command must be sent by the external tool to the simulator
shell, the following string must be sent through the socket:
<command text="help"/>

The only command that has its own tag is the "send2name" command, where the follow-
ing form can be used:
<send2name signalType="[timer|message]" signalName="<signal name>"

receiverName="<receiver name>" parameters="<params>"/>

where:

• <signal name> is the name of the signal to send;

• <receiver name> is the name for the receiver process;

• <params> are the signal parameters, in the same format as the one used when
sending a message from the simulator interface, i.e:
|{param1|=...|,param2|=...|,...|}

The command sent through the socket can be terminated either with a \n, or a \0.

16.3 - Simulator answers
All answers printed by the simulator in its shell are sent back to the socket in XML for-
mat, as well as some other information which is not available in soccket connections in
"normal" mode.
Page 320 PragmaDev Studio V6.0

Reference Manual
16.3.1 Information messages
These messages are the text printed in the simulator shell in response to some com-
mands, such as the "help" command. These texts will be sent back through the socket
formatted like follows:
<info text="<message>"></info>

followed by a \0 character. Note that the message may contain line feeds.

16.3.2 Simulator state changes
This kind of information is not available when the socket connetion is opened in normal
mode, but is sent by the simulator in XML mode. Each state change for the simulator is
sent through the socket formatted like follows:
<info text="<simulator state>"></info>

followed by a \0. The <simulator state> is the state as it appears in the simulator status
bar, such as RUNNING, STEPPING or STOPPED.

16.3.3 Sent, received and saved messages
Each time a message is sent, received or saved by a process instance, the following text is
sent through the socket:
<message messageName="<message name>" time="<time>"

[involvedInstanceId="<instance PID>"]

[involvedInstanceName="<instance name>"]

way="[send|receive|save]">

<message parameters...>

</message>

followed by a \0, where:

• <message name> is the name of the message being sent, received or saved;

• <time> is the time where the action happened, in ticks from the beginning of the
simulation;

• <instance PID> is the identifier for the process instance involved in the opera-
tion: sender for a send, receiver for a receive or save;

• <instance name> is the name of this process instance;

• <message parameters...> are the parameters for the message, in XML format,
as described below.

Note that in some very specific cases, the involvedInstanceId or involvedInstanceName
can be missing.

The message parameters are formatted in XML using the same format as the one used
for data sent to external procedures called via XML-RPC:

• The whole set of parameters is surrounded by <params> / </params> tags;

• Each parameter is surrounded by <param> / </param> tags;
PragmaDev Studio V6.0 Page 321

Reference Manual
• Parameters are not named, but only identified by where they appear in the XML
text: the first <param> tag is the first parameter, the second one the second
parameter, and so on;

• All values are surrounded by <value> / </value> tags.

• The tag used for Boolean values is <boolean>; the value itself can be 0 or 1.
Example: the Boolean value True is encoded as:
<value><boolean>1</boolean></value>

• The tag used for Integer, Natural, PID, Duration and Time values is <int>.
Example: the Integer value 42 is encoded as:
<value><int>42</int></value>

• The tag used for Real values is <double>.
Example: the Real value 1.618034 is encoded as:
<value><double>1.618034</double></value>

• The tag used for Character, CharString or Literals values is <string>; for charac-
ters, the string will have a length of 1.
Example: the String value ’foo’ is encoded as:
<value><string>foo</string></value>

• The tag used for Struct values is <struct>. Each field is enclosed with a <member>
tag, containing a <name> tag with the field name, and <value> tag with the field
value.
Example: if a SDL struct is defined as:
newtype T

foo Integer;
bar Boolean;

endnewtype;
then a value v of this type is set with:
v!foo := 42, v!bar := False
then the encoding for v is:
<value><struct>

<member>
<name>foo</name>
<value><int>42</int></value>

</member>
<member>

<name>bar</name>
<value><boolean>0</boolean></value>

</member>
</struct></value>

• The tag used for Array values is <array>. The array elements are then enclosed in
a <data> tag, each element being a <struct> with 2 fields: index contains the
value for the array index, and element the value for the element itself.
Example: for a value v with a type defined as Array(Natural, Real), if v is initial-
ized with:
v(12) := 2.5, v(24) := 3.666667
then its encoding is:
<value><array>

<data>
Page 322 PragmaDev Studio V6.0

Reference Manual
<value><struct>
<member>

<name>index</name>
<value><int>12</int></value>

</member>
<member>

<name>element</name>
<value><double>2.5</double></value>

</member>
</struct></value>
<value><struct>

<member>
<name>index</name>
<value><int>24</int></value>

</member>
<member>

<name>element</name>
<value><double>3.666667</double></value>

</member>
</struct></value>

</data>
</array></value>

• The value for a Choice is also represented with an <array> tag that may contain
one or two elements, enclosed in a <data> tag: the first element is a <string>
value for the present field in the SDL choice; the second element is the value of
the selected field in the choice if there is one.
Example: if a SDL choice is define as:
newtype T

choice
foo Integer;
bar Real;

endnewtype;
and a value v of this type is set via:
v!bar := 3.1416
then its encoding is:
<value><array>

<data>
<value><string>bar</string></value>
<value><double>3.1416</double></value>

</data>
</array></value>

Note that today, values for BitString or OctetString types, or of types based on the String
or Bag generators cannot be represented in XML format.

16.3.4 External calls and returns
Each time an external operator or procedure is called, the following text is sent through
the socket:
PragmaDev Studio V6.0 Page 323

Reference Manual
<externalCall calledName="<operator or procedure name>" time="<time>"

callerInstanceId="<instance PID>"

callerInstanceName="<instance name>">

<parameters...>

</externalCall>

followed by a \0, where:

• <operator or procedure name> is the name of the operator or procedure being
called. Note that in the case of an external procedure, its name might be suffixed
with ":external_proc";

• <time> is the time where the action happened, in ticks from the beginning of the
simulation;

• <instance PID> is the identifier for the process instance doing the call;

• <instance name> is the name of this process instance;

• <parameters...> are the parameters for the operator or procedure, in XML for-
mat. The format is the same as for message parameters, as described in “Sent,
received and saved messages” on page 321.

Once the operator or procedure has been called - whether the call went through XML-
RPC or was done via the simulator GUI -, its return value is also sent through the socket
like follows:
<externalReturn calledName="<operator or procedure name>" time="<time>"

callerInstanceId="<instance PID>"

callerInstanceName="<instance name>">

<return value>

</externalReturn>

followed by a \0, where <operator or procedure name>, <time>, <instance PID> and
<instance name> are the same as in the externalCall tag, and <return value> is a single
value encoded as within the message parameters (value tag as described in “Sent,
received and saved messages” on page 321).

Note that for external procedures having in/out parameters, the value encoded in the
externalReturn tag will actually be a struct with one field for each in/out parameter, and
one called "return value" containing the actual declared return value for the procedure
if any.

So for example, if a procedure is declared like follows:
procedure p(in/out i Integer) -> Real external;

an example of its return value as sent through the socket is:
Page 324 PragmaDev Studio V6.0

Reference Manual
<externalReturn calledName="p" time="..." callerInstanceId="..."

callerInstanceName="...">

<value><struct>

<member>

<name>return value</name>

<value><double>2.7182818</double></value>

</member>

<member>

<name>i</name>

<value><integer>12</integer></value>

</member>

</sruct></value>

</externalReturn>

16.3.5 Process instance creation and deletion
Each time a process instance is created or deleted, the following text is sent through the
socket:
<process time="<time>" [involvedInstanceId="<instance PID>"]

[involvedInstanceName="<instance name>"]

action="[PROCESS_INSTANCE_CREATE|PROCESS_INSTANCE_KILL]">

</process>

followed by a \0, where:

• <time> is the time where the action happened, in ticks from the beginning of the
simulation;

• <instance PID> is the identifier for the created or deleted process instance;

• <instance name> is the name of this process instance.

Note that in some very specific cases, the involvedInstanceId or involvedInstanceName
can be missing.

16.3.6 Semaphore creation, deletion, take and give
Each time an operation is performed on a semaphore, the following text is sent through
the socket:
<semaphore time="<time>" [involvedInstanceId="<instance PID>"]

[involvedInstanceName="<instance name>"]

semaphoreId="<semaphore id>" [semaphoreName="<semaphore name>"]

action="[takeAttempt|takeSucceded|takeTimedOut|

given|created|deleted]">

</semaphore>

followed by a \0, where:
PragmaDev Studio V6.0 Page 325

Reference Manual
• <time> is the time where the action happened, in ticks from the beginning of the
simulation;

• <instance PID> is the identifier for the involved process instance: taker, giver,
creator or deleter of the semaphore, if applicable and known;

• <instance name> is the name of this process instance;

• <semaphore id> is the numerical identifier of the taken, given, created or deleted
semaphore;

• <semaphore name> is the name of this semaphore, if known and applicable; note
that semaphore that are dynamically created may not have a name.

16.3.7 Proces instance SDL state change
Each time a process instance’s SDL state changes, the following text is sent through the
socket:
<sdlstate time="<time>" [involvedInstanceId="<instance PID>"]

[involvedInstanceName="<instance name>"] state="<SDL state>">

</sdlstate>

followed by a \0, where:

• <time> is the time where the action happened, in ticks from the beginning of the
simulation;

• <instance PID> is the identifier for the process instance that changed its SDL
state;

• <instance name> is the name of this process instance;

• <SDL state> is the new SDL state for the instance.

Note that in some very specific cases, the involvedInstanceId or involvedInstanceName
can be missing.
Page 326 PragmaDev Studio V6.0

Reference Manual
17 - XMI Import

When importing an XMI file, a default package is always created.

17.1 - Diagrams supported

17.2 - XMI version
The XMI import is based on version 2.1 of the XMI standard. It has been tested with files
exported from different tools.

17.3 - Class diagram
An imported Class diagram in RTDS is represented with a symbol in the tree of the
project manager. This symbol represents the class diagram and contains all classes of
this view.

17.3.1 Structure of a Class diagram
An imported class diagram is always in a package. If a class has no parent package, the
class is imported in a default package named "Default". The following class diagram :

UML diagrams Concept supported

Class Inheritance, Association, Composition, Aggregation,
Package, Attribute, Operation

Structural Port, Message, Link, Contract, Package

Use case Actor, Scenario

Sequence Diagram All concepts

State chart All concepts with some transformation

Table 42: UML diagrams supported
PragmaDev Studio V6.0 Page 327

Reference Manual
will be imported in RTDS as follow :

And the "Default" class diagram will contain the classes "class_0", "class_1" and
"class_2" :
Page 328 PragmaDev Studio V6.0

Reference Manual
If the class diagram is contained in a package. The package will be represented in the tree
of the project manager of RTDS and the class diagram will have the same name as the
one of the package. For example, the following class diagram which contains a package :

will be imported in RTDS as follow :
PragmaDev Studio V6.0 Page 329

Reference Manual
No classes are defined in the XMI packages. Thus, the imported class diagrams will be
empty. Note that when a class diagram is imported in RTDS; the packages will only con-
tain the classes they define. This is illustrated in the following example:
Page 330 PragmaDev Studio V6.0

Reference Manual
After importing this class diagram in RTDS, the project manager will show the following
tree :

The class diagram "package_0" will be empty because it does not contain any classes.
The classes "class_0" and "class_1" will be in class diagram "Default", "class_2" in
"package_1", "class_3" and class_5" in "package_3".

17.3.2 Association and direct association
All types of association are supported.

17.3.3 Aggregation and Composition
All types of aggregation or composition are supported.

17.3.4 Inheritance
All types of an inheritance are supported.
PragmaDev Studio V6.0 Page 331

Reference Manual
17.3.5 Generalization and Realization
Generalization and realization are mapped into RTDS on the specialization concept.

17.4 - Structural diagram
Objects and classes of a structural diagram are imported as SDL blocks and processes.

17.4.1 Structure of a Structural diagram
The structural diagram is always imported in a package. If a class (or an object) of a
structural diagram does not contain an object, this class (or object) will be imported as a
class of the default class diagram. For instance, when importing this structural diagram :
Page 332 PragmaDev Studio V6.0

Reference Manual
The project manager will import the structural diagram as a class diagram with the fol-
lowing structure:

and the class diagram "Struc" will contain the class "class_0". But if the following struc-
tural diagram is imported in RTDS :
PragmaDev Studio V6.0 Page 333

Reference Manual
The project manager will create the following SDL project :

Because "object_1" and class_1" are not in an class and are not composed of objects or
classes; RTDS has imported them like classes of a class diagram. But the "class_0" is
composed of an instance of the class "object_0_ImplicitClass" named "object_0". RTDS
has created two classes of block named "class_0" and "object_0_ImplicitClass". There is
the corresponding diagram of the block "class_0" in RTDS :
Page 334 PragmaDev Studio V6.0

Reference Manual
When importing a structural diagram (a class which contains a component), a class of
block is always the element for mapping a passive class. When a state machine is defined
for a object, RTDS will create a class of process with is corresponding state machine. This
is illustrated in the following example:

When importing the corresponding XMI file of this model, the project manager creates
classes of block and process :
PragmaDev Studio V6.0 Page 335

Reference Manual
The diagram for "class_0" is:

Note that it is not possible into RTDS, to define a state machine for a block. Thus if RTDS
tries to import this structural model :
Page 336 PragmaDev Studio V6.0

Reference Manual
RTDS will not import the "object_0" component. The resulting project will be :

And finally, because a package can also contain a structural diagram if the following dia-
gram is imported in RTDS :

The resulting project will be :

17.5 - Communication
The components of a structural diagram can communicate through ports, interfaces and
links. Ports are mapped on SDL gates. Interfaces are mapped on classes of block (pro-
cess) with their associated operations for sending and receiving messages. And links are
mapped on SDL channels.
PragmaDev Studio V6.0 Page 337

Reference Manual
17.5.1 Links and ports
Components of a structural diagram send and receive messages through ports which are
connected via links. For instance, if the following structural diagram is imported into
RTDS :

The corresponding RTDS SDL-RT project will be :
Page 338 PragmaDev Studio V6.0

Reference Manual
The block "DefaultTopLevelClass" is composed of two class instances. The first
"object_1" is an instance of the class of block "object_1_ImplicitClasse" and the second
"object_0" is an instance of the class of block "object_0_ImplicitClass" :

The ports of each component are mapped on SDL gates. The link "chan1" between the
components is mapped on an SDL channel. Note that it is not possible to define a gate
without a channel in RTDS. Thus if the following structural diagram is imported :
PragmaDev Studio V6.0 Page 339

Reference Manual
The port "port_0" which is not linked to another port will not be imported and the corre-
sponding RTDS SDL-RT project will be :

And the diagram of "class_0" does not contain any reference to port "port_0" :

17.5.2 Interfaces and messages
The messages received and send by a component can be declared by defining the contract
of this component. If a contract is defined for a component, RTDS will generated a inter-
Page 340 PragmaDev Studio V6.0

Reference Manual
face for it. This interface is defined in a class diagram and defines all messages received
and sent by a specific gate. For example :

After importing the XMI file into RTDS, the default class diagram will be :

The concept of a UML message is "Primitive operation" when defining the contract of the
component.
PragmaDev Studio V6.0 Page 341

Reference Manual
17.5.3 Channel
RTDS supports links between ports. A channel is created for each link of communication.
If a component in a class communicates with a external object, intermediate ports are
created. For example:
Page 342 PragmaDev Studio V6.0

Reference Manual
Since the "class_0" does not have a port. RTDS will create a port named "port_0" on it
and a channel of communication between "object_0" and "class_0":
PragmaDev Studio V6.0 Page 343

Reference Manual
Moreover, if a UML component of a structural diagram has a contract and communicates
with an external object:

RTDS will create an intermediate link between "object_3" and "class_0" but it will also
add in the interface of "class_0" a contract which is represented by the message sent and
received :
Page 344 PragmaDev Studio V6.0

Reference Manual
18 - Model browsing API

PragmaDev Studio model browsing API (a.k.a PragmaDev Studio "object server") allows
to browse all information contained in a PragmaDev Studio project in a structured way.
More precisely, this API allows to:

• Open a project file;

• Browse all agents, classes, … defined in the project;

• Decode all declarations made in these objects;

• Get a description of all transitions appearing in diagrams.

18.1 - General principles

18.1.1 Architecture
PragmaDev Studio object server is defined as a CORBA server. This allows to write cli-
ents in any language on any platform. The interface itself is described in the IDL file rtd-
sObjectServer.idl, located in the directory $RTDS_HOME/share/object_server. The
main class for the API is ObjectServer (described last in the IDL file). An instance of this
class is automatically created by the server when it starts, and a textual form of its object
identifier is stored in a file. The client should get this identifier from the file and ask the
ORB to connect to the corresponding object. The ObjectServer class is described in
detail in paragraph “Class ObjectServer” on page 357.

The file to which the ObjectServer identifier is written must be passed to the server via
the -f option when it’s started, as in:
rtdsObjectServer -f /path/to/rtdsObjectServer.ref

A typical client connecting to this server - written in C and using the ORBit CORBA
ORB - would be:
#include <orb/orbit.h>

#include "rtdsObjectServer.h"

#define ORB_INIT_ERROR 1
#define ORB_SHUTDOWN_ERROR 2
#define NO_SERVER_REF_FILE 3
#define NO_SERVER 4
#define INVALID_SERVER_REF 5

int main(int argc, char * argv[])
{

CORBA_ORB orb;
CORBA_Environment ev[1];
FILE * serverRefFile;
char serverRef[1024];
rtdsObjectServer_ObjectServer server;

/* Initialize the CORBA environment */
PragmaDev Studio V6.0 Page 345

Reference Manual
 CORBA_exception_init(ev);
orb = CORBA_ORB_init(&argc, argv, "orbit-local-orb", ev);
if (ev->_major != CORBA_NO_EXCEPTION) return ORB_INIT_ERROR;

/* Get textual form for server reference from file created by server */
serverRefFile = fopen("/path/to/rtdsObjectServer.ref", "r");
if (serverRefFile == NULL) return NO_SERVER_REF_FILE;
fgets(serverRef, 1024, serverRefFile);
fclose(serverRefFile);

/* Actually connect to server */
server = (rtdsObjectServer_ObjectServer)CORBA_ORB_string_to_object(

orb, serverRef, ev);
if (ev->_major != CORBA_NO_EXCEPTION) return INVALID_SERVER_REF;
if (server == NULL) return NO_SERVER;

/* Test that we’ve got is actually a PragmaDev Studio ObjectServer
 * with the correct version
 */
if (! CORBA_Object_is_a(server,

"IDL:pragmadev.com/rtdsObjectServer/ObjectServer:1.0"))
return INVALID_SERVER_REF;

/* Client specific code ... */

/* Disconnect from server */
CORBA_Object_release(server, ev);
if (ev->_major != CORBA_NO_EXCEPTION) return ORB_SHUTDOWN_ERROR;
CORBA_ORB_shutdown(orb, CORBA_TRUE, ev);
if (ev->_major != CORBA_NO_EXCEPTION) return ORB_SHUTDOWN_ERROR;
return 0;

}

Notes:

• The rtdsObjectServer executable is installed in $RTDS_HOME/bin, so it should be
directly available on the command line if all instructions in PragmaDev Studio
installation manual have been followed.

• All clients must test if the server is the correct one in the correct version via the
instructions:
if (! CORBA_Object_is_a(server,

"IDL:pragmadev.com/rtdsObjectServer/ObjectServer:1.0"))
/* ... */;

Not testing this condition may cause crashes or produce unpredictable results.

18.1.2 Organization
In addition to the ObjectServer class described above, the main classes for the model
browsing API are the following :

• Project: as in PragmaDev Studio, every piece of information accessible via the
API must live in a project. Instances of this class represent projects as they are
defined and used in PragmaDev Studio.
Page 346 PragmaDev Studio V6.0

Reference Manual
• Item: this class is the super-class for almost every object accessible via the API
(except for a few; see below). An item is an element is the logical architecture
described in a project. It can be:
• an agent (system, block, process, block class, process class);
• a package;
• a procedure;
• a macro;
• a state, which can be composite;
• a concurrent state machine, a.k.a service;
• a type, defined via NEWTYPE or SYNTYPE;
• a variable, including process, procedure or macro parameters and synonyms;
• a connector in a state machine (label);
• a static class defined in a UML class diagram;
• a timer;
• a semaphore.
Items are organized into a tree, and provide an access for most information
attached to the corresponding objects:
• Channels, connections and gates in systems, blocks and composite states;
• Incoming and outgoing signals for agents, procedures and services;
• Transitions for processes, procedures, services and macros.

• Element: as items define the logical architecture of a project, elements define the
physical architecture of the project. An element can be:
• a diagram;
• a symbol in a diagram;
• a source file.
Several elements may be attached to any item:
• The element describing the item, e.g the process diagram for a process item;
• The elements defining the item, e.g the process symbol in the process’s parent

block for a block item;
• The elements using the item, e.g a process dynamic creation symbol in a tran-

sition for a process item.
If an element is a symbol or a source file, all parts of its text are accessible
through the element’s syntax tree, allowing to browse the whole contents of the
model. For a symbol describing an action in a transition, it is also possible to get
the symbol(s) following it.

Several other classes are used in the API:

• Signal and SignalList are used to describe signals and signal lists defined in the
project.

• GlobalDataManager is used to access all objects that are not managed in the item
tree, but globally in the project. This includes signals, signal lists and sema-
phores.

• Channel is used to describe channels in the architecture.

• SignalWindow represent a connection point between a channel and an agent. It is
also used to represent gates, either in architecture diagrams or defined for agent
classes in UML class diagrams.
PragmaDev Studio V6.0 Page 347

Reference Manual
• For static or active class items, the classes Attribute, Operation and Role are
used to describe all their declared attributes, operations and roles played in asso-
ciations respectively. A class named Association describes the associations
themselves.

All these classes are described in detail in the next section.
Page 348 PragmaDev Studio V6.0

Reference Manual
18.2 - Interface detailed description
The following paragraphs are an overview of all features on the classes that can be
accessed through PragmaDev Studio objet server. For a really detailled description,
please refer to the IDL file rtdsObjectServer.idl, located in the directory $RTDS_HOME/
share/object_server.

18.2.1 Class Agent
This class is a sub-class of Class (cf. “Class Class” on page 351). Its instances describe
agents in the project, i.e. the system, the blocks and the processes. So items having the
types SYSTEM_TYPE, BLOCK_TYPE and PROCESS_TYPE are actually instances of Agent.

Among the features inherited from Item:

• Operations dealing with signal windows always work;

• Operations dealing with contained channels only work for systems and blocks;

• Operations dealing with contained transitions only work for processes.

Among the features inherited from Class, roles will be defined for all associations from
this agent to static classes in UML class diagrams.

In addition to the features inherited from Item and Class, agents know:

• The minimum (initial) and maximum number of instances declared for the
agent. If not specified or not applicable, the minimum number is set to the string
"1" and the maximum is empty.

• The class for the agent if the agent is an instance of an agent class. For example:

declares the (block) Agent b as being an instance of the (block class) AgentClass
MyBlockClass. So there’s two items referenced by this symbol:
• The AgentClass MyBlockClass is instantiated by the symbol and will have it in

its usingSymbols;
• The Agent b is defined by the symbol and will have it in its definingSymbols.

Note: it may be surprising that Agent inherits from Class, as agents directly in the system
architecture are usually said to be instances in SDL systems, with the term class repre-
senting only block or process classes defined in packages. As we use them, the terms
"class", "instance" and "object" must actually be taken as the common terms used in the
object-oriented paradigm: an object is what physically appears in a running system, with
associated memory used to contain the object’s attribute values. A class is a template
used to build objects, also named instances of the class. As a consequence of these defini-
tions, models never describe objects or instances, as it would be pointless to describe
what actually appears in the memory associated to such an object. What a model describe
is always the "template" used to create such objects in the running system, i.e the class.

b : MyBlockClass
PragmaDev Studio V6.0 Page 349

Reference Manual
18.2.2 Class AgentClass
This class is a sub-class of Class (cf. “Class Class” on page 351). Its instances describe
agent classes in the project, i.e. block classes and process classes. So items having the
types BLOCK_CLASS_TYPE and PROCESS_CLASS_TYPE are actually instances of AgentClass.

Among the features inherited from Item:

• Operations dealing with signal windows always work;

• Operations dealing with contained channels only work for block classes;

• Operations dealing with contained transitions only work for process classes.

Among the features inherited from Class:

• The operations will contain all signals declared as sent or received by the agent
class in UML class diagrams, with the visibilities SIGNAL_OUT_VISIBILITY and
SIGNAL_IN_VISIBILITY respectively;

• Roles will be defined by all associations from this agent class to static classes in
UML class diagrams.

In addition to features inherited from Item and Class, agent classes record their declared
instances as a list of Agent items.

18.2.3 Class Association
Instances of this class represent associations in UML class diagrams. An association
knows:

• Its type ("regular" association, aggregation, composition);

• Its name;

• The role where it starts and the role where it ends (instances of Role; cf. “Class
Role” on page 358);

• Whether the association name should be read from the declared starting role to
the declared ending role or the reverse.

Note: specialization links in class diagrams are not represented as instances of Associa-
tion. To access super-classes for a given class, use the attribute superClasses on the
instance of Class describing it (cf. “Class Class” on page 351).

18.2.4 Class Attribute
An instance of this class describes an attribute declared in a class symbol in a UML class
diagram. Its attributes are all information that may be extracted from the UML attribute
declaration:

• Visibility (public, protected, private);

• Name;

• Multiplicity (as 12 in "myIntArray[12] : int");

• Type;
Page 350 PragmaDev Studio V6.0

Reference Manual
• Default value (as 0.0 in "myFloat : float = 0.0");

• Properties (as read-only in "myAttr : int {read-only}").

18.2.5 Class Channel
An instance of this class represent a channel in an architecture diagram. A channel
knows:

• Its name;

• The signal window where it starts and the signal window where it ends (instances
of SignalWindow; cf. “Class SignalWindow” on page 359).

18.2.6 Class Class
This class is a sub-class of Item (cf. “Class Item” on page 353). Its instances are all objects
in the current project that are considered as classes, i.e static classes, systems, blocks,
processes, block classes and process classes (cf. note in paragraph “Class Agent” on
page 349).

Among the features inherited from Item:

• Operations dealing with signal windows only work for active classes;

• Operations dealing with contained channels only work for systems, blocks and
block classes;

• Operations dealing with contained transitions only work for process and process
classes.

In addition to these features, an instance of Class knows:

• Its attributes as a list of instances of Attribute (cf. paragraph “Class Attribute”
on page 350);

• Its operations as a list of instances of Operation (cf. paragraph “Class Operation”
on page 357);

• Its direct super-classes as a list of instances of Class;

• The roles it plays in associations as a list of instances of Role (cf. paragraph
“Class Role” on page 358);

• A list of descriptors for the attributes that would be created for each role. These
descriptors give the attribute name, type and multiplicity. They are not created if
the association is not navigable;

• If the class is a static class, it also knows the C++ source file in the project that
was generated for it if any.

Note: the role and the role attributes are not considered on the same side of the associa-
tions. For example, in:

C1 C2assoc
r1 r2
PragmaDev Studio V6.0 Page 351

Reference Manual
the class C1 plays the role r1 in association assoc, so r1 will appears in the roles played by
C1. But the attribute created for assoc will be for role r2 (and will reference instances of
C2), so the role attributes for C1 will include an attribute named r2.

18.2.7 Class Element
Elements define the physical architecture of the project. An element can be a diagram, a
symbol or a source file.

Features for elements are:

• The name of the file for the element. This is the diagram file name for diagrams
and symbols, and the source file name for source files;

• A description of the textual contents of the element if any as a syntax tree (see
below);

• A list of declarations symbols contained in the element if applicable. This is
available only for diagram elements.

A syntax tree consists in the following fields:

• A type, indicating what kind of information the element contains;

• A set of attributes, depending on the type.

For example:

• For a process symbol in a block diagram, the syntax tree type will be
PROCESS_DECLARATION and its attributes will be the process name, its minimum
and maximum number of instances as written in the symbol and the process pri-
ority (for SDL-RT).

• For a timer start in a transition, the syntax tree type will be TIMER_START and its
attributes will be the timer name and a descriptor of the expression for the timer
time-out if any.

• For a declaration symbol (SDL, SDL-RT or C declarations), the syntax tree type
will be DECLARATIONS and its attributes will be a list of descriptors for the declara-
tions in the symbol.

• For a task block, the syntax tree type will be TASK and its attributes will include a
list of statement descriptors for all statements in the task block.

Notes:

• In SDL, expressions and statements must be described recursively. For example,
a binary operation expression may be described as an expression for the left
operand, followed by a binary operator, followed by an expression for the right
operand. For statements, an IF statement may be described by a descriptor for
the tested condition, followed by the list of statements for the THEN part, followed
by the list of statements for the ELSE part if any. This is a problem to build the
descriptors, as recursive data structures are not supported by all versions of
CORBA, and cannot be represented in all IDL language mappings.
The chosen solution has been to store all descriptors for expressions and state-
ments in lists attached to the syntax tree, then to reference them in the syntax
Page 352 PragmaDev Studio V6.0

Reference Manual
tree itself by their index in these lists. So the syntax tree actually has the follow-
ing fields:
• A list of expression descriptors, called expressionNodes, containing all expres-

sion descriptors used in the syntax tree;
• A list of statement descriptors, called statementNodes, containing all state-

ment descriptors used in the syntax tree;
• A syntax tree body, called body, which is the actual syntax tree with its type

and attributes. Whenever this syntax tree must reference an expression
descriptor or a statement descriptor, it uses an ExpressionNodeId or a State-
mentNodeId (resp.), that are simply indices in the expressionNodes or state-
mentNodes lists (resp.).

So, in the examples above:
• In the attributes for a timer start syntax tree, the expression for the time-out

value is actually stored as an ExpressionNodeId, index in the syntax tree’s
expressionNodes list for the actual expression descriptor. This expression
descriptor may in turn reference other expressions by their ExpressionNodeId.

• In the attributes for a task block syntax tree, the list of statements is actually a
list of StatementNodeId, indices for the actual statement descriptors in the
syntax tree’s statementNodes list. These statement descriptors may in turn ref-
erence other statements by their StatementNodeId.

• In SDL-RT projects, expressions, statements and declarations are not parsed,
and their exact description is not known by PragmaDev Studio. So special types
have been introduced, named RAW_EXPRESSION, RAW_STATEMENT and
RAW_DECLARATION respectively, for which only the expression, statement or decla-
ration text is known.

18.2.8 Class GlobalDataManager
Instances of this class gather all the objects managed at project level. These objects are:

• The signals defined in the whole project as instances of Signal (cf. paragraph
“Class Signal” on page 358);

• The signal lists defined in the whole project as instances of SignalList (cf.
paragraphe “Class SignalList” on page 359);

• For SDL-RT projects, the semaphores defined in the whole project as
instances of Item (cf. paragraph “Class Item” on page 353).

An instance of GlobalDataManager is accessible for each project via its attribute gdm.

18.2.9 Class Item
Items define the logical architecture of a project. An item may be:

• an agent (system, block or process),

• an agent class (block class or process class),

• a package,

• a procedure,

• a macro (SDL projects only),
PragmaDev Studio V6.0 Page 353

Reference Manual
• a service (SDL projects only),

• a state (which may be composite in SDL projects),

• a type (defined via NEWTYPE and SYNTYPE in SDL projects),

• a variable (including synonyms; only in SDL projects),

• a connector in a behavioral diagram,

• a timer,

• a static (passive) class (only in SDL-RT projects),

• a semaphore (only in SDL-RT projects).

The exact type for the item is remembered in its attribute type. The type hierarchy for
items is the following:

Note: in this diagram, only the classes in black are actually declared in the IDL. The other
ones have nothing to add to their super-class and their declarations would be empty.

In addition to their type, items know:

• Their name;

• Their full name, which generally is their name prefixed with the full name for
their parent package separated by ’::’;

• Their children, parent and parent package (instances of Item);

• The element describing them as an instance of Element (cf. paragraph “Class Ele-
ment” on page 352). This element is for example the process diagram for a pro-

System

type = SYSTEM_ITEM

ProcessClass

type = PROCESS_CLASS_ITEM

Timer

type = TIMER_ITEM

Type

type = TYPE_ITEM

Class

Block

type = BLOCK_ITEM

Package

type = PACKAGE_ITEM

Macro

type = MACRO_ITEM

Semaphore

type = SEMAPHORE_ITEM

BlockClass

type = BLOCK_CLASS_ITEM

StaticClass

type = STATIC_CLASS_ITEM

AgentClass

Item

Service

type = SERVICE_ITEM

Agent

Process

type = PROCESS_ITEM

Procedure

type = PROCEDURE_ITEM

Connector

type = CONNECTOR_ITEM

Variable

type = VARIABLE_ITEM

State

type = STATE_ITEM
Page 354 PragmaDev Studio V6.0

Reference Manual
cess. For a procedure in a SDL-RT project, it can also be a C source file if the
procedure is implemented in C;

• The list of symbols defining the item and the list of symbols using it, as instances
of Symbol (cf. “Class Symbol” on page 361). The meaning of these lists depend on
the item type:

Item type Defining symbols Using symbols(a)

PACKAGE_ITEM (none) (none)

STATIC_CLASS_ITEM (none) Class symbols for this class in
UML class diagram

SYSTEM_ITEM (none) (none)

BLOCK_ITEM Block symbol in block’s
parent

(Same as defining symbols)

BLOCK_CLASS_ITEM (none) Block class symbols in UML
class diagrams + block class

instance symbols for this
class

PROCESS_ITEM Process symbol in process’s
parent

Process creation symbols for
this process + defining

symbol(s)

PROCESS_CLASS_ITEM (none) Process class symbols in UML
class diagrams + process class

instance symbols for this
class

PROCEDURE_ITEM Procedure symbol in
procedure’s parent

(none)

SERVICE_ITEM Service symbol in service’s
parent

(none)

MACRO_ITEM Macro declaration symbol in
macro parent diagram if any

(none)

STATE_ITEM State declaration symbol for
composite state + state

symbols starting transitions
for this state

State symbols ending
transitions for this state

CONNECTOR_ITEM "In" connector symbols
(labels)

"Out" connector symbols
(JOINs)

TIMER_ITEM Symbols starting the timer Symbols cancelling the timer

SEMAPHORE_ITEM Declaration symbol for the
semaphore

Take and give symbols for the
semaphore.
PragmaDev Studio V6.0 Page 355

Reference Manual
• The list of source files defining the item as instances of Element (cf. paragraph
“Class Element” on page 352). This may happen for types and variables, that can
be defined in declaration files in packages.
Note: in a valid project, a given Item may only have exactly one defining symbol
or exactly one defining source file.

• The package declared as USEd in the item.

In addition to these, an item also manages:

• The signal windows attached to it if applicable. Signal windows are connection
points between channels and the item and are represented as instances of Sig-
nalWindow (cf. paragraph “Class SignalWindow” on page 359). For agent classes,
signal windows also include the gates declared in the class diagrams.

• The channels declared in the item’s diagram if applicable. These channels are
represented as instances of Channel (cf. paragraph “Class Channel” on page 351).

• The transitions defined in the item’s diagram if applicable. The fields in a
descriptor for a transition are:
• A boolean statesExcluded indicating if the transition is defined for a given set

of states, or for all states except a given set. For example, a transition starting
from a state symbol containing "S1, S2" is defined for the states S1 and S2, so
its statesExcluded indicator will be false. But a transition starting from a state
symbol containing "*(S1, S2)" is defined for all states but S1 and S2, so its
statesExcluded indicator will be true.

• The list of states appearing in the state symbol starting the transition.
Depending on the statesExcluded indicator, it can be the list of states for
which the transition is defined (if indicator is false), or the states for which the
transition is not defined (indicator is true). The states are represented by
instances of State (cf. paragraph “Class State” on page 360).
If a transition has a statesExcluded indicator set to true and an empty list of
states, it means that it’s defined for all states (the state symbol contains "*"). If
a transition has a statesExcluded indicator set to false and an empty list of
states, the transition is the start transition for the item.

• The symbol starting the transition. This symbol may be an input symbol, a
save symbol, a continuous signal symbol or a start symbol. Its type and con-
tents may be decoded via its syntax tree.

Signal windows, channels and transitions are managed via operations which are defined
in the Item class. However, for items not supporting the operation, it will raise an excep-

TYPE_ITEM Declaration symbol for the
type

(none)

VARIABLE_ITEM Declaration symbol for the
variable

(none)

a. Always includes an additional symbol for items having diagrams, representing the diagram
frame.

Item type Defining symbols Using symbols(a)
Page 356 PragmaDev Studio V6.0

Reference Manual
tion DictionaryItemOperationError. This is the case for example when trying to get
transitions from a block or a connector, or when trying to get channels from a procedure
or a timer.

18.2.10 Class ObjectServer
This class is the entry point for the server. When started, the server creates an Object-
Server instance and writes a textual representation of its identifier to the file specified in
its -f option. So a client will always get an instance of this class first.

The only operations on this class are:

• loadProject, loading a project in a given file and returning the instance of
Project describing it (cf. “Class Project” on page 358);

• quit, making the server quit.

Notes:

• The loadProject operation is executed by the server, so if the server and the cli-
ent are on different machines, the project file must be seen by the server, and
specified as it is seen by the server. For example, if the server is executed on a
Unix machine, and the client on a Windows one, the server won’t be able to
understand paths like H:\MyFiles\MyProject.rdp, even if H: is a shared drive, as
such a path is only known to Windows. The specified path for loadProject must
then be something like:
/path-to-shared-drive/MyFiles/MyProject.rdp
To avoid this kind of problem, running the client and the server on different
machines is strongly discouraged.

• There is no checking at all done by the quit operation. So any other client is con-
nected to the same server, its connection will be immediatly closed without
warning. So this operation must be used only if the client knows that it is the only
one connected to the server, e.g if the client started the server itself for its own
use.

18.2.11 Class Operation
An instance of this class describes an operation declared in a class symbol in a UML class
diagram. Its attributes are all information that may be extracted from the UML operation
declaration:

• Visibility (public, protected, private);

• Name;

• Parameters with for each:
• its direction (in, out or in/out),
• its name,
• its type,
• its default value (if any);

• Return type;

• Properties (as query in "myOp() : int {query}").
PragmaDev Studio V6.0 Page 357

Reference Manual
18.2.12 Class Procedure
This class is a sub-class or Item (cf. “Class Item” on page 353).

Among the features inherited from Item:

• Operations dealing with signal windows do not work;

• Operations dealing with contained channels do not work;

• Operations dealing with contained transitions work.

In addition to these features, the procedure knows its signature as declared in the proce-
dure declaration symbol (NB: this means that in SDL, the signature will actually only be
the procedure name).

18.2.13 Class Project
Instances of this class represent a project as loaded from a project file via the operation
loadProject on class ObjectServer.

A project only knows:

• Its associated GlobalDataManager instance (cf. paragraph “Class GlobalData-
Manager” on page 353);

• An item representing the top-level pseudo-package for the project itself. This
pseudo-package contains all top-level items in the project (usually a system and
a set of packages). It is represented as an instance of Item with the type
PACKAGE_ITEM (cf. paragraph “Class Item” on page 353).

18.2.14 Class Role
Instances of this class represent roles played by classes in associations in UML class dia-
grams. Attributes for a role are:

• The association for which it is defined as an instance of Association (cf. para-
graph “Class Association” on page 350);

• Its name;

• Its cardinality;

• Whether it is navigable or not.

18.2.15 Class Signal
Instances of this class represent signals in the project. Signals are always managed glo-
bally via an instance of GlobalDataManager (cf. paragraph “Class GlobalDataManager” on
page 353).

The attributes for a signal are:

• Its name;

• Whether signal is a timer or not. Note that signals for timers are referenced by
the instance of GlobalDataManager for a project, even if they are local to a process
or procedure;
Page 358 PragmaDev Studio V6.0

Reference Manual
• The type of its parameters. These types are given as strings, not as type items;

• The signal windows sending and receiving this signal (cf. paragraph “Class Sig-
nalWindow” on page 359);

• The elements where the signal is declared. These elements may be declaration
symbols or declaration files. In a correct project, there should be exactly one dec-
laration element for each signal;

• The input and output symbols for this signal.

18.2.16 Class SignalList
Instances of this class represent signal lists in the project. Signal lists are always man-
aged globally via an instance of GlobalDataManager (cf. paragraph “Class GlobalData-
Manager” on page 353).

The attributes for a signal list are:

• Its name;

• The signals and signal lists it contains as instances of Signal and SignalList
respectively;

• The signal windows sending and receiving this signal list (cf. paragraph “Class
SignalWindow” on page 359);

• The elements where this signal list is declared, which can be declaration symbols
or declaration files. In a correct project, there should be exactly one declaration
element for each signal list.

18.2.17 Class SignalWindow
Instances of this class represent connection points between channel and agents. There
are three main types of signal windows:

• Gates as defined in class diagrams for agent classes:

Here, two signal windows are defined: the one for gate gA (receiving m1 and send-
ing m3) and the one for gate gB (receiving m2 and sending m4).

• "Outside" signal windows, connecting a channel to the outside border of an
agent:

> m1() {via:gA}
> m2() {via:gB}

< m3() {via:gA}
< m4() {via:gB}

MyClass

myProcessch
[m1, m2]
PragmaDev Studio V6.0 Page 359

Reference Manual
• "Inside" signal windows, connecting a channel to the inner border of an agent:

The attributes for a signal window are:

• The item to which it is attached (cf. paragraph “Class Item” on page 353);

• A boolean indicating if the signal window is inside or outside. Gates defined in
class diagrams are considered to be outside the parent item;

• The gate name for the signal window if any. If the signal window is not a gate, the
gate name is empty;

• The channel attached to the signal window if any, as an instance of Channel (cf.
“Class Channel” on page 351). If the signal window is a gate defined in a class
diagram, this attribute is set to an empty reference;

• The signal window facing this one on its attached channel. If the signal window is
a gate defined in a class diagram, this attribute is set to an empty reference;

• The list of connections for this signal window as a list of strings. Since connec-
tions are only meaningful for "inside" signal windows, this list will always be
empty for an "outside" signal window or a gate defined in a class diagram;

• The signals and signal lists that the window sends and receives. Note that these
lists are defined from the signal window point of view. So for example, in:

• Signal window w1 for block B1 sends m2 and receives m1;
• Signal window w2 for block B2 sends m1 and receives m2.

• A boolean indicating if the signal window is actually a defined one, i.e if it
appears in an agent class symbol in a class diagram (NB: this feature is actually
implemented via the operation isDefined() instead of an attribute).

18.2.18 Class State
This class is a sub-class of Item (cf. “Class Item” on page 353).

Among the features inherited from Item:

• Operations dealing with signal windows work, but no signal window will be
defined if the state is not composite;

ch
[m2][m1]

ch
[m2][m1]

w1 w2

block B1

B2
Page 360 PragmaDev Studio V6.0

Reference Manual
• Operations dealing with contained channels work, but no channel will be defined
if state is not composite;

• Operations dealing with contained transitions do not work.

In addition to these features, a state knows whether it is composite or not.

18.2.19 Class Symbol
This class is a sub-class of Element (cf. “Class Element” on page 352). Its instances repre-
sent symbols in a diagram. The nodeFileName attribute for symbols is the file name for
their container diagram.

In addition to the features inherited from Element, a symbol knows:

• Its internal identifier. This is the string "SYMBnnn" used to identify the symbol
inside its diagram.

• The symbols following it if the symbol is part of a transition. For each following
symbol, the syntax tree for the link going from the current symbol to the follow-
ing one is also available. This syntax tree is only used for decision and transition
option branches, where the link text contains the conditions on the tested value.

18.2.20 Class Variable
This class is a sub-class of Item (cf. “Class Item” on page 353).

Among the features inherited from Item:

• Operations dealing with signal windows do not work;

• Operations dealing with contained channels do not work;

• Operations dealing with contained transitions do not work.

In addition to these features, a variable knows:

• The name for its type;

• Its type itself as an instance of Item (cf. paragraph “Class Item” on page 353).
This instance will only be available if the type definition can be found in any
ancestor for the variable. If it can’t, this attribute will contain an empty object
reference.
Note: this will be the case for all predefined types, as they are not declared in the
project.
PragmaDev Studio V6.0 Page 361

Reference Manual
19 - SGML export for PragmaDev Studio
documents

19.1 - Principles
In addition to be able to export documents in formats usable in word processors, Prag-
maDev Studio also provides a means to entirely generate a full document by using the
SGML format. This is a somewhat advanced feature and should only be used by experi-
enced users.

The formats and tools used during this process are the following:

• SGML (Standard Generalized Markup Language) is a "meta-language" allowing
to define custom document types. It is an ISO standard (ISO 8879:1986). SGML
documents are usually based on structure rather than presentation: documents
will be split in logical units and a presentation will be applied on each logical unit
afterwards, considering the unit type and its context.
SGML is very closely related to XML, as XML is a simplified version of SGML.
The main difference is that SGML documents have to be defined via a DTD (Doc-
ument Type Definition) file. The DTD used by PragmaDev Studio SGML docu-
ments is specific and is provided in PragmaDev Studio distribution under
$RTDS_HOME/share/sgml/rtds-doc.dtd.
For more information on SGML, see http://xml.coverpages.org/sgml.html.

• DSSSL (Document Style and Semantics Specification Language) is a way of
defining the presentation for a SGML document. DSSSL files are usually called
stylesheets, but they are far more powerful than this name implies, and rather
look like formatting programs for SGML documents than simple stylesheets.
DSSSL is also an ISO standard (ISO 10179:1996).
Because of its complexity, DSSSL is not widely used today, and simpler, but less
powerful formats such as XML/XSL are usually preferred.
For more information on DSSSL, including the full text of the standard, see
http://xml.coverpages.org/dsssl.html.

• OpenJade is the most advanced - if not the only - free DSSSL engine available
today. A DSSSL engine takes a SGML document, its DTD and a DSSSL stylesheet
and produces a document that can be directly printed or opened in a word pro-
cessor. Output formats supported by OpenJade include RTF (Rich Text Format,
supported by almost all major word processors), MIF (Maker Interchange for-
mat, supported by Adobe FrameMaker) and TeX through a specific macro pack-
age called JadeTeX.
OpenJade’s home page is http://openjade.sourceforge.net; the latest version
and the recommended one for PragmaDev Studio is 1.3.2.
JadeTeX home page is http://jadetex.sourceforge.net; the latest version and
the one recommended for PragmaDev Studio is 3.13.

• TeX is the well-known typesetting system commonly used on Unix. More infor-
mation and downloads can be found on the TeX Users Group website at http://
www.tug.org.
Page 362 PragmaDev Studio V6.0

Reference Manual
• dvipdfm converts DVI files as output by TeX to very clean PDF files including
hyperlinks. dvipdfm is available for download at http://gaspra.kettering.edu/
dvipdfm.

Warning: The main difficulty in producing a document using these formats and tools is
the design of the DSSSL "stylesheet". As said above, this "stylesheet" looks much more
like a formatting program for a SGML document, written in a Lisp / Scheme-like func-
tional language. This kind of language is considered as difficult to handle even among
experienced programmers; so producing documents through SGML is obviously not for
the average user.

19.2 - Documentation generation process
The preferred process for documentation generation via SGML is the following:

• Starting from a document file (.rdo) and from a DSSSL stylesheet template,
PragmaDev Studio generates a SGML document file, conforming to a provided
DTD, and a full DSSSL stylesheet. How the final DSSSL stylesheet is produced
from the template is described in the paragraph “DSSSL stylesheet production”
on page 364.

PragmaDev Studio
.rdo document

SGML document file DSSSL stylesheet

PragmaDev Studio

DSSSL stylesheet
template

DSSSL engine
(OpenJade)

TeX file

TeX processor
(JadeTeX)

DVI file

DVI to PDF converter
(dvipdfm)

PDF file
PragmaDev Studio V6.0 Page 363

Reference Manual
• Using OpenJade as the DSSSL engine, a TeX file is produced, using macros
defined in the JadeTeX package.

• Processing the TeX file via jadetex produces a DVI file.

• Converting the DVI file with dvipdfm produces the final PDF document.

This process has the advantage of not requiring any word processor to produce a final
document. Except for the first step (SGML export of the PragmaDev Studio document),
the production can even be fully automated via a makefile.

It is obviously possible to produce documents in other formats such as RTF or MIF
(using OpenJade) or other ones if another DSSSL engine is used.

19.3 - DSSSL stylesheet production
PragmaDev Studio is able to produce a full DSSSL stylesheet by using a stylesheet tem-
plate and the style descriptions set up in the document export formats for SGML. The
stylesheet template may contain the following marker lines:

• ;%HEADING_STYLES%:
This line will be replaced by the definition of a variable name *heading-styles*
describing the paragraph styles for section headings.

• ;%PARAGRAPH_STYLES%:
This line will be replaced by the definition of a variable named *paragraph-
styles* describing the "normal" paragraph styles.

• ;%CHARACTER_STYLES%:
This line will be replaced by the definition of a variable named *character-
styles* describing all character styles.

These variables are written as association lists, usable in the DSSSL stylesheet via the
assoc standard function. For character and "normal" paragraph styles, the key in the
association list is the style name. For section heading paragraph styles, the key is the sec-
tion level, starting at 1.

The description for a paragraph style - "normal" and section heading ones - is a list con-
taining:

• The font for the paragraph as a list (font family name, font size, bold indicator,
italic indicator, underlined indicator). The indicators are boolean values.

• The color for the text, as a list of RGB coordinates, which are 3 real numbers
between 0.0 and 1.0.

• The alignment for the paragraph as a valid value for the quadding option for the
make paragraph DSSSL construct.

• The line spacing for the paragraph.

• The left margin for the paragraph, as a distance from the left display area border.

• The right margin for the paragraph, as a distance from the right display area bor-
der.

• The indent for the paragraph first line, as a distance from its left margin.
Page 364 PragmaDev Studio V6.0

Reference Manual
• The width for the paragraph heading if any.

• The additional space above the paragraph.

• The additional space below the paragraph.

• A boolean indicating if a page break should be forced before the paragraph.

• A boolean indicating if the paragraph should be kept on the same page as the one
following it.

• A boolean indicating if the paragraph should be kept on the same page as the one
preceding it.

• The widow / orphan line count for the paragraph.

The description of a character styles is a list containing:

• The font for the characters as a list (font family name, font size, bold indicator,
italic indicator, underlined indicator). The indicators are boolean values.

• The color for the text, as a list of RGB coordinates, which are 3 real numbers
between 0.0 and 1.0.

A full example of a DSSSL stylesheet template with a PragmaDev Studio document using
it is in the PragmaDev Studio distribution in $RTDS_HOME/share/sgml/example.
PragmaDev Studio V6.0 Page 365

Reference Manual
20 - Experimental exports

As a result of several research projects our team have experimented export to several
pivot languages in order to use model checkers from research labs. By default these
export are not available in the menus. To make them available the Show deprecated val-
idation tools in menus in Advanced tab of the Preferences must be turned on.

This will activate the following menus in the Project manager:

20.1 - Mapping of SDL to IF concepts

20.1.1 Scope
The IF language, specified by VERIMAG laboratory, is a representation of automaton
systems. Based on that representation toolkits offer model checking and test generation.
Page 366 PragmaDev Studio V6.0

http://www-verimag.imag.fr/
http://www-verimag.imag.fr/

Reference Manual
This chapter describes the translation rules implemented by PragmaDev Studio to export
an SDL system to an IF system. As not all SDL concepts can be translated, restrictions or
possible ways around will be described.

20.1.2 Translation table
The symbols used in this table are:

• if the feature is fully supported;

• if the feature is partially supported;

• if the feature is not supported at all.

SDL Category SDL concept Translated

BOOLEAN

INTEGER

REAL

CHARACTER

CHARSTRING

PID

SIGNAL

SIGNALLIST

SYNONYM

SYNTYPE

NEWTYPE LITERALS

NEWTYPE STRUCT

NEWTYPE STRUCT
SELECT

NEWTYPE CHOICE

Table 43: SDL2IF translation table
PragmaDev Studio V6.0 Page 367

http://www-verimag.imag.fr/

Reference Manual
NEWTYPE ARRAY

NEWTYPE STRING

NEWTYPE BAG

OPERATORS

DCL

FPAR

RETURNS

TIMER

Architecture

SDL Category SDL concept Translated

Table 43: SDL2IF translation table
Page 368 PragmaDev Studio V6.0

Reference Manual
var:=val

for, break, continue

if (statement)

val bin-op val

un-op val

struct!field

array(index)

operator(params)

SDL Category SDL concept Translated

Table 43: SDL2IF translation table
PragmaDev Studio V6.0 Page 369

Reference Manual
20.1.3 Detailed translation rules

20.1.3.1 Architecture

SDL supports a hierarchical structure with blocks and processes connected with chan-
nels; IF is based on a flat architecture made of processes connected by signalroutes. In
order to be exported, the SDL system is "flattened" with one signalroute per message
exchanged.

In SDL, the description of the blocks and processes come after the endsystem keyword in
the SDL-PR file. In IF, the endsystem is at the end of the file.

if...then...else...fi

Finite state machine

SDL Category SDL concept Translated

Table 43: SDL2IF translation table
Page 370 PragmaDev Studio V6.0

Reference Manual
It is possible to indicate the initial number of instances of an IF process, but not the max-
imum number. The maximum number of instances in the SDL system is not translated.

20.1.3.2 Communication

Signals, processes, and their associated signal queues are similar concepts in IF and SDL.
The SENDER keyword does not exist in IF, so the pid of the instance that sends the sig-
nal is explicitly put among the signal parameters. IF and SDL both support the ENV key-
word.

20.1.3.3 Behavior

20.1.3.3.1 States

All SDL states are transformed in stable states in the IF language. The start transition is
replaced by a stable state in the IF language with the option #start and an automatic
transition ("provided true"). As in SDL, it is possible to save a message with the save
instruction. However, in IF, if a signal is received in a state where it’s not expected, the
process is blocked; in SDL, the message is discarded. To bypass this problem with the
Verimag toolset, the -discard option must be used during execution of the system.

Only simple states are supported in IF, so any state symbol with multiple states, *, or
*(...) states will make the conversion fail.

SDL IF

SYSTEM system_name; system system_name;

BLOCK block_name; No IF equivalent. The SDL sys-
tem is flattened.

PROCESS process_name(initial_nb,
max_nb)

process
process_name(initial_nb);

Table 44: Structural mapping between SDL and IF

SDL IF

SIGNAL
signal_name(param_type);

signal sig_name(param_type);

SIGNALLIST list_name(…); Not needed; all signal lists are
replaced by their contents wherever
they appear.

CHANNEL … & SIGNALROUTE
…

signalroute, created between the
IF processes by flattening SDL
channels & signalroutes.

CONNECT …; (not needed in IF)

Table 45: Mapping of communication principles from SDL to IF
PragmaDev Studio V6.0 Page 371

Reference Manual
A label will be replaced by an unstable state whereas a JOIN will be a nextstate to one
of these states.

20.1.3.3.2 Transitions

As in SDL, IF transitions take no time. The SDL input are translated to IF input with the
pid of the sender in parameter in order to support the sender SDL keyword.

IF does not support priority inputs or outputs.

Continuous signals are supported in IF but without any priority.

SDL IF

START; state RTDS_Start #start;

provided true;

…;

STATE
state_name;

state state_name;

SAVE
signal_name;

save signal_name;

NB: saved signals must always appear just after
the state declaration and before any input or
provided.

label_name:

…

state label_name #unstable ;

…

endstate;

JOIN label_name; nextstate label_name;

Table 46: Behavioral mapping between SDL and IF

SDL IF

INPUT signal_name1;

INPUT
signal_name2(params);

input signal_name1();

input
signal_name2(params);

PROVIDED condition; provided condition;

Table 47: Mapping between SDL and IF for transitions
Page 372 PragmaDev Studio V6.0

Reference Manual
20.1.3.3.3 Actions

SDL decisions are translated to an unstable states in IF with a guard (provided) in
accordance to each branch of the decision. The SDL join is replaced by a nextstate to
the unstable state in accordance to the label.

20.1.3.3.4 Timer

Timers are handled differently in SDL and IF. A time out value is set in SDL when a timer
is started, and a signal is received when the timer goes off. In IF, a clock is set to 0 and
the clock value is checked until it reaches the timeout value. To be able to handle timers
started with different values depending on conditions, the IF clock is initialized to a neg-
ative value so that the time-out occurs when the clock reaches 0.

SDL IF

TASK statement; /* Formal task */ task statement;

TASK 'string'; /* Informal task */ informal "string";

OUTPUT signal_name1(params);

OUTPUT signal_name2 VIA
signal_route;

OUTPUT signal_name3 TO
process_name;

OUTPUT signal_name4 TO
process_id;

output signal_name1(params) via
signal_route;

output signal_name2() via signal_route;

output signal_name3() via signal_route;

output signal_name4() to process_id;

NB: no possibility for undeterministic sig-
nal sending in IF; every signal must have
one and only one possible receiver. A signal
route is created for each signal, so a "TO
process_name", not available in IF, can
sent via the signal_route for the signal.

CREATE process_name; fork process_name();

STOP; stop;

DECISION cond;

(false):

/* action 1 */

(true):

/* action 2 */

ENDDECISION;

state etat_decision #unstable ;

provided not cond;

/* action 1 */

 provided cond;

/* action 2 */

endstate;

Table 48: Mapping between SDL and IF for actions
PragmaDev Studio V6.0 Page 373

Reference Manual
A reset instruction is automatically added after each when instruction in IF to avoid com-
binatorial explosion.

20.1.3.3.5 Data types

IF defines 5 predefined types : integer, real, boolean, pid and clock. Character and char-
string are replaced by string of integers which holds the ASCII value of each character.
Constants are not typed. Constants for complex values cannot be translated.

SDL syntypes based on anything else than an integer or a natural cannot translated. If no
lower or upper bound can be extracted, the translation also fails.

In SDL, the index type for an ARRAY can be any type. In IF, only indices between 0 and
an upper bound are supported. So, only SDL arrays based on an integer index type with 0
or a positive value as lower bound can be translated. All others make the translation fail.

SDL IF

SET(NOW+15,myclock)

…

INPUT myclock

set myclock := -15;

…

when myclock=0;

RESET myclock reset myclock;

Table 49: Mapping of timers between SDL and IF

SDL IF

SYNONYM maxCount integer = 3; const maxCount = 3;

DCL

v integer,

b boolean,

c charstring;

var v integer;

var b boolean;

var c RTDS_charstring;

NEWTYPE nouveau

LITERALS carotte, asperge, hari-
cot;

ENDNEWTYPE;

type nouveau =

enum carotte,asperge,haricot

endenum;

Table 50: Mapping of datas types between SDL and IF
Page 374 PragmaDev Studio V6.0

Reference Manual
Variables PARENT, OFFSPRING and SENDER predefined in SDL do not exist in IF.
However, it is possible to create these variables:

• PARENT: the pid of the parent process is given as a parameter to the fork:
fork child_process(self, ...); // in the parent process
The child process will include a definition for this additional parameter:
fpar PARENT pid;

• OFFSPRING : use the fork return value:
var OFFSPRING pid;
OFFSPRING := fork child_process(self, ...);

• SENDER: the pid of the sender is added to the signal parameters and retrieved
when the signal is received:
var SENDER pid;
input signal1(SENDER, ...);
The output for the message will then be:
output signal1(self, ...);

20.1.3.4 IF observers

IF observers are used to observe the system behavior and verify it is correct.

An observer can be :

• pure : only checks the system.

• cut : checks the system and can stop it with the action cut.

• intrusive : checks and can modify the variables, sends signals to other pro-
cesses.

NEWTYPE nouveau

STRUCT

field1 integer;

field2 boolean;

ENDNEWTYPE;

type nouveau =

record

field1 integer;

field2 boolean;

endrecord;

SYNTYPE interv = Integer

CONSTANT 0:4

ENDSYNTYPE;

type interv = range 0 .. 4;

NEWTYPE intTable

ARRAY(interv, integer)

ENDNEWTYPE;

type intTable = array[4] of inte-
ger;

SDL IF

Table 50: Mapping of datas types between SDL and IF
PragmaDev Studio V6.0 Page 375

Reference Manual
As a normal process, it has an initial state #start, but also has specific state types for
observers:

• #success indicates a success state, meaning all conditions have been verified;

• #error indicates an error state, where one of the conditions is not met.

In the Verimag IFx toolset, the following execution options can be specified :

• -cs/-ce to stop the system when it reaches a success or error state (resp.); this
allows to avoid explicit cut instructions in the observer.

• -ms/-me make the executable display a message in its standard output when a
success or error state is reached (resp.).

transition:

Three possible events can trigger a state: match, provided, when.

• match : observe the events:
match input signal(pidSender,params) in pidLocal;
match output signal(pidSender,params) from pidCentral;
match fork(pidLocal) in pidCreator;
match kill(pidLocal) in pidCreator;
pidSender, pidLocal, pidCentral and pidCreator have previously been declared
like pid. For match input and output signal, it is required to declare a variable for
each parameter, even if it is not used thereafter.

• provided : check the value of variables or the state of a process:
provided (process_id).var_name = expression;
provided (process_id) instate state_name;
process_id is written with the process name and its instance number: ({pLo-
cal}0) for example.
It is possible to gather several of these conditions to make only one transition, for
instance:
var i integer;
provided i = 2 and (process_id) instate Idle;

• when : check when a timer reaches the timeout value:
when myclock=0;
Observers can not check timer from system, it is required to declare a timer in
the observer.

action:

• cut: stop the system execution;

• flush: erase the set of event kept in memory by the observer
Example :
pure observer obs;

var i integer := 0 ;
Page 376 PragmaDev Studio V6.0

Reference Manual
state start #start ;
match fork(pidLocal) in pidCreator;;

flush;
task i := i+1;
nextstate -;

endstate;
endobserver;
• without the flush, i will be 3 at the end of the execution,
• with the flush, i will be 1.

• get_queue_length: return an integer with the queue length for the choosen
process
Example :
var queue_Length integer;
task queue_Length := obs_queue_length(({pLocal}0));

• output: an observer can send a signal to a process of the system, but can not
receive any signal.

The observer only activates itself when a process changes of state. For example:

• Process :
state start #start ;

task i := i+1;
task i := i+1;
task i := i+1;
task i := i+1;
nextstate state2;

endstate;

• Observer :
state start_obs #start ;

provided i = 3;
nextstate obs_state2;

endstate;

The observer will never execute the transition since it will only be activated when the
process reaches state2, where i is 4 and not 3.
PragmaDev Studio V6.0 Page 377

Reference Manual
20.2 - Mapping of SDL to Fiacre concepts

20.2.1 Scope
Fiacre is an intermediate formal language formally defined for representing both the
behavioral and timing aspects of embedded and distributed systems for formal verifica-
tion.

20.2.2 Translation table
The symbols used in this table are:

• if the feature is fully supported;

• if the feature is partially supported;

• if the feature is not supported at all.

SDL Category SDL concept Translated

BOOLEAN

INTEGER

REAL

CHARACTER

CHARSTRING

PID

SIGNAL

SIGNALLIST

SYNONYM

SYNTYPE

NEWTYPE LITERALS

NEWTYPE STRUCT

Table 51: SDL2IF translation table
Page 378 PragmaDev Studio V6.0

Reference Manual
NEWTYPE STRUCT
SELECT

NEWTYPE CHOICE

NEWTYPE ARRAY

NEWTYPE STRING

NEWTYPE BAG

OPERATORS

DCL

FPAR

RETURNS

TIMER

Architecture

SDL Category SDL concept Translated

Table 51: SDL2IF translation table
PragmaDev Studio V6.0 Page 379

Reference Manual
var:=val

for, break, continue

if (statement)

val bin-op val

un-op val

struct!field

array(index)

SDL Category SDL concept Translated

Table 51: SDL2IF translation table
Page 380 PragmaDev Studio V6.0

Reference Manual
20.2.3 Detailed translation rules

20.2.3.1 Architecture

SDL supports a hierarchical structure with blocks and processes connected with chan-
nels; Fiacre more or less follows a flat architecture made of Processes and Components.
In order to be exported, the SDL system is "flattened".

Fiacre does support using Components to give composition of processes, possibly in a
hierarchical manner but that was not verified in the translation done. We have listed
some propositions to use Components to give a hierarchical notion to a system in Fiacre.

operator(params)

if...then...else...fi

Finite state machine

SDL Category SDL concept Translated

Table 51: SDL2IF translation table
PragmaDev Studio V6.0 Page 381

Reference Manual
It is possible to indicate the initial number of instances of an IF process, but not the max-
imum number. The maximum number of instances in the SDL system is not translated.

20.2.3.2 Communication

Signals, processes, and their associated signal queues are there in SDL to enable commu-
nication. Fiacre offers ports/labels as modes of communication, but we do not use them
because ports/labels offer synchronous communication, SDL communication as we
know is asynchronous. So a complex data type has been implemented to keep communi-
cation asynchronous in Fiacre..

The idea of message passing among processes is translated and implemented as part of
our translation. The idea was to imitate what happens in SDL internally.

Each message is translate to a record with a field for each one fo its parameter and two
more, one is the message name, the other is the sender Id. Each process has a message
queue of its own (processQueue) which is initialized at the beginning of the program. The
data that can be stored in those message queues is an enum which contains all messages
that are there in the system.

These queues are all put together in an array (messageQueueArray) and that array con-
tains each of the process queues (indexed by a constant integer value, which was declared
at the beginning). This array works as the data type (messageQueueArray) which can be
shared with all the processes so they can access the queue (processQueue) of the relevant
process to send messages and their own queue to read messages. The queue is shared as

SDL IF

SYSTEM system_name; component system_name;

BLOCK block_name; No XLIA equivalent. The SDL
system is flattened.

PROCESS process_name process process_name

Table 52: Structural mapping between SDL and XLIA

SDL IF

SIGNAL
signal_name(param_type);

signal sig_name(param_type);

SIGNALLIST list_name(…); Not needed; all signal lists are
replaced by their contents wherever
they appear.

CHANNEL … & SIGNALROUTE
…

Not needed in our translation.

CONNECT …; Not needed in our translation.

Table 53: Mapping of communication principles from SDL to XLIA
Page 382 PragmaDev Studio V6.0

Reference Manual
a reference because in Fiacre variables passed by reference can be shared among several
processes.

20.2.3.3 Behavior

20.2.3.3.1 States

All SDL states are transformed in stable states in the Fiacre language. The start transition
is replaced by a state in the Fiacre language. We to not translate the end state in Fiacre.
Fiacre process needs declaration of all states initially and body of a transition between
two states in a format as given below.

States of a process are declared at its start as follow :
states RTDS_start, state1

20.2.3.3.2 Transitions

Transitions from one state to another in Fiacre works as a simple structure of from <ini-
cial state> followed by the operations and conditions ending with to <final state>.

Fiacre does support priority inputs or outputs, but that can only be used when ports/
labels are used for communication. Since we do not use ports/labels for communication
in our translation we cannot use priorities inputs or outputs.

SDL IF

START; state RTDS_Start

STATE
state_name;

from state_name;

SAVE
signal_name;

No translation implemented.

label_name No translation implemented.

JOIN label_name; No translation implemented.

Table 54: Behavioral mapping between SDL and XLIA

SDL IF

INPUT signal_name1;

INPUT
signal_name2(params);

input signal_name1();

input
signal_name2(params);

PROVIDED condition; if-else conditions or other
operators like 'on' 'while' can
be used.

Table 55: Mapping between SDL and XLIA for transitions
PragmaDev Studio V6.0 Page 383

Reference Manual
20.2.3.3.3 Actions

20.2.3.3.4 Data types

Fiacre defines 3 predefined types : integer (int), natural (nat), boolean (bool). Constants
can be used with const keyword. Constants for complex values cannot be translated.

SDL syntypes based on anything else than an integer or a natural cannot translated. The
provision for a lower and upper bound on a variable can be done by defining a new data
type. In SDL, the index type for an Array can be any type. In Fiacre, only numeric indices
between 0 and an upper bound are supported. So, only SDL arrays based on an integer
index type with 0 or a positive value as lower bound can be translated.

SDL IF

TASK statement; /* Formal task */ No translation.

TASK 'string'; /* Informal task */ No translation.

OUTPUT signal_name1(params);

OUTPUT signal_name2 VIA
signal_route;

OUTPUT signal_name3 TO
process_name;

OUTPUT signal_name4 TO
process_id;

Output signals are handles same as
explained in communication.

CREATE process_name; No translation.

STOP; No translation.

DECISION cond;

(false):

/* action 1 */

(true):

/* action 2 */

ENDDECISION;

if etat_decision then

/* action 1 */

 else

/* action 2 */

end

Table 56: Mapping between SDL and XLIA for actions

SDL IF

SYNONYM maxCount integer = 3; const maxCount : int is 3

Table 57: Mapping of datas types between SDL and XLIA
Page 384 PragmaDev Studio V6.0

Reference Manual
DCL

v integer,

b boolean

var v int,

var b bool

Can be declared and initialized as

var b : bool := false;

NEWTYPE nouveau

LITERALS carotte, asperge, hari-
cot;

ENDNEWTYPE;

type nouveau is union

carotte|asperge|haricot

end

NEWTYPE nouveau

STRUCT

field1 integer;

field2 boolean;

ENDNEWTYPE;

type nouveau is record

field1 : int,

field2 :bool

end

SYNTYPE interv = Integer

CONSTANT 0:4

ENDSYNTYPE;

type interv is 0 .. 4;

NEWTYPE intTable

ARRAY(interv, integer)

ENDNEWTYPE;

type intTable is array 4 of int

SDL IF

Table 57: Mapping of datas types between SDL and XLIA
PragmaDev Studio V6.0 Page 385

Reference Manual
20.3 - Mapping of SDL to xLIA concepts

20.3.1 Scope
The xLIA language, specified by the CEA, allows representation of model from Prag-
maDev Studio. Based on this language, the CEA has develloped a tool, called Diversity,
wich will run a symbolic resolution of the system and generate TTCN-3 testcases. This
chapter describes the translations rules implemented by PragmaDev Studio to export an
SDL system to an xLIA system.

20.3.2 Translation rules
The symbols used in this table are:

• if the feature is fully supported;

• if the feature is partially supported;

• if the feature is not supported at all.

SDL Category SDL concept Translated

BOOLEAN

INTEGER

REAL

CHARACTER

CHARSTRING

PID

SIGNAL

SIGNALLIST

SYNONYM

SYNTYPE

NEWTYPE LITERALS

NEWTYPE STRUCT

NEWTYPE CHOICE

Table 58: SDL2xLIA translation table
Page 386 PragmaDev Studio V6.0

Reference Manual
NEWTYPE ARRAY

NEWTYPE STRING

NEWTYPE BAG

OPERATORS

DCL

FPAR

RETURNS

TIMER

Architecture

SDL Category SDL concept Translated

Table 58: SDL2xLIA translation table
PragmaDev Studio V6.0 Page 387

Reference Manual
var:=val

for, break, continue

if (statement)

val bin-op val

un-op val

struct!field

array(index)

operator(params)

if...then...else...fi

SDL Category SDL concept Translated

Table 58: SDL2xLIA translation table
Page 388 PragmaDev Studio V6.0

Reference Manual
20.3.3 Detailed translation rules
In xLIA, the intermediate language of the verification / validation tool, DIVERSITY, any
executable system can be modeled by executable machines. Some specialized machines
such system or statemachine exist to facilitate the modeling of hierarchical system.

Each xLIA component (system, machine, statemachine, procedure) can be defined by the
(ordered) list of sections it contains, as following:

• @param: for define the runtime input parameters.

• @returns: for define the runtime output parameters.

• @public: or @private: for declare public or private variables, ports, buffers, … or
define user type, ...

• @procedure: for define procedures.

• @machine: for define or instantiate submachines.

• @moe: for implement imperative behavior, as an expert, for predefined primi-
tives: @init{...}, @run{...}, ...

Finite state machine

SDL Category SDL concept Translated

Table 58: SDL2xLIA translation table
PragmaDev Studio V6.0 Page 389

Reference Manual
• @com:
• for specify connections between machines ports at the same hierarchical level;
• for define routes for global signals or messages in each communicating sub-

machine.

Remarks:

Each section should not be reported more than once!

They should preferably be defined in the order of citation above, so that the sections
describing behaviors (e.g. “@moe”, "@com”, ...) are located after those containing the
declaration of objects used (e.g. “@private”, “@procedure”, “@machine”, ...)!

In the first three sections, we can declare type aliases and typed variables using the fol-
lowing syntax:

• type <id> <type_definition> ;

• (ref|transient) var <type_id> <id> (=<expression>) ;

The modifier ref denotes a variable whose value is necessarily another “non ref” variable
(unsupported ref on ref), and transient denotes a variable for calculating unlike a state
variable defining the state of the system.

In the section “@public:” or “@private:”, we can also declare ports, messages or signals
and buffers for communication purpose.

• (port|signal|message) (input|output|inout)? <id> ((<param_types>))? ;

• buffer (fifo|lifo|set|multiset|ram) (<<integer>|*>)? <id> ;

For all these elements we can use the following syntax for grouping definitions or decla-
rations.
(<modifier>)? main_keyword {

(<definition or declaration> ;)+

}

where main_keyword could be type, var, port, message, signal or buffer, and modifier,
ref, transient, ...

In xLIA, there are transient and state/action variables. State variables have an impact on
the system state, unlike transient variables. In SDL, state variables are variables present
in decision, output, continuous signal and process creation. Furthermore, all variables
which are used to assign these state variables are also state variable. For example, if the
variable x is a state variable, and we have a task block in SDL with x := y + z, y and z will
be also state variable.

The syntax of the other components will be described as required.
Page 390 PragmaDev Studio V6.0

Reference Manual
20.3.3.1 Architecture

SDL supports a hierarchical structure with blocks and processes connected with chan-
nels. In the following table we present the counterpart in xLIA of any SDL concepts.

20.3.3.2 Procedure

in xLIA, there are two types of procedure, one for state machine, the other for sequence
of statements. xLIA does not support procedure recursion.

SDL xLIA

SYSTEM system_name; @xfsp<system , 1.0 >:

input_enabled system< and >
system_name {

}

BLOCK block_name; machine< and > block_name {

}

PROCESS process_name(initial, max) statemachine< or , instance:
(init:initial, max:max) >
process_name {

}

Table 59: Structural mapping between SDL and xLIA

SDL xLIA

case of a state machine

PROCEDURE procedure_name
RETURNS type;

procedure procedure_name returns type {

}

case of a sequence of statements

PROCEDURE procedure_name
RETURNS type;

procedure procedure_name returns type {

@moe:

 @run {

 sequence of statements

 }

}

RETURN expression; return expression;

Table 60: Procedure mapping between SDL and xLIA
PragmaDev Studio V6.0 Page 391

Reference Manual
20.3.3.3 Communication

xLIA communication is based on a buffer system. It is possible to choose during xLIA to
generate one unique buffer at the system level, or one buffer per process. the buffer dec-
laration is done by:
buffer fifo<*> buffer_name;

in the @public: section. After the declaration of the buffer, it is needed to indicate which
signal will go through this buffer:
route< buffer: buffer_name > [*];

in the @com; section.

20.3.3.4 Behavior

20.3.3.4.1 States

When initializing the system, all its components (machine or statemachine) are initial-
ized. In the particular case of a statemachine, its initial state is evaluated, that is to say its
(their) transition(s) is (are) executed. So it follows that strong constraint: at least one
transition from an initial state must be executable in all circumstances to ensure the ini-
tialization of the statemachine. It may therefore be advisable to use a state with a “start”

// without return statement:

CALL proc_name(params);

// with return statement:

var := CALL proc_name(params);

call proc_name(params);

var = call proc_name(params);

SDL xLIA

SIGNAL
signal_name(param_type);

signal sig_name(param_type);

SIGNALLIST list_name(…); Not needed; all signal lists are
replaced by their contents wherever
they appear.

CHANNEL channel_name

 in s1;

 out s2;

 inout s3;

END

channel channel_name {

 input s1;

 output s2;

 inout s3;

 }

Table 61: Mapping of communication principles from SDL to xLIA

SDL xLIA

Table 60: Procedure mapping between SDL and xLIA
Page 392 PragmaDev Studio V6.0

Reference Manual
type that only performs the code associated to its primitive @init, if it is defined, during
the initialization phase.

The syntaxe to define a transition is:
transition (<prior:<integer>>)? trans_name? {/*action*/} --> target_state;

The "prior" attribute allows to specify a priority for the transition. Those with the lowest
priority may simply be tagged else (syntax: transition <else>).

The single transition which contains save will be without target and must be defined in
pole position.

20.3.3.4.2 Input

As in SDL, xLIA transitions take no time. The SDL input are translated to xLIA input
with the pid of the sender in parameter in order to support the sender SDL keyword.

SDL xLIA

START; state< initial > #init {

}

STATE state_name; state state_name {

}

STATE * state [*] {

}

STATE (state_list) state [state_list] {

}

STATE *(state_list) state [^ state_list] {

}

SAVE signal_name; Remark: save statement must be grouped in a
transition that must be the first in the state as:

transition transition#save {

save signal_name;

}

label_name: state< junction > label_name;

JOIN label_name; goto label_name;

nextstate state_name; --> state_name ;

nextstate - no --> state_name at the end of the transition

Table 62: Behavioral mapping between SDL and xLIA
PragmaDev Studio V6.0 Page 393

Reference Manual
xLIA does not support priority inputs.

As in SDL, xLIA transitions take no time. The SDL input are translated to xLIA input
with the pid of the sender in parameter in order to support the sender SDL keyword.

xLIA does not support priority inputs.

20.3.3.4.3 Output

To get the SENDER during the reception, it is needed to pass SELF as parameter.

20.3.3.4.4 Actions

SDL decisions are translated to an choice states in xLIA with a guard in accordance to
each branch of the decision.

To get OFFSPRING value, we get the return value of the new action.

SDL xLIA

INPUT signal_name (parameters) input signal_name(parameters, SENDER);

INPUT signal_name FROM ENV input signal_name <-- env

INPUT signal_name provided
<enabling_condition>

input signal_name;

guard(enabling_condition);

INPUT * input [*];

INPUT signal_list input [signal_list];

Table 63: Mapping between SDL and xLIA for input

SDL xLIA

OUTPUT signal(parameters) output signal(parameters, SELF);

OUTPUT signal TO ENV output signal --> env;

OUTPUT signal TO process_name output signal --> processCtx.processName;

// <processCtx> results of name resolution
in the architecture.

OUTPUT signal TO processId output signal --> processId;

Table 64: Mapping between SDL and xLIA for output

SDL xLIA

TASK statement; statement;

Table 65: Mapping between SDL and xLIA for actions
Page 394 PragmaDev Studio V6.0

Reference Manual
20.3.3.4.5 Timer

To get NOW, it is needed to declare it at the system level:
var time NOW = 0 {

 @on_write(T) { guard(T >= NOW); }

CREATE process_name(parameters); OFFSPRING = new process_name
(parameters, SELF);

STOP; state<terminal>process_name#termi-
nal;

DECISION cond;

(false):

/* action 1 */

(true):

/* action 2 */

ENDDECISION;

state< choice > state_name {

 transition {

 guard(! cond);

 .../* action 1 */

 } --> next_state1 ;

 transition {

 guard(cond);

 .../* action 2 */

 } --> next_state2 ;

}

IF cond {

 action_1

}

ELSE {

 action_2

}

if cond {

 action_1

}

else {

 action_2

}

FOR(init, cond, incr) {

 action

}

for init; cond; incr {

 action

}

BREAK;

CONTINUE;

break;

continue;

SDL xLIA

Table 65: Mapping between SDL and xLIA for actions
PragmaDev Studio V6.0 Page 395

Reference Manual
}

20.3.3.4.6 Data types

xLIA support integer, boolean, character, charstring, pid (machine) basic types.

In SDL, the index type for an ARRAY can be any type. In xLIA, only indices between 0
and an upper bound are supported. So, only SDL arrays based on an integer index type
with 0 or a positive value as lower bound can be translated. All others make the transla-
tion fail.

SDL xLIA

TIMER myclock; var time myclock#endtime = TIMER#UNSET;

signal myclock;

SET(NOW+15,myclock) myclock#endtime = (: NOW newfresh) + 15;

output myclock;

INPUT myclock guard(myclock#endtime =/= TIMER#UNSET);

input myclock;

tguard(NOW >= myclock#endtime);

and for each state where there is an input timer

@irun{ (: NOW newfresh); }

RESET myclock myclock#endtime = TIMER#UNSET;

(: buff remove myclock);

Table 66: Mapping of timers between SDL and xLIA

SDL xLIA

SYNONYM maxCount integer = 3; const integer maxCount = 3;

DCL

variable_name variable_type; var variable_type variable_name;

integer

• mod

• rem

• =

• /=

• <,<=,>=,>

integer

• %

• rem

• ==

• !=

• <,<=,>=,>

Table 67: Mapping of datas types between SDL and xLIA
Page 396 PragmaDev Studio V6.0

Reference Manual
real real

boolean

• NOT

• =

• /=

• AND

• OR

• XOR

boolean

• !

• ==

• !=

• &&

• ||

• xor

character char

charstring

• mkstring

• length

• //

string

• ctor<string>(<char>)

• (: <string> size)

• (: <string> concat <string>)

NEWTYPE typeName

LITERALS value1, value2, value3;

ENDNEWTYPE;

enum typeName {

value1, value2, value3

}

SDL xLIA

Table 67: Mapping of datas types between SDL and xLIA
PragmaDev Studio V6.0 Page 397

Reference Manual
NEWTYPE nouveau

STRUCT

field1Name field1type;

field2Name field2type;

ENDNEWTYPE;

Optional field

NEWTYPE typeName

STRUCT

field1Name field1type;

field2Name field2type OPTIONAL;

ENDNEWTYPE;

default value

NEWTYPE typeName

 STRUCT

 field1Name field1type;

 field2Name field2type;

 DEFAULT (. default_values .)

ENDNEWTYPE;

struct typeName {

 var field1type field1Name ;

 var field2type field2Name ;

}

struct typeName {

var field1type field1Name ;

var boolean field2Present =
false ;

var field2type field2Name {

@on_write {

field2Present = true;

}

}

}

struct typeName {

var field1type field1Name =
default_value;

var field2type field2Name =
default_value;

}

to access a field:

structVarName.fieldName

to see if a field is present:

structVarName.field2NamePresent

SDL xLIA

Table 67: Mapping of datas types between SDL and xLIA
Page 398 PragmaDev Studio V6.0

Reference Manual
NEWTYPE ChoiceType

CHOICE

alt1 field1type;

alt2 field2type;

ENDNEWTYPE;

enum ChoiceType#Enum {

 alt1#choice,

 alt2#choice

}

struct ChoiceType {

var ChoiceType#Enum present;

var field1type alt1{

@on_write{ present =
alt1#choice; }

}

var field2type alt2 {

@on_write{ present =
alt2#choice; }

}

}

to assign the value:

choiceVarName.fieldName = value;

to see which field is present:

choiceVarName.present

SYNTYPE constraintType= elementType

CONSTANT lowerBound:upperBound

ENDSYNTYPE

type constraintType interval<
elementType[lowerBound ,
upperBound] >;

NEWTYPE typeName

BAG(elementType)

ENDNEWTYPE;

• empty

• in

• incl

• length(bag)

type typeName

multiset<elementType>;

• (: bag empty)
• (: bag contains element)
• (: bag append element)
• (: bag size)

SDL xLIA

Table 67: Mapping of datas types between SDL and xLIA
PragmaDev Studio V6.0 Page 399

Reference Manual
20.3.3.5 Remote variables

SDL provides a mechanism for a process to share the value of one of these variables with
its environment.

This shared value is made available via a statement: export <var_id>;

This shared value is read via a statement: import <var_id>;

In xLIA we will create a global variable (system variable): <var_id> #remote;

NEWTYPE intTable

ARRAY(indexType, elementType)

ENDNEWTYPE;

type typeName element-
Type[indexType];

array initialisation:

var typeName tabName = default-
Value;

NEWTYPE typeName

STRING(elementType)

ENDNEWTYPE;

type typeName := vector<ele-
mentType>;

in xLIA, indices start at 1.

SDL xLIA

// In system

REMOTE var_id type_id;

// In process P1 which exports

DCL var_id type_id EXPORTED;

// In process P2 which imports

IMPORTED var_id;

// In system

var type_id var_id#remote;

// In P1

var type_id var_id;

// In P2

var type_id var_id;

EXPORT vart_id; var_id#remote = var_id;

IMPORT vart_id; var_id = var_id#remote;

Table 68: Mapping remote variable between SDL and xLIA

SDL xLIA

Table 67: Mapping of datas types between SDL and xLIA
Page 400 PragmaDev Studio V6.0

Reference Manual
21 - GNU distribution

21.1 - gcc options
This chapter gathers all gcc options as printed by the help command.

21.1.1 Usage: cpp [switches] input output
Switches:

-include <file> Include the contents of <file> before other files
-imacros <file> Accept definition of marcos in <file>
-iprefix <path> Specify <path> as a prefix for next two options
-iwithprefix <dir> Add <dir> to the end of the system include paths
-iwithprefixbefore <dir> Add <dir> to the end of the main include paths
-isystem <dir> Add <dir> to the start of the system include paths
-idirafter <dir> Add <dir> to the end of the system include paths
-I <dir> Add <dir> to the end of the main include paths
-nostdinc Do not search the system include directories
-nostdinc++ Do not search the system include directories for C++
-o <file> Put output into <file>
-pedantic Issue all warnings demanded by strict ANSI C
-traditional Follow K&R pre-processor behaviour
-trigraphs Support ANSI C trigraphs
-lang-c Assume that the input sources are in C
-lang-c89 Assume that the input is C89; depricated
-lang-c++ Assume that the input sources are in C++
-lang-objc Assume that the input sources are in ObjectiveC
-lang-objc++ Assume that the input sources are in ObjectiveC++
-lang-asm Assume that the input sources are in assembler
-lang-chill Assume that the input sources are in Chill
-std=<std name> Specify the conformance standard; one of: gnu89, gnu9x,

c89, c9x, iso9899:1990, iso9899:199409, iso9899:199x
-+ Allow parsing of C++ style features
-w Inhibit warning messages
-Wtrigraphs Warn if trigraphs are encountered
-Wno-trigraphs Do not warn about trigraphs
-Wcomment{s} Warn if one comment starts inside another
-Wno-comment{s} Do not warn about comments
-Wtraditional Warn if a macro argument is/would be turned into a string if

-traditional is specified
-Wno-traditional Do not warn about stringification
-Wundef Warn if an undefined macro is used by #if
PragmaDev Studio V6.0 Page 401

Reference Manual
-Wno-undef Do not warn about testing undefined macros
-Wimport Warn about the use of the #import directive
-Wno-import Do not warn about the use of #import
-Werror Treat all warnings as errors
-Wno-error Do not treat warnings as errors
-Wall Enable all preprocessor warnings
-M Generate make dependencies
-MM As -M, but ignore system header files
-MD As -M, but put output in a .d file
-MMD As -MD, but ignore system header files
-MG Treat missing header file as generated files
-g Include #define and #undef directives in the output
-D<macro> Define a <macro> with string ’1’ as its value
-D<macro>=<val> Define a <macro> with <val> as its value
-A<question> (<an-
swer>)

Assert the <answer> to <question>

-U<macro> Undefine <macro>
-u or -undef Do not predefine any macros
-v Display the version number
-H Print the name of header files as they are used
-C Do not discard comments
-dM Display a list of macro definitions active at end
-dD Preserve macro definitions in output
-dN As -dD except that only the names are preserved
-dI Include #include directives in the output
-ifoutput Describe skipped code blocks in output
-P Do not generate #line directives
-$ Do not include ’$’ in identifiers
-remap Remap file names when including files.
-h or --help Display this information

Switches:
Page 402 PragmaDev Studio V6.0

Reference Manual
21.1.2 Usage: cc1 input [switches]
Switches:

-ffixed-<register> Mark <register> as being unavailable to the compiler
-fcall-used-<register> Mark <register> as being corrupted by function calls
-fcall-saved-<register> Mark <register> as being preserved across functions
-finline-limit-<number> Limits the size of inlined functions to <number>
-fident Process #ident directives
-fleading-underscore External symbols have a leading underscore
-finstrument-functions Instrument function entry/exit with profiling calls
-fdump-unnumbered Suppress output of instruction numbers and line number

notes in debugging dumps
-fprefix-function-name Add a prefix to all function names
-fcheck-memory-usage Generate code to check every memory access
-fstrict-aliasing Assume strict aliasing rules apply
-fargument-noalias-glo-
bal

Assume arguments do not alias each other or globals

-fargument-noalias Assume arguments may alias globals but not each other
-fargument-alias Specify that arguments may alias each other & globals
-fstack-check Insert stack checking code into the program
-fpack-struct Pack structure members together without holes
-foptimize-register-move Do the full regmove optimization pass
-fregmove Enables a register move optimisation
-fgnu-linker Output GNU ld formatted global initialisers
-fverbose-asm Add extra commentry to assembler output
-fdata-sections place data items into their own section
-ffunction-sections place each function into its own section
-finhibit-size-directive Do not generate .size directives
-fcommon Do not put unitialised globals in the common section
-ffast-math Improve FP speed by violating ANSI & IEEE rules
-fbranch-probabilities Use profiling information for branch probabilities
-ftest-coverage Create data files needed by gcov
-fprofile-arcs Insert arc based program profiling code
-fasynchronous-excep-
tions

Support asynchronous exceptions

-fsjlj-exceptions Use setjmp/longjmp to handle exceptions
-fnew-exceptions Use the new model for exception handling
-fexceptions Enable exception handling
-fpic Generate position independent code, if possible
-fbranch-count-reg Replace add,compare,branch with branch on count reg
-fsched-spec-load-dangerous Allow speculative motion of more loads
-fsched-spec-load Allow speculative motion of some loads
-fsched-spec Allow speculative motion of non-loads
PragmaDev Studio V6.0 Page 403

Reference Manual
-fsched-interblock Enable scheduling across basic blocks
-fschedule-insns2 Run two passes of the instruction scheduler
-fschedule-insns Reschedule instructions to avoid pipeline stalls
-fpretend-float Pretend that host and target use the same FP format
-frerun-loop-opt Run the loop optimiser twice
-frerun-cse-after-loop Run CSE pass after loop optimisations
-fgcse Perform the global common subexpression elimination
-fdelayed-branch Attempt to fill delay slots of branch instructions
-freg-struct-return Return ’short’ aggregates in registers
-fpcc-struct-return Return ’short’ aggregates in memory, not registers
-fcaller-saves Enable saving registers around function calls
-fshared-data Mark data as shared rather than private
-fsyntax-only Check for syntax errors, then stop
-fkeep-static-consts Emit static const variables even if they are not used
-finline Pay attention to the ’inline’ keyword
-fkeep-inline-functions Generate code for funcs even if they are fully inlined
-finline-functions Integrate simple functions into their callers
-ffunction-cse Allow function addresses to be held in registers
-fforce-addr Copy memory address constants into regs before using
-fforce-mem Copy memory operands into registers before using
-fpeephole Enable machine specific peephole optimisations
-fwritable-strings Store strings in writable data section
-freduce-all-givs Strength reduce all loop general induction variables
-fmove-all-movables Force all loop invariant computations out of loops
-funroll-all-loops Perform loop unrolling for all loops
-funroll-loops Perform loop unrolling when iteration count is known
-fstrength-reduce Perform strength reduction optimisations
-fthread-jumps Perform jump threading optimisations
-fexpensive-optimiza-
tions

Perform a number of minor, expensive optimisations

-fcse-skip-blocks When running CSE, follow conditional jumps
-fcse-follow-jumps When running CSE, follow jumps to their targets
-fomit-frame-pointer When possible do not generate stack frames
-fdefer-pop Defer popping functions args from stack until later
-fvolatile-static Consider all mem refs to static data to be volatile
-fvolatile-global Consider all mem refs to global data to be volatile
-fvolatile Consider all mem refs through pointers as volatile
-ffloat-store Do not store floats in registers
-O[number] Set optimisation level to [number]
-Os Optimise for space rather than speed
-pedantic Issue warnings needed by strict compliance to ANSI C

Switches:
Page 404 PragmaDev Studio V6.0

Reference Manual
-pedantic-errors Like -pedantic except that errors are produced
-w Suppress warnings
-W Enable extra warnings
-Winline Warn when an inlined function cannot be inlined
-Wuninitialized Warn about unitialized automatic variables
-Wcast-align Warn about pointer casts which increase alignment
-Waggregate-return Warn about returning structures, unions or arrays
-Wswitch Warn about enumerated switches missing a specific case
-Wshadow Warn when one local variable shadows another
-Wunused Warn when a variable is unused
-Wid-clash-<num> Warn if 2 identifiers have the same first <num> chars
-Wlarger-than-<num-
ber>

Warn if an object is larger than <number> bytes

-p Enable function profiling
-a Enable block profiling
-ax Enable jump profiling
-o <file> Place output into <file>
-G <number> Put global and static data smaller than <number> bytes into

a special section (on some targets)
-gdwarf-2 Enable DWARF-2 debug output
-gdwarf+ Generated extended DWARF-1 format debug output
-gdwarf Generate DWARF-1 format debug output
-gstabs+ Generate extended STABS format debug output
-gstabs Generate STABS format debug output
-ggdb Generate default extended debug format output
-g Generate default debug format output
-aux-info <file> Emit declaration info into <file>.X
-quiet Do not display functions compiled or elapsed time
-version Display the compiler’s version
-d[letters] Enable dumps from specific passes of the compiler
-dumpbase <file> Base name to be used for dumps from specific passes
-sched-verbose-<num-
ber>

Set the verbosity level of the scheduler

--help Display this information

Switches:
PragmaDev Studio V6.0 Page 405

Reference Manual
21.1.3 Language specific options:
Language specific options

-ansi Compile just for ANSI C
-fallow-single-precisio Do not promote floats to double if using -traditional
-std= Determine language standard
-funsigned-bitfields Make bitfields by unsigned by default
-fsigned-char Make ’char’ be signed by default
-funsigned-char Make ’char’ be unsigned by default
-traditional Attempt to support traditional K&R style C
-fno-asm Do not recognise the ’asm’ keyword
-fno-builtin Do not recognise any built in functions
-fhosted Assume normal C execution environment
-ffreestanding Assume that standard libraries & main might not exist
-fcond-mismatch Allow different types as args of ? operator
-fdollars-in-identifier Allow the use of $ inside identifiers
-fshort-double Use the same size for double as for float
-fshort-enums Use the smallest fitting integer to hold enums
-Wall Enable most warning messages
-Wbad-function-cast Warn about casting functions to incompatible types
-Wmissing-noreturn Warn about functions which might be candidates for at-

tribute noreturn
-Wcast-qual Warn about casts which discard qualifiers
-Wchar-subscripts Warn about subscripts whose type is ’char’
-Wcomment Warn if nested comments are detected
-Wcomments Warn if nested comments are detected
-Wconversion Warn about possibly confusing type conversions
-Wformat Warn about printf format anomalies
-Wimplicit-function-dec Warn about implicit function declarations
-Wimplicit-int Warn when a declaration does not specify a type
-Wimport Warn about the use of the #import directive
-Wno-long-long Do not warn about using ’long long’ when -pedantic
-Wmain Warn about suspicious declarations of main
-Wmissing-braces Warn about possibly missing braces around initialisers
-Wmissing-declarations Warn about global funcs without previous declarations
-Wmissing-prototypes Warn about global funcs without prototypes
-Wmultichar Warn about use of multicharacter literals
-Wnested-externs Warn about externs not at file scope level
-Wparentheses Warn about possible missing parentheses
-Wpointer-arith Warn about function pointer arithmetic
-Wredundant-decls Warn about multiple declarations of the same object
-Wsign-compare Warn about signed/unsigned comparisons
-Wunknown-pragmas Warn about unrecognised pragmas
Page 406 PragmaDev Studio V6.0

Reference Manual
-Wstrict-prototypes Warn about non-prototyped function decls
-Wtraditional Warn about constructs whose meaning change in ANSI C
-Wtrigraphs Warn when trigraphs are encountered
-Wwrite-strings Mark strings as ’const char *’

Language specific options
PragmaDev Studio V6.0 Page 407

Reference Manual
21.1.3.1 Options for Objective C:

21.1.3.2 Options for Chill:

21.1.3.3 Options for C++:

-gen-decls Dump decls to a .decl file
-fgnu-runtime Generate code for GNU runtime environment
-fnext-runtime Generate code for NeXT runtime environment
-Wselector Warn if a selector has multiple methods
-Wno-protocol Do not warn if inherited methods are unimplemented
-print-objc-runtime-
inf

Generate C header of platform specific features

-fno-local-loop-counter Do not make seperate scopes for every ’for’ loop
-fgrant-only Stop after successfully generating a grant file
-fold-strings Implement the 1984 Chill string semantics
-fignore-case convert all idenitifers to lower case
-fpack Pack structures into available space
-fspecial_UC Make special words be in uppercase
-fno-runtime-checking Disable runtime checking of parameters

-fno-access-control Do not obey access control semantics
-fall-virtual Make all member functions virtual
-falt-external-template Change when template instances are emitted
-fcheck-new Check the return value of new
-fconserve-space Reduce size of object files
-fno-const-strings Make string literals ‘char[]’ instead of ‘const char[]’
-fno-default-inline Do not inline member functions by default
-fno-rtti Do not generate run time type descriptor information
-fno-for-scope Scope of for-init-statement vars extends outside
-fguiding-decls Implement guiding declarations
-fno-gnu-keywords Do not recognise GNU defined keywords
-fhandle-signatures Handle signature language constructs
-fhonor-std Treat the namespace ‘std’ as a normal namespace
-fhuge-objects Enable support for huge objects
-fno-implement-inlines Export functions even if they can be inlined
-fno-implicit-templates Only emit explicit template instatiations
-fno-implicit-inline-te Only emit explicit instatiations of inline templates
-finit-priority Handle the init_priority attribute
-flabels-ok Labels can be used as first class objects
Page 408 PragmaDev Studio V6.0

Reference Manual
-fnew-abi Enable experimental ABI changes
-fno-nonnull-objects Do not assume that a reference is always valid
-foperator-names Recognise and/bitand/bitor/compl/not/or/xor
-fno-optional-diags Disable optional diagnostics
-fpermissive Downgrade conformance errors to warnings
-frepo Enable automatic template instantiation
-fsquangle Enable squashed name mangling
-fstats Display statistics accumulated during compilation
-fno-strict-prototype Do not assume that empty prototype means no args
-ftemplate-depth- Specify maximum template instantiation depth
-fthis-is-variable Make ’this’ not be type ’* const’
-fvtable-gc Discard unused virtual functions
-fvtable-thunks Implement vtables using thunks
-fweak Emit common-like symbols as weak symbols
-fxref Emit cross referencing information
-Wreturn-type Warn about inconsistent return types
-Woverloaded-virtual Warn about overloaded virtual function names
-Wno-ctor-dtor-privacy Don’t warn when all ctors/dtors are private
-Wnon-virtual-dtor Warn about non virtual destructors
-Wextern-inline Warn when a function is declared extern, then inline
-Wreorder Warn when the compiler reorders code
-Wsynth Warn when synthesis behaviour differs from Cfront
-Wno-pmf-conversions Don’t warn when type converting pointers to member func-

tions
-Weffc++ Warn about violations of Effective C++ style rules
-Wsign-promo Warn when overload promotes from unsigned to signed
-Wold-style-cast Warn if a C style cast is used in a program
-Wno-non-template-
frien

Don’t warn when non-templatized friend functions are de-
clared within a template

-Wno-deprecated Don’t announce deprecation of compiler features
PragmaDev Studio V6.0 Page 409

Reference Manual
21.1.3.4 Options for Fortran:

Options for Fortran
-fversion Print g77-specific compiler version info, run internal tests
-ff66 Program is written in typical FORTRAN 66 dialect
-ff77 Program is written in typical Unix f77 dialect
-fno-f77 Program does not use Unix-f77 dialectal features
-ff90 Program is written in Fortran-90-ish dialect
-fno-automatic Treat local vars and COMMON blocks as if they were named

in SAVE statements
-fdollar-ok Allow $ in symbol names
-fno-f2c f2c-compatible code need not be generated
-fno-f2c-library Unsupported; do not generate libf2c-calling code
-fflatten-arrays Unsupported; affects code-generation of arrays
-ffree-form Program is written in Fortran-90-ish free form
-fpedantic Warn about use of (only a few for now) Fortran extensions
-fvxt Program is written in VXT (Digital-like) FORTRAN
-fno-ugly Disallow all ugly features
-fno-ugly-args Hollerith and typeless constants not passed as arguments
-fugly-assign Allow ordinary copying of ASSIGN’ed vars
-fugly-assumed Dummy array dimensioned to (1) is assumed-size
-fugly-comma Trailing comma in procedure call denotes null argument
-fugly-complex Allow REAL(Z) and AIMAG(Z) given DOUBLE COMPLEX Z
-fno-ugly-init Initialization via DATA and PARAMETER is type-compati-

ble
-fugly-logint Allow INTEGER and LOGICAL interchangeability
-fxyzzy Print internal debugging-related info
-finit-local-zero Initialize local vars and arrays to zero
-fno-backslash Backslashes in character/hollerith constants not special (C-

style)
-femulate-complex Have front end emulate COMPLEX arithmetic to avoid bugs
-fno-underscoring Disable the appending of underscores to externals
-fno-second-underscore Never append a second underscore to externals
-fintrin-case-initcap Intrinsics spelled as e.g. SqRt
-fintrin-case-upper Intrinsics in uppercase
-fintrin-case-any Intrinsics letters in arbitrary cases
-fmatch-case-initcap Language keywords spelled as e.g. IOStat
-fmatch-case-upper Language keywords in uppercase
-fmatch-case-any Language keyword letters in arbitrary cases
-fsource-case-upper Internally convert most source to uppercase
-fsource-case-preserve Internally preserve source case
-fsymbol-case-initcap Symbol names spelled in mixed case
-fsymbol-case-upper Symbol names in uppercase
Page 410 PragmaDev Studio V6.0

Reference Manual
-fsymbol-case-lower Symbol names in lowercase
-fcase-strict-upper Program written in uppercase
-fcase-strict-lower Program written in lowercase
-fcase-initcap Program written in strict mixed-case
-fcase-upper Compile as if program written in uppercase
-fcase-lower Compile as if program written in lowercase
-fcase-preserve Preserve all spelling (case) used in program
-fbadu77-intrinsics-del Delete libU77 intrinsics with bad interfaces
-fbadu77-intrinsics-dis Disable libU77 intrinsics with bad interfaces
-fbadu77-intrinsics-hid Hide libU77 intrinsics with bad interfaces
-ff2c-intrinsics-delete Delete non-FORTRAN-77 intrinsics f2c supports
-ff2c-intrinsics-disabl Disable non-FORTRAN-77 intrinsics f2c supports
-ff2c-intrinsics-hide Hide non-FORTRAN-77 intrinsics f2c supports
-ff90-intrinsics-delete Delete non-FORTRAN-77 intrinsics F90 supports
-ff90-intrinsics-disabl Disable non-FORTRAN-77 intrinsics F90 supports
-ff90-intrinsics-hide Hide non-FORTRAN-77 intrinsics F90 supports
-fgnu-intrinsics-delete Delete non-FORTRAN-77 intrinsics g77 supports
-fgnu-intrinsics-disabl Disable non-FORTRAN 77 intrinsics F90 supports
-fgnu-intrinsics-hide Hide non-FORTRAN 77 intrinsics F90 supports
-fmil-intrinsics-delete Delete MIL-STD 1753 intrinsics
-fmil-intrinsics-disabl Disable MIL-STD 1753 intrinsics
-fmil-intrinsics-hide Hide MIL-STD 1753 intrinsics
-funix-intrinsics-delet Delete libU77 intrinsics
-funix-intrinsics-disab Disable libU77 intrinsics
-funix-intrinsics-hide Hide libU77 intrinsics
-fvxt-intrinsics-delete Delete non-FORTRAN-77 intrinsics VXT FORTRAN sup-

ports
-fvxt-intrinsics-disabl Disable non-FORTRAN-77 intrinsics VXT FORTRAN sup-

ports
-fvxt-intrinsics-hide Hide non-FORTRAN-77 intrinsics VXT FORTRAN supports
-fzeros Treat initial values of 0 like non-zero values
-fdebug-kludge Emit special debugging information for COMMON and

EQUIVALENCE
-fonetrip Take at least one trip through each iterative DO loop
-fno-silent Print names of program units as they are compiled
-fno-globals Disable fatal diagnostics about inter-procedural problems
-ftypeless-boz Make prefix-radix non-decimal constants be typeless
-fbounds-check Generate code to check subscript and substring bounds
-ffortran-bounds-check Fortran-specific form of -fbounds-check
-Wno-globals Disable warnings about inter-procedural problems
-Wsurprising Warn about constructs with surprising meanings

Options for Fortran
PragmaDev Studio V6.0 Page 411

Reference Manual
21.1.3.5 Options for Java:

-I Add a directory for INCLUDE searching
-ffixed-line-length- Set the maximum line length

-fno-bounds-check Disable automatic array bounds checking
-fassume-compiled Make is_compiled_class return 1
-femit-class-files Dump class files to <name>.class
-MD Print dependencies to FILE.d
-MMD Print dependencies to FILE.d
-M Print dependencies to stdout
-MM Print dependencies to stdout
-fclasspath Set class path and suppress system path
-fCLASSPATH Set class path
-I Add directory to class path
-foutput-class-dir Directory where class files should be written
-Wredundant-modifiers Warn if modifiers are specified when not necessary
-Wunsupported-jdk11 Warn if ‘final’ local variables are specified

Options for Fortran
Page 412 PragmaDev Studio V6.0

Reference Manual
21.1.4 Target specific options:
Target specific options

-mno-stack-bias Do not use stack bias
-mstack-bias Use stack bias
-m64 Use 64-bit ABI
-m32 Use 32-bit ABI
-mptr32 Pointers are 32-bit
-mptr64 Pointers are 64-bit
-msupersparc Optimize for SuperSparc processors
-mv8 Use V8 Sparc ISA
-mf934 Optimize for F934 processors
-mf930 Optimize for F930 processors
-msparclite Optimize for SparcLite processors
-mcypress Optimize for Cypress processors
-mno-vis Do not utilize Visual Instruction Set
-mvis Utilize Visual Instruction Set
-mno-v8plus Do not compile for v8plus ABI
-mv8plus Compile for v8plus ABI
-msoft-quad-float Do not use hardware quad fp instructions
-mhard-quad-float Use hardware quad fp instructions
-mno-app-regs Do not use ABI reserved registers
-mapp-regs Use ABI reserved registers
-mno-flat Do not use flat register window model
-mflat Use flat register window model
-mno-impure-text Do not pass -assert pure-text to linker
-mimpure-text Pass -assert pure-text to linker
-mno-unaligned-doubles Assume all doubles are aligned
-munaligned-doubles Assume possible double misalignment
-mno-epilogue Do not use FUNCTION_EPILOGUE
-mepilogue Use FUNCTION_EPILOGUE
-msoft-float Do not use hardware fp
-msoft-float Do not use hardware fp
-mhard-float Use hardware fp
-mno-fpu Do not use hardware fp
-mno-fpu Do not use hardware fp
-mfpu Use hardware fp
-malign-functions= Function starts are aligned to this power of 2
-malign-jumps= Jump targets are aligned to this power of 2
-malign-loops= Loop code aligned to this power of 2
-mcmodel= Use given Sparc code model
-mtune= Schedule code for given CPU
-mcpu= Use features of and schedule code for given CPU
PragmaDev Studio V6.0 Page 413

Reference Manual
21.1.5 Usage: gcc [options] file...
Options:

Options starting with -g, -f, -m, -O or -W are automatically passed on to the various sub-
processes invoked by gcc. In order to pass other options on to these processes the -
W<letter> options must be used.

--help Display this information
-dumpspecs Display all of the built in spec strings
-dumpversion Display the version of the compiler
-dumpmachine Display the compiler’s target processor
-print-search-dirs Display the directories in the compiler’s search path
-print-libgcc-file-name Display the name of the compiler’s companion library
-print-file-name=<lib> Display the full path to library <lib>
-print-prog-name=
<prog>

Display the full path to compiler component <prog>

-print-multi-directory Display the root directory for versions of libgcc
-print-multi-lib Display the mapping between command line options and

multiple library search directories
-Wa,<options> Pass comma-separated <options> on to the assembler
-Wp,<options> Pass comma-separated <options> on to the preprocessor
-Wl,<options> Pass comma-separated <options> on to the linker
-Xlinker <arg> Pass <arg> on to the linker
-save-temps Do not delete intermediate files
-pipe Use pipes rather than intermediate files
-specs=<file> Override builtin specs with the contents of <file>
-std=<standard> Assume that the input sources are for <standard>
-B <directory> Add <directory> to the compiler’s search paths
-b <machine> Run gcc for target <machine>, if installed
-V <version> Run gcc version number <version>, if installed
-v Display the programs invoked by the compiler
-E Preprocess only; do not compile, assemble or link
-S Compile only; do not assemble or link
-c Compile and assemble, but do not link
-o <file> Place the output into <file>
-x <language> Specify the language of the following input files

Permissable languages include: c c++ assembler none ’none’
means revert to the default behaviour of guessing the lan-
guage based on the file’s extension
Page 414 PragmaDev Studio V6.0

Reference Manual
21.2 - ld
Usage: ld [options] file...

21.2.1 Options
Options:
-a KEYWORD Shared library control for HP/UX compatibility
-A ARCH,
--architecture ARCH

Set architecture

-b TARGET,
--format TARGET

Specify target for following input files

-c FILE,
--mri-script FILE

Read MRI format linker script

-d,
-dc,
-dp

Force common symbols to be defined

-e ADDRESS,
--entry ADDRESS

Set start address

-E,
--export-dynamic

Export all dynamic symbols

-EB Link big-endian objects
-EL Link little-endian objects
-f SHLIB,
--auxiliary SHLIB

Auxiliary filter for shared object symbol table

-F SHLIB,
--filter SHLIB

Filter for shared object symbol table

-g Ignored
-G SIZE,
--gpsize SIZE

Small data size (if no size, same as --shared)

-h FILENAME,
-soname FILENAME

Set internal name of shared library

-l LIBNAME,
--library LIBNAME

Search for library LIBNAME

-L DIRECTORY,
--library-path DIRECTORY

Add DIRECTORY to library search path

-m EMULATION Set emulation
-M,
--print-map

Print map file on standard output

-n,
--nmagic

Do not page align data

-N,
--omagic

Do not page align data, do not make text rea-
donly

-o FILE,
--output FILE

Set output file name
PragmaDev Studio V6.0 Page 415

Reference Manual
-O Optimize output file
-Qy Ignored for SVR4 compatibility
-q,
--emit-relocs

Generate relocations in final output

-r,
-i,
--relocateable

Generate relocateable output

-R FILE, --just-symbols FILE Just link symbols (if directory, same as --rpath)
-s,
--strip-all

Strip all symbols

-S,
--strip-debug

Strip debugging symbols

-t,
--trace

Trace file opens

-T FILE,
--script FILE

Read linker script

-u SYMBOL,
--undefined SYMBOL

Start with undefined reference to SYMBOL

--unique [=SECTION] Don't merge input [SECTION | orphan] sections
-Ur Build global constructor/destructor tables
-v,
--version

Print version information

-V Print version and emulation information
-x,
--discard-all

Discard all local symbols

-X,
--discard-locals

Discard temporary local symbols (default)

--discard-none Don't discard any local symbols
-y SYMBOL,
--trace-symbol SYMBOL

Trace mentions of SYMBOL

-Y PATH Default search path for Solaris compatibility
-(,
--start-group

Start a group

-),
--end-group

End a group

-assert KEYWORD Ignored for SunOS compatibility
-Bdynamic,
-dy,
-call_shared

Link against shared libraries

-Bstatic, -dn, -non_shared, -static Do not link against shared libraries
-Bsymbolic Bind global references locally
--check-sections Check section addresses for overlaps (default)
--no-check-sections Do not check section addresses for overlaps

Options:
Page 416 PragmaDev Studio V6.0

Reference Manual
--cref Output cross reference table
--defsym SYMBOL=EXPRESSION Define a symbol
--demangle [=STYLE] Demangle symbol names [using STYLE]
--dynamic-linker PROGRAM Set the dynamic linker to use
--embedded-relocs Generate embedded relocs
-fini SYMBOL Call SYMBOL at unload-time
--force-exe-suffix Force generation of file with .exe suffix
--gc-sections Remove unused sections (on some targets)
--no-gc-sections Don't remove unused sections (default)
--help Print option help
-init SYMBOL Call SYMBOL at load-time
-Map FILE Write a map file
--no-demangle Do not demangle symbol names
--no-keep-memory Use less memory and more disk I/O
--no-undefined Allow no undefined symbols
--allow-shlib-undefined Allow undefined symbols in shared objects
--no-warn-mismatch Don't warn about mismatched input files
--no-whole-archive Turn off --whole-archive
--noinhibit-exec Create an output file even if errors occur
--oformat TARGET Specify target of output file
-qmagic Ignored for Linux compatibility
--relax Relax branches on certain targets
--retain-symbols-file FILE Keep only symbols listed in FILE
-rpath PATH Set runtime shared library search path
-rpath-link PATH Set link time shared library search path
-shared, -Bshareable Create a shared library
--sort-common Sort common symbols by size
--split-by-file [=SIZE] Split output sections every SIZE octets
--split-by-reloc [=COUNT] Split output sections every COUNT relocs
--stats Print memory usage statistics
--target-help Display target specific options
--task-link SYMBOL Do task level linking
--traditional-format Use same format as native linker
--section-start SECTION=ADDRESS Set address of named section
-Tbss ADDRESS Set address of .bss section
-Tdata ADDRESS Set address of .data section
-Ttext ADDRESS Set address of .text section
--verbose Output lots of information during link
--version-script FILE Read version information script
--version-exports-section SYMBOL Take export symbols list from .exports, using

SYMBOL as the version.

Options:
PragmaDev Studio V6.0 Page 417

Reference Manual
ld: supported targets: pe-i386 pei-i386 elf32-i386 elf32-little elf32-big srec symbolsrec
tekhex binary ihex
ld: supported emulations: i386pe

--warn-common Warn about duplicate common symbols
--warn-constructors Warn if global constructors/destructors are

seen
--warn-multiple-gp Warn if the multiple GP values are used
--warn-once Warn only once per undefined symbol
--warn-section-align Warn if start of section changes due to align-

ment
--fatal-warnings Treat warnings as errors
--whole-archive Include all objects from following archives
--wrap SYMBOL Use wrapper functions for SYMBOL
--mpc860c0 [=WORDS] Modify problematic branches in last WORDS

(1-10, default 5) words of a page

Options:
Page 418 PragmaDev Studio V6.0

Reference Manual
21.2.2 emulation specific options
i386pe:
--base_file <basefile> Generate a base file for relocatable DLLs
--dll Set image base to the default for DLLs
--file-alignment <size> Set file alignment
--heap <size> Set initial size of the heap
--image-base <address> Set start address of the executable
--major-image-version <number> Set version number of the executable
--major-os-version <number> Set minimum required OS version
--major-subsystem-version <num-
ber>

Set minimum required OS subsystem version

--minor-image-version <number> Set revision number of the executable
--minor-os-version <number> Set minimum required OS revision
--minor-subsystem-version <num-
ber>

Set minimum required OS subsystem revision

--section-alignment <size> Set section alignment
--stack <size> Set size of the initial stack
--subsystem <name>[:<version>] Set required OS subsystem [& version]
--support-old-code Support interworking with old code
--thumb-entry=<symbol> Set the entry point to be Thumb <symbol>
--add-stdcall-alias Export symbols with and without @nn
--disable-stdcall-fixup Don't link _sym to _sym@nn
--enable-stdcall-fixup Link _sym to _sym@nn without warnings
--exclude-symbols sym,sym,... Exclude symbols from automatic export
--export-all-symbols Automatically export all globals to DLL
--kill-at Remove @nn from exported symbols
--out-implib <file> Generate import library
--output-def <file> Generate a .DEF file for the built DLL
--warn-duplicate-exports Warn about duplicate exports.
--compat-implib Create backward compatible import libs; create

__imp_<SYMBOL> as well.
--enable-auto-image-base Automatically choose image base for DLLs un-

less user specifies one
--disable-auto-image-base Do not auto-choose image base. (default)
--dll-search-prefix=<string> When linking dynamically to a dll witout an im-

portlib, use <string><basename>.dll in prefer-
ence to lib<basename>.dll
PragmaDev Studio V6.0 Page 419

Reference Manual
21.3 - gdb commands
This chapter is a gathering of all the explanations you can get from the help command in
gdb.

21.3.1 Aliases
Aliases of other commands.

21.3.1.1 delete breakpoints

Delete some breakpoints or auto-display expressions.

Arguments are breakpoint numbers with spaces in between.

To delete all breakpoints, give no argument.

This command may be abbreviated "delete".

21.3.1.2 disable breakpoints

Disable some breakpoints.

Arguments are breakpoint numbers with spaces in between.

To disable all breakpoints, give no argument.

A disabled breakpoint is not forgotten, but has no effect until reenabled.

This command may be abbreviated "disable".

21.3.1.3 ni

Step one instruction, but proceed through subroutine calls.

Argument N means do this N times (or till program stops for another reason).

21.3.1.4 si

Step one instruction exactly.

Argument N means do this N times (or till program stops for another reason).

21.3.1.5 where

Print backtrace of all stack frames.

Step one instruction exactly.

Argument N means do this N times (or till program stops for another reason).

21.3.2 Breakpoints
Making program stop at certain points.

21.3.2.1 awatch

Set a watchpoint for an expression.
Page 420 PragmaDev Studio V6.0

Reference Manual
A watchpoint stops execution of your program whenever the value of

an expression is either read or written.

21.3.2.2 break

Set breakpoint at specified line or function.

Argument may be line number, function name, or "*" and an address. If line number is
specified, break at start of code for that line. If function is specified, break at start of code
for that function. If an address is specified, break at that exact address. With no arg, uses
current execution address of selected stack frame. This is useful for breaking on return to
a stack frame. Multiple breakpoints at one place are permitted, and useful if conditional.

21.3.2.3 catch

Set breakpoints to catch exceptions that are raised. Argument may be a single exception
to catch, multiple exceptions to catch, or the default exception "default". If no arguments
are given, breakpoints are set at all exception handlers catch clauses within the current
scope.

A condition specified for the catch applies to all breakpoints set with this command

21.3.2.4 clear

Clear breakpoint at specified line or function.

Argument may be line number, function name, or "*" and an address. If line number is
specified, all breakpoints in that line are cleared. If function is specified, breakpoints at
beginning of function are cleared. If an address is specified, breakpoints at that address
are cleared.

With no argument, clears all breakpoints in the line that the selected frame

is executing in.

See also the "delete" command which clears breakpoints by number.

21.3.2.5 commands

Set commands to be executed when a breakpoint is hit. Give breakpoint number as argu-
ment after "commands". With no argument, the targeted breakpoint is the last one set.
The commands themselves follow starting on the next line. Type a line containing "end"
to indicate the end of them. Give "silent" as the first line to make the breakpoint silent;
then no output is printed when it is hit, except what the commands print.

21.3.2.6 condition

Specify breakpoint number N to break only if COND is true. Usage is `condition N
COND', where N is an integer and COND is an expression to be evaluated whenever
breakpoint N is reached.

21.3.2.7 delete

Delete some breakpoints or auto-display expressions. Arguments are breakpoint num-
bers with spaces in between. To delete all breakpoints, give no argument. Also a prefix
PragmaDev Studio V6.0 Page 421

Reference Manual
command for deletion of other GDB objects. The "unset" command is also an alias for
"delete".

List of delete subcommands:

delete breakpoints -- Delete some breakpoints or auto-display expressions

Arguments are breakpoint numbers with spaces in between. To delete all breakpoints,
give no argument. This command may be abbreviated "delete".

delete display -- Cancel some expressions to be displayed when program stops Cancel
some expressions to be displayed when program stops. Arguments are the code numbers
of the expressions to stop displaying. No argument means cancel all automatic-display
expressions. Do "info display" to see current list of code numbers.

21.3.2.8 disable

Disable some breakpoints.

Arguments are breakpoint numbers with spaces in between. To disable all breakpoints,
give no argument. A disabled breakpoint is not forgotten, but has no effect until reen-
abled.

List of disable subcommands:

disable breakpoints -- Disable some breakpoints

Arguments are breakpoint numbers with spaces in between. To disable all breakpoints,
give no argument. A disabled breakpoint is not forgotten, but has no effect until reen-
abled. This command may be abbreviated "disable".

disable display -- Disable some expressions to be displayed when program stops

Arguments are the code numbers of the expressions to stop displaying. No argument
means disable all automatic-display expressions. Do "info display" to see current list of
code numbers.

21.3.2.9 enable

Enable some breakpoints.

Give breakpoint numbers (separated by spaces) as arguments. With no subcommand,
breakpoints are enabled until you command otherwise. This is used to cancel the effect of
the "disable" command. With a subcommand you can enable temporarily.

List of enable subcommands:

enable delete -- Enable breakpoints and delete when hit

Enable breakpoints and delete when hit. Give breakpoint numbers. If a breakpoint is hit
while enabled in this fashion, it is deleted.

enable display -- Enable some expressions to be displayed when program stops

Enable some expressions to be displayed when program stops. Arguments are the code
numbers of the expressions to resume displaying. No argument means enable all auto-
matic-display expressions. Do "info display" to see current list of code numbers.

enable keep -- Enable breakpoints for normal operation
Page 422 PragmaDev Studio V6.0

Reference Manual
Enable breakpoints for normal operation. Give breakpoint numbers. This cancels the
effect of "enable once" or "enable delete".

enable once -- Enable breakpoints for one hit

Enable breakpoints for one hit. Give breakpoint numbers. If a breakpoint is hit while
enabled in this fashion, it becomes disabled.

21.3.2.10 gbreak

Set a global breakpoint. Args like "break" command.

Like "break" except the breakpoint applies to all tasks.

21.3.2.11 hbreak

Set a hardware assisted breakpoint. Args like "break" command.

Like "break" except the breakpoint requires hardware support,

some target hardware may not have this support.

21.3.2.12 ignore

Set ignore-count of breakpoint number N to COUNT.

Usage is `ignore N COUNT'.

21.3.2.13 obreak

Set a one-time breakpoint. Args like "break" command. Like "break" except the break-
point will be disabled when hit. Equivalent to "break" followed by using "enable once" on
the breakpoint number.

21.3.2.14 ohbreak

Set a one-time hardware assisted breakpoint. Args like "break" command. Like "hbreak"
except the breakpoint will be disabled when hit. Equivalent to "hbreak" followed by
using "enable once" on the breakpoint number.

21.3.2.15 rbreak

Set a breakpoint for all functions matching REGEXP.

21.3.2.16 rwatch

Set a read watchpoint for an expression. A watchpoint stops execution of your program
whenever the value of an expression is read.

21.3.2.17 tbreak

Set a temporary breakpoint. Args like "break" command. Like "break" except the break-
point is only temporary, so it will be deleted when hit. Equivalent to "break" followed by
using "enable delete" on the breakpoint number.
PragmaDev Studio V6.0 Page 423

Reference Manual
21.3.2.18 thbreak

Set a temporary hardware assisted breakpoint. Args like "break" command. Like
"hbreak" except the breakpoint is only temporary, so it will be deleted when hit.

21.3.2.19 watch

Set a watchpoint for an expression. A watchpoint stops execution of your program when-
ever the value of an expression changes.

21.3.3 Examining data

21.3.3.1 call

Call a function in the program.

The argument is the function name and arguments, in the notation of the current work-
ing language. The result is printed and saved in the value history, if it is not void.

21.3.3.2 delete display

Cancel some expressions to be displayed when program stops. Arguments are the code
numbers of the expressions to stop displaying. No argument means cancel all automatic-
display expressions. Do "info display" to see current list of code numbers.

21.3.3.3 disable display

Disable some expressions to be displayed when program stops. Arguments are the code
numbers of the expressions to stop displaying. No argument means disable all auto-
matic-display expressions. Do "info display" to see current list of code numbers.

21.3.3.4 disassemble

Disassemble a specified section of memory. Default is the function surrounding the pc of
the selected frame. With a single argument, the function surrounding that address is
dumped. Two arguments are taken as a range of memory to dump.

21.3.3.5 display

Print value of expression EXP each time the program stops.

/FMT may be used before EXP as in the "print" command.

/FMT "i" or "s" or including a size-letter is allowed,

as in the "x" command, and then EXP is used to get the address to examine and examin-
ing is done as in the "x" command.

With no argument, display all currently requested auto-display expressions. Use "undis-
play" to cancel display requests previously made.

21.3.3.6 enable display

Enable some expressions to be displayed when program stops. Arguments are the code
numbers of the expressions to resume displaying. No argument means enable all auto-
matic-display expressions. Do "info display" to see current list of code numbers.
Page 424 PragmaDev Studio V6.0

Reference Manual
21.3.3.7 inspect

Same as "print" command, except that if you are running in the epoch environment, the
value is printed in its own window.

21.3.3.8 output

Like "print" but don't put in value history and don't print newline

Like "print" but don't put in value history and don't print newline. This is useful in user-
defined commands.

21.3.3.9 print

Print value of expression EXP

Variables accessible are those of the lexical environment of the selected stack frame, plus
all those whose scope is global or an entire file.

$NUM gets previous value number NUM. $ and $$ are the last two values. $$NUM
refers to NUM'th value back from the last one. Names starting with $ refer to registers
(with the values they would have if the program were to return to the stack frame now
selected, restoring all registers saved by frames farther in) or else to debugger "conve-
nience" variables (any such name not a known register). Use assignment expressions to
give values to convenience variables.

{TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.

@ is a binary operator for treating consecutive data objects anywhere in memory as an
array.

FOO@NUM gives an array whose first element is FOO, whose second element is stored
in the space following where FOO is stored, etc. FOO must be an expression whose value
resides in memory.

EXP may be preceded with /FMT, where FMT is a format letter but no count or size letter
(see "x" command).

21.3.3.10 printf

printf "printf format string", arg1, arg2, arg3, ..., argn

This is useful for formatted output in user-defined commands.

21.3.3.11 ptype

Print definition of type TYPE.

Argument may be a type name defined by typedef, or "struct STRUCT-TAG" or "class
CLASS-NAME" or "union UNION-TAG" or "enum ENUM-TAG".

The selected stack frame's lexical context is used to look up the name.

21.3.3.12 reformat

Change /FMT of expression CODENUM in the "display" list.

This is a shortcut to avoid using a new code number for the same expression.
PragmaDev Studio V6.0 Page 425

Reference Manual
21.3.3.13 set

Evaluate expression EXP and assign result to variable VAR, using assignment syntax
appropriate for the current language (VAR = EXP or VAR := EXP for example). VAR
may be a debugger "convenience" variable (names starting with $), a register (a few stan-
dard names starting with $), or an actual variable in the program being debugged. EXP
is any valid expression.

Use "set variable" for variables with names identical to set subcommands.

With a subcommand, this command modifies parts of the gdb environment.

You can see these environment settings with the "show" command.

List of set subcommands:

set annotate -- Set annotation_level

0 == normal

1 == fullname (for use when running under emacs)

2 == output annotated suitably for use by programs that control GDB.

set architecture -- Set architecture of target

set args -- Set argument list to give program being debugged when it is started

Follow this command with any number of args, to be passed to the program.

set assembly-language -- Set x86 instruction set to use for disassembly

This value can be set to either i386 or i8086 to change how instructions are disassem-
bled.

set check -- Set the status of the type/range checker

List of set check subcommands:

set check range -- Set range checking (on/warn/off/auto)

set check type -- Set type checking (on/warn/off/auto)

set complaints -- Set max number of complaints about incorrect symbols

set demangle-style -- Set the current C++ demangling style

set editing -- Set editing of command lines as they are typed

set environment -- Set environment variable value to give the program

set gnutarget -- Set the current BFD target

set height -- Set number of lines gdb thinks are in a page

set history -- Generic command for setting command history parameters

set inhibit-gdbinit -- Set whether gdb reads the gdbinit files

set input-radix -- Set default input radix for entering numbers

set language -- Set the current source language
Page 426 PragmaDev Studio V6.0

Reference Manual
set listsize -- Set number of source lines gdb will list by default

set longjmp-breakpoint-enable -- Set internal breakpoints to handle longjmp() properly

set output-radix -- Set default output radix for printing of values

set prefetch-mem-enable -- Set whether to enable target memory prefetching

set print -- Generic command for setting how things print

set prompt -- Set gdb's prompt

set radix -- Set default input and output number radices

set remotebaud -- Set baud rate for remote serial I/O

set remotedebug -- Set debugging of remote protocol

set remotelogbase -- Set

set remotelogfile -- Set filename for remote session recording

set remotetimeout -- Set timeout limit to wait for target to respond

set symbol-readnow -- Set immediate reading of full symbol table data

set targetdebug -- Set target debugging

set unsettable-breakpoint-autodisable -- Set automatic disabling of unsettable break-
points

set variable -- Evaluate expression EXP and assign result to variable VAR

set verbose -- Set verbosity

set watchdog -- Set watchdog timer

set width -- Set number of characters gdb thinks are in a line

set write -- Set writing into executable and core files

set wrs-detach-behavior -- Set whether to quietly detach tasks in target/attach/quit

set wtx-event-debug-print -- Set whether to print debug messages in the new event han-
dling code

set wtx-gui-bp2-message -- Set whether to send bp2 messages to the Tornado GUI

set wtx-ignore-exit-status -- Set whether the exit status of the debugged task is ignored
(assumed zero)

set wtx-load-flags -- Set load flags used when loading a new object module

set wtx-load-path-qualify -- Set passing of full object path to target

set wtx-load-timeout -- Set timeout in seconds used when loading new objects on target

set wtx-new-target-message -- Set whether to use the new target message format

set wtx-order-debug-print -- Set whether to print orders issued to the inferior

set wtx-override-configuration-check -- Set override checking Gdb configuration

set wtx-task-priority -- Set priority of tasks created using "run" command

set wtx-task-stack-size -- Set stack size (in bytes) of tasks created using "run" command
PragmaDev Studio V6.0 Page 427

Reference Manual
set wtx-tool-name -- Set tool name used by debugger when connecting to the target
server

set xfer-mem-debug-print -- Set whether to enable target_xfer_memory debug print

21.3.3.14 tclprint

Same as "print" command, except that results are formatted appropriately for use as a
Tcl_DString, and nothing is added to the value history.

21.3.3.15 undisplay

Cancel some expressions to be displayed when program stops.

Arguments are the code numbers of the expressions to stop displaying.

No argument means cancel all automatic-display expressions.

"delete display" has the same effect as this command.

Do "info display" to see current list of code numbers.

21.3.3.16 whatis

Print data type of expression EXP.

21.3.3.17 x

Examine memory: x/FMT ADDRESS.

ADDRESS is an expression for the memory address to examine.

FMT is a repeat count followed by a format letter and a size letter.

Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal), t(binary), f(float),
a(address), i(instruction), c(char) and s(string). Size letters are b(byte), h(halfword),
w(word), g(giant, 8 bytes). The specified number of objects of the specified size are
printed according to the format.

Defaults for format and size letters are those previously used.

Default count is 1. Default address is following last thing printed with this command or
"print".

21.3.4 Files
Specifying and examining files

add-shared-symbol-files -- Load the symbols from shared objects in the dynamic linker's
link map

add-symbol-file -- Load the symbols from FILE

cd -- Set working directory to DIR for debugger and program being debugged
Page 428 PragmaDev Studio V6.0

Reference Manual
core-file -- Use FILE as core dump for examining memory and registers

directory -- Add directory DIR to beginning of search path for source files

exec-file -- Use FILE as program for getting contents of pure memory

file -- Use FILE as program to be debugged

forward-search -- Search for regular expression (see regex(3)) from last line listed

list -- List specified function or line

load -- Dynamically load FILE into the running program

path -- Add directory DIR(s) to beginning of search path for object files

pwd -- Print working directory

reverse-search -- Search backward for regular expression (see regex(3)) from last line
listed

search -- Search for regular expression (see regex(3)) from last line listed

section -- Change the base address of section SECTION of the exec file to ADDR

set gnutarget -- Set the current BFD target

show gnutarget -- Show the current BFD target

symbol-file -- Load symbol table from executable file FILE

unload -- Unload and close an object module that is currently being debugged

21.3.5 Internals
Maintenance commands

Some gdb commands are provided just for use by gdb maintainers.

These commands are subject to frequent change, and may not be as

well documented as user commands.

List of commands:

maintenance -- Commands for use by GDB maintainers

maintenance check-blockranges -- Check consistency of block address ranges within
each blockvector

maintenance check-symbols -- Check consistency of addresses between minsyms and
symbols

maintenance check-symtabs -- Check consistency of psymtabs and symtabs

maintenance demangle -- Demangle a C++ mangled name

maintenance dump-eventpoints -- Dump internal list of WTX eventpoints
PragmaDev Studio V6.0 Page 429

Reference Manual
maintenance dump-sections -- Dump interesting info about the sections of OBJFILE

maintenance info -- Commands for showing internal info about the program being
debugged

maintenance info breakpoints -- Status of all breakpoints

maintenance info gbreakpoints -- Like "maintenance info breakpoints" but with F/G
flags

maintenance info sections -- List the BFD sections of the exec and core files

maintenance print -- Maintenance command for printing GDB internal state

maintenance print msymbols -- Print dump of current minimal symbol definitions

maintenance print objfiles -- Print dump of current object file definitions

maintenance print psymbols -- Print dump of current partial symbol definitions

maintenance print statistics -- Print statistics about internal gdb state

maintenance print symbols -- Print dump of current symbol definitions

maintenance print type -- Print a type chain for a given symbol

maintenance space -- Set the display of space usage

maintenance time -- Set the display of time usage

maintenance translate-address -- Translate a section name and address to a symbol

set targetdebug -- Set target debugging

set watchdog -- Set watchdog timer

show targetdebug -- Show target debugging

show watchdog -- Show watchdog timer

21.3.6 Obscure features
List of commands:

complete -- List the completions for the rest of the line as a command

divert -- Run the supplied command

printdiversion -- Print the contents of the diversion buffer

set annotate -- Set annotation_level

set assembly-language -- Set x86 instruction set to use for disassembly

set longjmp-breakpoint-enable -- Set internal breakpoints to handle longjmp() properly

set prefetch-mem-enable -- Set whether to enable target memory prefetching

set unsettable-breakpoint-autodisable -- Set automatic disabling of unsettable break-
points
Page 430 PragmaDev Studio V6.0

Reference Manual
set wtx-event-debug-print -- Set whether to print debug messages in the new event han-
dling code

set wtx-gui-bp2-message -- Set whether to send bp2 messages to the Tornado GUI

set wtx-ignore-exit-status -- Set whether the exit status of the debugged task is ignored
(assumed zero)

set wtx-load-flags -- Set load flags used when loading a new object module

set wtx-load-path-qualify -- Set passing of full object path to target

set wtx-load-timeout -- Set timeout in seconds used when loading new objects on target

set wtx-new-target-message -- Set whether to use the new target message format

set wtx-order-debug-print -- Set whether to print orders issued to the inferior

set wtx-override-configuration-check -- Set override checking Gdb configuration

set wtx-task-priority -- Set priority of tasks created using "run" command

set wtx-task-stack-size -- Set stack size (in bytes) of tasks created using "run" command

set wtx-tool-name -- Set tool name used by debugger when connecting to the target
server

set xfer-mem-debug-print -- Set whether to enable target_xfer_memory debug printfs

show annotate -- Show annotation_level

show assembly-language -- Show x86 instruction set to use for disassembly

show longjmp-breakpoint-enable -- Show internal breakpoints to handle longjmp()
properly

show prefetch-mem-enable -- Show whether to enable target memory prefetching

show unsettable-breakpoint-autodisable -- Show automatic disabling of unsettable
breakpoints

show wtx-event-debug-print -- Show whether to print debug messages in the new event
handling code

show wtx-gui-bp2-message -- Show whether to send bp2 messages to the Tornado GUI

show wtx-ignore-exit-status -- Show whether the exit status of the debugged task is
ignored (assumed zero)

show wtx-load-flags -- Show load flags used when loading a new object module

show wtx-load-path-qualify -- Show passing of full object path to target

show wtx-load-timeout -- Show timeout in seconds used when loading new objects on
target

show wtx-new-target-message -- Show whether to use the new target message format

show wtx-order-debug-print -- Show whether to print orders issued to the inferior

show wtx-override-configuration-check -- Show override checking Gdb configuration

show wtx-task-priority -- Show priority of tasks created using "run" command
PragmaDev Studio V6.0 Page 431

Reference Manual
show wtx-task-stack-size -- Show stack size (in bytes) of tasks created using "run" com-
mand

show wtx-tool-name -- Show tool name used by debugger when connecting to the target
server

show xfer-mem-debug-print -- Show whether to enable target_xfer_memory debug
printfs

stop -- There is no `stop' command

tcl -- Pass the argument string to the Tcl interpreter

tcldebug -- Toggle printing of Tcl requests to GDB

tclerror -- Toggle printing of verbose Tcl error information

tclproc -- Attach the name of a Tcl procedure to the name of a GDB command

21.3.7 Running the program

21.3.7.1 attach

Attach to a process or file outside of GDB.

This command attaches to another target, of the same type as your last `target' command
(`info files' will show your target stack). The command may take as argument a process
id or a device file. For a process id, you must have permission to send the process a sig-
nal, and it must have the same effective uid as the debugger. When using "attach", you
should use the "file" command to specify the program running in the process, and to load
its symbol table.

21.3.7.2 continue

Continue program being debugged.

Continue program being debugged, after signal or breakpoint. If proceeding from break-
point, a number N may be used as an argument, which means to set the ignore count of
that breakpoint to N - 1 (so that the breakpoint won't break until the Nth time it is
reached).

21.3.7.3 detach

Detach a process or file previously attached.

If a process, it is no longer traced, and it continues its execution. If you were debugging a
file, the file is closed and gdb no longer accesses it.

21.3.7.4 finish

Execute until selected stack frame returns.

Upon return, the value returned is printed and put in the value history.

21.3.7.5 halt

Halt program being debugged.
Page 432 PragmaDev Studio V6.0

Reference Manual
21.3.7.6 handle

Specify how to handle a signal.

Args are signals and actions to apply to those signals. Symbolic signals (e.g. SIGSEGV)
are recommended but numeric signals from 1-15 are allowed for compatibility with old
versions of GDB. Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).
The special arg "all" is recognized to mean all signals except those used by the debugger,
typically SIGTRAP and SIGINT. Recognized actions include "stop", "nostop", "print",
"noprint", "pass", "nopass", "ignore", or "noignore". Stop means reenter debugger if this
signal happens (implies print). Print means print a message if this signal happens. Pass
means let program see this signal; otherwise program doesn't know. Ignore is a synonym
for nopass and noignore is a synonym for pass. Pass and Stop may be combined.

21.3.7.7 idle

Perform one iteration of the debugger's idle processing. Normally invoked internally, but
may be used manually for testing.

21.3.7.8 info handle

What debugger does when program gets various signals.

Specify a signal as argument to print info on that signal only.

21.3.7.9 jump

Continue program being debugged at specified line or address. Give as argument either
LINENUM or *ADDR, where ADDR is an expression for an address to start at.

21.3.7.10 kill

Kill execution of program being debugged.

21.3.7.11 next

Step program, proceeding through subroutine calls. Like the "step" command as long as
subroutine calls do not happen; when they do, the call is treated as one instruction. Argu-
ment N means do this N times (or till program stops for another reason).

21.3.7.12 nexti

Step one instruction, but proceed through subroutine calls. Argument N means do this N
times (or till program stops for another reason).

21.3.7.13 run

Start debugged program.

Start debugged program. You may specify arguments to give it. Args may include "*", or
"[...]"; they are expanded using "sh". Input and output redirection with ">", "<", or ">>"
are also allowed.

With no arguments, uses arguments last specified (with "run" or "set args"). To cancel
previous arguments and run with no arguments, use "set args" without arguments.
PragmaDev Studio V6.0 Page 433

Reference Manual
21.3.7.14 sattach

Leave current task suspended, and attach to another. Effect is that of "sdetach" followed
by "attach".

21.3.7.15 sdetach

Detach current task, leaving it suspended. Effect is that of "detach 1".

21.3.7.16 set args

Set argument list to give program being debugged when it is started.

Follow this command with any number of args, to be passed to the program.

21.3.7.17 set environment

Set environment variable value to give the program.

Arguments are VAR VALUE where VAR is variable name and VALUE is value. VALUES
of environment variables are uninterpreted strings. This does not affect the program
until the next "run" command.

21.3.7.18 show args

Show argument list to give program being debugged when it is started.

Follow this command with any number of args, to be passed to the program.

21.3.7.19 signal

Continue program giving it signal specified by the argument.

An argument of "0" means continue program without giving it a signal.

21.3.7.20 step

Step program until it reaches a different source line.

Argument N means do this N times (or till program stops for another reason).

21.3.7.21 stepi

Step one instruction exactly.

Argument N means do this N times (or till program stops for another reason).

21.3.7.22 target

Connect to a target machine or process.

The first argument is the type or protocol of the target machine. Remaining arguments
are interpreted by the target protocol. For more information on the arguments for a par-
ticular protocol, type `help target ' followed by the protocol name.

List of target subcommands:

target wtx -- Remote target connected via the Wind River Tool eXchange (WTX) protocol
Page 434 PragmaDev Studio V6.0

Reference Manual
Remote target connected via the Wind River Tool eXchange (WTX) protocol. Specify the
name of the WTX target server connected to the target as the argument. Once connected
to the target server you can access target system memory and download object files, as
well as use the "run" command to spawn a task you wish to debug or "attach" command
to debug an already existing task.

target wtxsystem -- System running on a remote target connected to the host

System running on a remote target connected to the host via the Wind River Tool
eXchange (WTX) protocol. To connect to the system first establish a connection to the
target by giving the command "target wtx" specifying as an argument the WTX target
server name. Then use the "attach system" command to enter system debugging mode.

target wtxtask -- Task running on a remote target system connected to the host

Task running on a remote target system connected to the host via the Wind River Tool
eXchange (WTX) protocol. To spawn a task, first establish a connection to the target by
giving the command "target wtx" specifying as an argument the WTX target server name.
Then use the "run" command to spawn the task, supplying the name of the task entry
point and arguments to the task (if any).

21.3.7.23 thread

Use this command to switch between threads.

The new thread ID must be currently known.

21.3.7.24 thread apply

Apply a command to a list of threads.

21.3.7.25 apply all

Apply a command to all threads.

21.3.7.26 tty

Set terminal for future runs of program being debugged.

21.3.7.27 unset environment

Cancel environment variable VAR for the program.

This does not affect the program until the next "run" command.

21.3.7.28 untarget

Undo the effect of previous "target" commands.

21.3.7.29 until

Execute until the program reaches a source line greater than the current or a specified
line or address or function (same args as break command). Execution will also stop upon
exit from the current stack frame.
PragmaDev Studio V6.0 Page 435

Reference Manual
21.3.8 Examining the stack
The stack is made up of stack frames. Gdb assigns numbers to stack frames counting
from zero for the innermost (currently executing) frame.

At any time gdb identifies one frame as the "selected" frame. Variable lookups are done
with respect to the selected frame. When the program being debugged stops, gdb selects
the innermost frame. The commands below can be used to select other frames by number
or address.

21.3.8.1 backtrace

Print backtrace of all stack frames, or innermost COUNT frames. With a negative argu-
ment, print outermost -COUNT frames.

21.3.8.2 bt

Print backtrace of all stack frames, or innermost COUNT frames. With a negative argu-
ment, print outermost -COUNT frames.

21.3.8.3 down

Select and print stack frame called by this one.

An argument says how many frames down to go.

21.3.8.4 frame

Select and print a stack frame.

With no argument, print the selected stack frame. (See also "info frame"). An argument
specifies the frame to select. It can be a stack frame number or the address of the frame.
With argument, nothing is printed if input is coming from a command file or a user-
defined command.

21.3.8.5 pptype

Exercise the GUI protocol type formatter.

21.3.8.6 ppval

Exercise the GUI protocol value formatter.

21.3.8.7 return

Make selected stack frame return to its caller.

Control remains in the debugger, but when you continue execution will resume in the
frame above the one now selected. If an argument is given, it is an expression for the
value to return.

21.3.8.8 select-frame

Select a stack frame without printing anything.
Page 436 PragmaDev Studio V6.0

Reference Manual
An argument specifies the frame to select. It can be a stack frame number or the address
of the frame.

21.3.8.9 up

Select and print stack frame that called this one.

An argument says how many frames up to go.

21.3.9 Status inquiries
List of commands:

info -- Generic command for showing things about the program being debugged

info address -- Describe where symbol SYM is stored

info all-registers -- List of all registers and their contents

info architecture -- List supported target architectures

info args -- Argument variables of current stack frame

info breakpoints -- Status of user-settable breakpoints

Status of user-settable breakpoints, or breakpoint number NUMBER.

The "Type" column indicates one of:

 breakpoint - normal breakpoint

 watchpoint - watchpoint

The "Disp" column contains one of "keep", "del", or "dis" to indicate the disposition of
the breakpoint after it gets hit. "dis" means that the breakpoint will be disabled. The
"Address" and "What" columns indicate the address and file/line number respectively.

Convenience variable "$_" and default examine address for "x" are set to the address of
the last breakpoint listed.

Convenience variable "$bpnum" contains the number of the last breakpoint set.

info catch -- Exceptions that can be caught in the current stack frame

info common -- Print out the values contained in a Fortran COMMON block

info copying -- Conditions for redistributing copies of GDB

info display -- Expressions to display when program stops

info files -- Names of targets and files being debugged
PragmaDev Studio V6.0 Page 437

Reference Manual
info float -- Print the status of the floating point unit

info frame -- All about selected stack frame

All about selected stack frame, or frame at ADDR.

info functions -- All function names

info gbreakpoints -- Like "info breakpoints" but with F/G flags

info handle -- What debugger does when program gets various signals

info line -- Core addresses of the code for a source line

Line can be specified as

 LINENUM, to list around that line in current file,

 FILE:LINENUM, to list around that line in that file,

 FUNCTION, to list around beginning of that function,

 FILE:FUNCTION, to distinguish among like-named static functions.

Default is to describe the last source line that was listed. This sets the default address for
"x" to the line's first instruction so that "x/i" suffices to start examining the machine
code. The address is also stored as the value of "$_".

info locals -- Local variables of current stack frame

info prefetch-registers -- List of integer registers and their contents

info program -- Execution status of the program

info prototype -- Prototype of function containing the specified source line

Any argument that works with "info line" may be used.

info registers -- List of integer registers and their contents

info set -- Show all GDB settings

info signals -- What debugger does when program gets various signals

info source -- Information about the current source file

info sources -- Source files in the program
Page 438 PragmaDev Studio V6.0

Reference Manual
info stack -- Backtrace of the stack

Backtrace of the stack, or innermost COUNT frames.

info symbol -- Describe what symbol is at location ADDR

Only for symbols with fixed locations (global or static scope).

info tags -- List various sets of names relevant to the current stack frame

Names are printed one per line, with no annotation, for machine-readability.

 func-args - arguments

 func-autos - automatic variables on the stack

 func-locals - union of func-args, func-autos, func-regs, and func-statics

 func-regs - automatic variables in registers

 func-statics - static variables local to the current function

 file-statics - static variables local to the current file

 file-globals - static variables global to the entire program

info target -- Names of targets and files being debugged

info taskname -- Display the name associated with a given task ID

info terminal -- Print inferior's saved terminal status

info threads -- IDs of currently known threads

info types -- All type names

info variables -- All global and static variable names

All global and static variable names, or those matching REGEXP.

info warranty -- Various kinds of warranty you do not have

info watchpoints -- Synonym for ``info breakpoints''

show -- Generic command for showing things about the debugger

show annotate -- Show annotation_level

show architecture -- Show architecture of target
PragmaDev Studio V6.0 Page 439

Reference Manual
show args -- Show argument list to give program being debugged when it is started

show assembly-language -- Show x86 instruction set to use for disassembly

show check -- Show the status of the type/range checker

show commands -- Show the history of commands you typed

show complaints -- Show max number of complaints about incorrect symbols

show convenience -- Debugger convenience ("$foo") variables

show copying -- Conditions for redistributing copies of GDB

show demangle-style -- Show the current C++ demangling style

show directories -- Current search path for finding source files

show editing -- Show editing of command lines as they are typed

show environment -- The environment to give the program

show gnutarget -- Show the current BFD target

show height -- Show number of lines gdb thinks are in a page

show history -- Generic command for showing command history parameters

show inhibit-gdbinit -- Show whether gdb reads the gdbinit files

show input-radix -- Show default input radix for entering numbers

show language -- Show the current source language

show listsize -- Show number of source lines gdb will list by default

show longjmp-breakpoint-enable -- Show internal breakpoints to handle longjmp()
properly

show output-radix -- Show default output radix for printing of values

show paths -- Current search path for finding object files

show prefetch-mem-enable -- Show whether to enable target memory prefetching

show print -- Generic command for showing print settings

show prompt -- Show gdb's prompt

show radix -- Show the default input and output number radices

show remotebaud -- Show baud rate for remote serial I/O

show remotedebug -- Show debugging of remote protocol

show remotelogbase -- Show

show remotelogfile -- Show filename for remote session recording

show remotetimeout -- Show timeout limit to wait for target to respond

show symbol-readnow -- Show immediate reading of full symbol table data

show targetdebug -- Show target debugging
Page 440 PragmaDev Studio V6.0

Reference Manual
show unsettable-breakpoint-autodisable -- Show automatic disabling of unsettable
breakpoints

show user -- Show definitions of user defined commands

show values -- Elements of value history around item number IDX (or last ten)

show verbose -- Show verbosity

show version -- Show what version of GDB this is

show warranty -- Various kinds of warranty you do not have

show watchdog -- Show watchdog timer

show width -- Show number of characters gdb thinks are in a line

show write -- Show writing into executable and core files

show wrs-detach-behavior -- Show whether to quietly detach tasks in target/attach/quit

show wtx-event-debug-print -- Show whether to print debug messages in the new event
handling code

show wtx-gui-bp2-message -- Show whether to send bp2 messages to the Tornado GUI

show wtx-ignore-exit-status -- Show whether the exit status of the debugged task is
ignored (assumed zero)

show wtx-load-flags -- Show load flags used when loading a new object module

show wtx-load-path-qualify -- Show passing of full object path to target

show wtx-load-timeout -- Show timeout in seconds used when loading new objects on
target

show wtx-new-target-message -- Show whether to use the new target message format

show wtx-order-debug-print -- Show whether to print orders issued to the inferior

show wtx-override-configuration-check -- Show override checking Gdb configuration

show wtx-task-priority -- Show priority of tasks created using "run" command

show wtx-task-stack-size -- Show stack size (in bytes) of tasks created using "run" com-
mand

show wtx-tool-name -- Show tool name used by debugger when connecting to the target
server

show xfer-mem-debug-print -- Show whether to enable target_xfer_memory debug
printfs

21.3.10 Support facilities
List of commands:

define -- Define a new command name

document -- Document a user-defined command
PragmaDev Studio V6.0 Page 441

Reference Manual
dont-repeat -- Don't repeat this command

down-silently -- Same as the `down' command

echo -- Print a constant string

help -- Print list of commands

if -- Execute nested commands once IF the conditional expression is non zero

info architecture -- List supported target architectures

make -- Run the ``make'' program using the rest of the line as arguments

overlay -- Commands for debugging overlays

overlay auto -- Enable automatic overlay debugging

overlay list-overlays -- List mappings of overlay sections

overlay load-target -- Read the overlay mapping state from the target

overlay manual -- Enable overlay debugging

overlay map-overlay -- Assert that an overlay section is mapped

overlay off -- Disable overlay debugging

overlay unmap-overlay -- Assert that an overlay section is unmapped

quit -- Exit gdb

set architecture -- Set architecture of target

set check range -- Set range checking

set check type -- Set type checking

set complaints -- Set max number of complaints about incorrect symbols

set demangle-style -- Set the current C++ demangling style

set editing -- Set editing of command lines as they are typed

set height -- Set number of lines gdb thinks are in a page

set history -- Generic command for setting command history parameters

set input-radix -- Set default input radix for entering numbers

set language -- Set the current source language

set listsize -- Set number of source lines gdb will list by default

set output-radix -- Set default output radix for printing of values

set print address -- Set printing of addresses

set print array -- Set prettyprinting of arrays

set print asm-demangle -- Set demangling of C++ names in disassembly listings

set print demangle -- Set demangling of encoded C++ names when displaying symbols

set print double-format -- Set 'printf' format for double-precision floating point values

set print float-format -- Set 'printf' format for single-precision floating point values
Page 442 PragmaDev Studio V6.0

Reference Manual
set print object -- Set printing of object's derived type based on vtable info

set print pretty -- Set prettyprinting of structures

set print sevenbit-strings -- Set printing of 8-bit characters in strings as \nnn

set print static-members -- Set printing of C++ static members

set print union -- Set printing of unions interior to structures

set print vtbl -- Set printing of C++ virtual function tables

set prompt -- Set gdb's prompt

set radix -- Set default input and output number radices

set symbol-readnow -- Set immediate reading of full symbol table data

set verbose -- Set verbosity

set width -- Set number of characters gdb thinks are in a line

set write -- Set writing into executable and core files

set wrs-detach-behavior -- Set whether to quietly detach tasks in target/attach/quit

shell -- Execute the rest of the line as a shell command

show architecture -- Show architecture of target

show check range -- Show range checking

show check type -- Show type checking

show complaints -- Show max number of complaints about incorrect symbols

show demangle-style -- Show the current C++ demangling style

show editing -- Show editing of command lines as they are typed

show height -- Show number of lines gdb thinks are in a page

show history -- Generic command for showing command history parameters

show input-radix -- Show default input radix for entering numbers

show language -- Show the current source language

show listsize -- Show number of source lines gdb will list by default

show output-radix -- Show default output radix for printing of values

show print address -- Show printing of addresses

show print array -- Show prettyprinting of arrays

show print asm-demangle -- Show demangling of C++ names in disassembly listings

show print demangle -- Show demangling of encoded C++ names when displaying sym-
bols

show print double-format -- Show 'printf' format for double-precision floating point val-
ues

show print float-format -- Show 'printf' format for single-precision floating point values
PragmaDev Studio V6.0 Page 443

Reference Manual
show print object -- Show printing of object's derived type based on vtable info

show print pretty -- Show prettyprinting of structures

show print sevenbit-strings -- Show printing of 8-bit characters in strings as \nnn

show print static-members -- Show printing of C++ static members

show print union -- Show printing of unions interior to structures

show print vtbl -- Show printing of C++ virtual function tables

show prompt -- Show gdb's prompt

show radix -- Show the default input and output number radices

show symbol-readnow -- Show immediate reading of full symbol table data

show verbose -- Show verbosity

show width -- Show number of characters gdb thinks are in a line

show write -- Show writing into executable and core files

show wrs-detach-behavior -- Show whether to quietly detach tasks in target/attach/quit

source -- Read commands from a file named FILE

up-silently -- Same as the `up' command

while -- Execute nested commands WHILE the conditional expression is non zero

21.3.11 User-defined commands
The commands in this class are those defined by the user. Use the "define" command to
define a command.
Page 444 PragmaDev Studio V6.0

Reference Manual
22 - ASCII table

Table 69: ASCII table

Decimal Octal Hex Binary Value Comment

000 000 000 00000000 NUL (Null char.)

001 001 001 00000001 SOH (Start of Header)

002 002 002 00000010 STX (Start of Text)

003 003 003 00000011 ETX (End of Text)

004 004 004 00000100 EOT (End of Transmission)

005 005 005 00000101 ENQ (Enquiry)

006 006 006 00000110 ACK (Acknowledgment)

007 007 007 00000111 BEL (Bell)

008 010 008 00001000 BS (Backspace)

009 011 009 00001001 HT (Horizontal Tab)

010 012 00A 00001010 LF (Line Feed)

011 013 00B 00001011 VT (Vertical Tab)

012 014 00C 00001100 FF (Form Feed)

013 015 00D 00001101 CR (Carriage Return)

014 016 00E 00001110 SO (Shift Out)

015 017 00F 00001111 SI (Shift In)

016 020 010 00010000 DLE (Data Link Escape)

017 021 011 00010001 DC1 (XON)
(Device Control 1)

018 022 012 00010010 DC2 (Device Control 2)

019 023 013 00010011 DC3 (XOFF)(Device Control 3)

020 024 014 00010100 DC4 (Device Control 4)

021 025 015 00010101 NAK (Negative Acknowledgement)

022 026 016 00010110 SYN (Synchronous Idle)

023 027 017 00010111 ETB (End of Trans. Block)

024 030 018 00011000 CAN (Cancel)

025 031 019 00011001 EM (End of Medium)
PragmaDev Studio V6.0 Page 445

Reference Manual
026 032 01A 00011010 SUB (Substitute)

027 033 01B 00011011 ESC (Escape)

028 034 01C 00011100 FS (File Separator)

029 035 01D 00011101 GS (Group Separator)

030 036 01E 00011110 RS (Request to Send) (Record Sepa-
rator)

031 037 01F 00011111 US (Unit Separator)

032 040 020 00100000 SP (Space)

033 041 021 00100001 !

034 042 022 00100010 "

035 043 023 00100011 #

036 044 024 00100100 $

037 045 025 00100101 %

038 046 026 00100110 &

039 047 027 00100111 '

040 050 028 00101000 (

041 051 029 00101001)

042 052 02A 00101010 *

043 053 02B 00101011 +

044 054 02C 00101100 ,

045 055 02D 00101101 -

046 056 02E 00101110 .

047 057 02F 00101111 /

048 060 030 00110000 0

049 061 031 00110001 1

050 062 032 00110010 2

051 063 033 00110011 3

052 064 034 00110100 4

053 065 035 00110101 5

Table 69: ASCII table

Decimal Octal Hex Binary Value Comment
Page 446 PragmaDev Studio V6.0

Reference Manual
054 066 036 00110110 6

055 067 037 00110111 7

056 070 038 00111000 8

057 071 039 00111001 9

058 072 03A 00111010 :

059 073 03B 00111011 ;

060 074 03C 00111100 <

061 075 03D 00111101 =

062 076 03E 00111110 >

063 077 03F 00111111 ?

064 100 040 01000000 @

065 101 041 01000001 A

066 102 042 01000010 B

067 103 043 01000011 C

068 104 044 01000100 D

069 105 045 01000101 E

070 106 046 01000110 F

071 107 047 01000111 G

072 110 048 01001000 H

073 111 049 01001001 I

074 112 04A 01001010 J

075 113 04B 01001011 K

076 114 04C 01001100 L

077 115 04D 01001101 M

078 116 04E 01001110 N

079 117 04F 01001111 O

080 120 050 01010000 P

081 121 051 01010001 Q

Table 69: ASCII table

Decimal Octal Hex Binary Value Comment
PragmaDev Studio V6.0 Page 447

Reference Manual
082 122 052 01010010 R

083 123 053 01010011 S

084 124 054 01010100 T

085 125 055 01010101 U

086 126 056 01010110 V

087 127 057 01010111 W

088 130 058 01011000 X

089 131 059 01011001 Y

090 132 05A 01011010 Z

091 133 05B 01011011 [

092 134 05C 01011100 \

093 135 05D 01011101]

094 136 05E 01011110 ^

095 137 05F 01011111 _

096 140 060 01100000 `

097 141 061 01100001 a

098 142 062 01100010 b

099 143 063 01100011 c

100 144 064 01100100 d

101 145 065 01100101 e

102 146 066 01100110 f

103 147 067 01100111 g

104 150 068 01101000 h

105 151 069 01101001 i

106 152 06A 01101010 j

107 153 06B 01101011 k

108 154 06C 01101100 l

109 155 06D 01101101 m

Table 69: ASCII table

Decimal Octal Hex Binary Value Comment
Page 448 PragmaDev Studio V6.0

Reference Manual
110 156 06E 01101110 n

111 157 06F 01101111 o

112 160 070 01110000 p

113 161 071 01110001 q

114 162 072 01110010 r

115 163 073 01110011 s

116 164 074 01110100 t

117 165 075 01110101 u

118 166 076 01110110 v

119 167 077 01110111 w

120 170 078 01111000 x

121 171 079 01111001 y

122 172 07A 01111010 z

123 173 07B 01111011 {

124 174 07C 01111100 |

125 175 07D 01111101 }

126 176 07E 01111110 ~

127 177 07F 01111111 DEL

Table 69: ASCII table

Decimal Octal Hex Binary Value Comment
PragmaDev Studio V6.0 Page 449

Reference Manual

Page 450 PragmaDev Studio V6.0

23 - About the reference manual

23.1 - Lexical rules
That is the boring part… let’s make it short !

A subset of the BNF (Backus-Naur Form) will be used in the following pages :
<traditional English expression>as it says…
[<stuff>] stuff is optional
{<stuff>}+ stuff is present at least one or more times
{<stuff>}* stuff is present 0 or more times

Reference Manual
24 - Index

A
API

Model browsing 345

C
CMX

Integration 233
Semaphores 234
Timers .. 235

Code generation
automaton structure216
C++ from SDL and SDL-RT ... 188, 197
Command line 305
error handling218
Memory footprint 211
Partial C code generation187, 205

Command line
Code generation 305
Merge ... 305
PR export 305
PR/CIF import 305
Print ... 304
RTDS API server 305
Search utility315
Shell .. 305
Simulation 305
XML-RPC wrapper generation 305

Critical sections216

D
Debugger integration

gdb ...257
MinGW ... 259
Multi ... 264
Tasking ... 256
XRAY .. 262

Documentation
PragmaDev Studio V6.0 Page 451

Reference Manual
SGML export 362
DSSSL ... 364

F
FreeRTOS integration 254

G
gcc

Commands 401
gdb

Commands420
Integration257

gdbserver ...257

I
IF

Export mapping366, 378, 386
Observers ..375

L
ld ...415
Lexical rules 450

M
Memory

C scheduler footprint 203
Generated code footprint 211

Merge
Command line 305
utility .. 305

MinGW
Integration 259

Model checking366, 378, 386
Multi
Page 452 PragmaDev Studio V6.0

Reference Manual
Integration 264

N
Nucleus

Semaphores 244
Nucleus integration 244

O
Operator

definition .. 85
OSE Delta

Integration 246
Semaphores 247

OSE Epsilon
Integration 249
Semaphores 250

P
Posix

Integration 224
PR export

Command line 305
PR/CIF import

Command line 305
Print

Command line 304
Process

code generation
handling214

R
RTDS API

Command line 305
RTDS_Env ...217
RTDS_ENV_FREE_PARAMETER 218
RTOS integration

CMX RTX 233
PragmaDev Studio V6.0 Page 453

Reference Manual
Nucleus ... 244
OSE Delta 246
OSE Epsilon 249
Posix ... 224
RTOS less ..194
ThreadX ... 252
uITRON 3.0241
uITRON 4.0 242
VxWorks ..219
Win32 ... 226

S
Save

code generation
handling214

SDL
C++ code generation 188, 197
Conversion to IF366, 378, 386
Export command line 305
Generation from C130
Import command line 305
Model browsing API 345
Operator definition 85
Support ... 100

SDL-RT
C++ code generation 188, 197

Search
Command line315

Semantic check316
Semaphore

code generation
code ..214
handling214

SGML
Export ... 362

Shell
Command line 305

Simulation
Command line 305

Startup synchronisation217
Syntax check316
Page 454 PragmaDev Studio V6.0

Reference Manual
T
Tasking

Integration 256
ThreadX

Integration 252
Timer

code generation
handling215

Tornado integration219
target connection 220
VxWorks image configuration221

TTCN-3
Code generation 289
Data type mapping from SDL 287
Language support 276
Reference guide 265

U
uITRON 3.0

Integration241
uITRON 4.0

Integration 242
UML

Import .. 327

V
VxWorks

Integration219

W
Win32

Integration 226

X
XMI import 327
XML-RPC
PragmaDev Studio V6.0 Page 455

Reference Manual
Command line 305
XRAY

Integration 262
Page 456 PragmaDev Studio V6.0

	1 - Technologies overview
	2 - Abstract Syntax Notation 1 (ASN.1)
	2.1 - Presentation
	2.2 - ASN.1 module example
	2.3 - ASN.1 types
	2.3.1 Base and string types
	2.3.2 SEQUENCE types
	2.3.3 SET types
	2.3.4 CHOICE types
	2.3.5 SEQUENCE OF types
	2.3.6 SET OF types
	2.3.7 Embedded type definitions
	2.3.8 Type extensibility
	2.3.9 Type constraints

	2.4 - Mapping from ASN.1 to C�/ SDL-RT, SDL & TTCN
	2.4.1 Including ASN.1 definitions
	2.4.2 Naming conventions
	2.4.3 Type mapping

	2.5 - Encoding and decoding

	3 - SDL reference guide
	3.1 - Introduction
	3.1.1 Benefits
	3.1.2 Relation between SDL and other languages
	3.1.3 SDL Components

	3.2 - Architecture
	3.2.1 System
	3.2.2 Block(s)
	3.2.3 Process(es)
	3.2.4 Procedures
	3.2.4.1 SDL procedure
	3.2.4.2 Remote procedure
	3.2.4.3 External procedure

	3.3 - Communication
	3.3.1 Signal
	3.3.2 Signal list definition
	3.3.3 Channel

	3.4 - Behavior
	3.4.1 Text
	3.4.2 Procedure
	3.4.2.1 Procedure declaration
	3.4.2.2 Procedure call

	3.4.3 Macro
	3.4.3.1 Macro declaration
	3.4.3.2 Macro call

	3.4.4 Composite state
	3.4.4.1 Composite state definition
	3.4.4.2 Composite state
	3.4.4.3 Service

	3.4.5 Start
	3.4.6 Stop
	3.4.7 State
	3.4.8 Input
	3.4.9 Priority input
	3.4.10 Save
	3.4.11 Continuous signal
	3.4.12 Output
	3.4.13 Priority output
	3.4.14 Task
	3.4.15 Process creation
	3.4.16 Timer
	3.4.16.1 Init timer
	3.4.16.2 Reset timer
	3.4.16.3 Timer supervised states

	3.4.17 Decision
	3.4.18 If statement
	3.4.19 Loop statement
	3.4.20 Conditional expression
	3.4.21 Transition option
	3.4.22 Connectors
	3.4.22.1 Connector out/join
	3.4.22.2 Connector in/label

	3.4.23 Text extension
	3.4.24 Comment

	3.5 - Data Types
	3.5.1 Basic types
	3.5.1.1 Boolean
	3.5.1.2 Character
	3.5.1.3 Charstring
	3.5.1.4 Integer
	3.5.1.5 Natural
	3.5.1.6 Real
	3.5.1.7 Pid
	3.5.1.8 Duration
	3.5.1.9 Time

	3.5.2 Constants: SYNONYM
	3.5.3 Renaming or constraining existing types: SYNTYPE
	3.5.4 Complex types
	3.5.4.1 Enumerated type: LITERALS
	3.5.4.2 Structure type: STRUCT
	3.5.4.3 Choice/union types: CHOICE
	3.5.4.4 Associative arrays: Array generator
	3.5.4.5 Ordered lists: String generator
	3.5.4.6 Multi-sets: Bag generator

	3.6 - Object Orientation
	3.6.1 Block class
	3.6.2 Process class
	3.6.2.1 Description
	3.6.2.2 Specialization

	3.6.3 Class diagram
	3.6.3.1 Class
	3.6.3.2 Specialization

	4 - SDL support in PragmaDev Studio
	4.1 - Architecture and communication
	4.2 - Behavior
	4.3 - SDL Abstract Data Types
	4.4 - Macros diagrams
	4.5 - Composite state support

	5 - SDL to C translation rules
	5.1 - Conversion guidelines for declarations
	5.1.1 SYNTYPE declaration
	5.1.2 NEWTYPE declarations
	5.1.2.1 NEWTYPE … STRUCT declaration
	5.1.2.2 NEWTYPE … CHOICE declaration
	5.1.2.3 NEWTYPE … Array(…) declaration
	5.1.2.4 NEWTYPE … Bag(…) declaration
	5.1.2.5 NEWTYPE … String(…) declaration
	5.1.2.6 NEWTYPE … LITERALS declaration
	5.1.2.7 OPERATORS conversion

	5.1.3 SYNONYM declaration
	5.1.4 Variable declarations
	5.1.5 FPAR and RETURNS declarations
	5.1.6 Other declarations

	5.2 - Conversion guidelines for statements and expressions
	5.2.1 Assignment statements
	5.2.2 Booleans operations
	5.2.3 Numeric operations
	5.2.4 Character string operations
	5.2.5 String(…) types operations
	5.2.6 Comparison operations
	5.2.7 Conditional operator
	5.2.8 Field extraction
	5.2.9 Array indexing
	5.2.10 SDL procedure calls
	5.2.11 External procedures and operator calls
	5.2.12 Inline values for structures or arrays

	5.3 - Nested scopes management
	5.3.1 Problem
	5.3.2 C implementation
	5.3.2.1 General case
	5.3.2.2 Specialized process classes

	6 - SDL to SDL-RT conversion
	6.1 - Project tree
	6.2 - Files
	6.3 - Diagrams
	6.3.1 SDL diagrams
	6.3.2 UML class diagrams
	6.3.3 Other diagrams

	7 - SDL generation from C comments
	7.1 - Architecture
	7.2 - Behavior
	7.3 - Example

	8 - SDL and SDL-RT code generation
	8.1 - Basic principles
	8.2 - C code generation with a RTOS
	8.2.1 Principles
	8.2.2 Generated files
	8.2.3 Structure of a RTOS integration
	8.2.3.1 Naming conventions
	8.2.3.2 Mandatory files
	8.2.3.3 Optional files
	8.2.3.4 Bricks

	8.2.4 Types used in the generated code
	8.2.4.1 Common types - RTDS_Common.h
	8.2.4.2 RTOS-specific types - RTDS_BasicTypes.h

	8.2.5 Generated constants and prototypes (RTDS_gen.h)
	8.2.6 Additional generated types & macros for message handling
	8.2.7 C translation for symbols
	8.2.7.1 SDL-RT declaration symbol
	8.2.7.2 Plain declaration symbol
	8.2.7.3 Semaphore declaration symbol
	8.2.7.4 Block / block class instance declaration symbol
	8.2.7.5 Process / process class instance declaration symbol
	8.2.7.6 Procedure declaration symbol
	8.2.7.7 Macro definition symbol
	8.2.7.8 Start symbol
	8.2.7.9 State symbol
	8.2.7.10 Composite state
	8.2.7.11 Message input
	8.2.7.12 Message priority input
	8.2.7.13 Continuous signal
	8.2.7.14 Message save
	8.2.7.15 Task block
	8.2.7.16 Message output
	8.2.7.17 Message priority output
	8.2.7.18 Dynamic process instance creation
	8.2.7.19 Procedure call
	8.2.7.20 Macro call
	8.2.7.21 Timer set
	8.2.7.22 Timer reset
	8.2.7.23 Object creation
	8.2.7.24 Semaphore take
	8.2.7.25 Semaphore give
	8.2.7.26 Dynamic semaphores
	8.2.7.27 Decision
	8.2.7.28 Transition option
	8.2.7.29 Connector out (JOIN)
	8.2.7.30 Connector in (label)
	8.2.7.31 Nextstate
	8.2.7.32 Process kill

	8.2.8 Memory allocation
	8.2.9 Build process
	8.2.9.1 Makefile generation principles
	8.2.9.2 Generated makefile example
	8.2.9.3 Actual build
	8.2.9.4 Pre-build action: Message encoders & decoders generation

	8.3 - C++ code generation for passive classes (UML)
	8.4 - C++ code generation with or without a RTOS
	8.4.1 Objectives
	8.4.2 Principles
	8.4.3 Generated code
	8.4.3.1 Processes
	8.4.3.2 Procedures
	8.4.3.3 Semaphore handling (SDL-RT)

	8.4.4 Whole system scheduling with no RTOS

	8.5 - C++ code generation for deployment simulation
	8.5.1 Basic principles
	8.5.2 Nodes and components
	8.5.3 The scheduler
	8.5.3.1 Messages
	8.5.3.2 Timers

	8.5.4 The proxy
	8.5.5 Process instance identifier
	8.5.6 External messages
	8.5.7 ns-3 default setup
	8.5.8 Simulation tracing

	8.6 - C code generation with PragmaDev Studio C scheduler
	8.6.1 Process instance context handling
	8.6.2 General architecture
	8.6.3 Whole system scheduling with no RTOS
	8.6.4 Limitations
	8.6.5 Memory footprint

	8.7 - C code generation with external C scheduler (SDL only)
	8.8 - Integration with external C code
	8.8.1 Function call
	8.8.2 Message exchange
	8.8.2.1 Sending messages from the SDL-RT�/ SDL system
	8.8.2.2 Sending messages to the SDL-RT�/ SDL system
	8.8.2.2.1 Identifying the receiver by its name
	8.8.2.2.2 Other ways to identify message receivers

	8.9 - PragmaDev Studio footprints
	8.9.1 Static memory footprint
	8.9.2 Dynamic memory allocation

	8.10 - RTOS integrations
	8.10.1 Common features
	8.10.1.1 Process information handling
	8.10.1.2 Semaphore information handling
	8.10.1.3 Saved messages handling
	8.10.1.4 Timers information handling
	8.10.1.5 Automaton structure
	8.10.1.6 Critical sections
	8.10.1.7 Startup synchronization
	8.10.1.8 Environment task
	8.10.1.9 Error handling

	8.10.2 Creating a new RTOS integration for PragmaDev Studio
	8.10.3 VxWorks integration
	8.10.3.1 Version
	8.10.3.2 Timers
	8.10.3.3 Make process
	8.10.3.4 Tornado integration
	8.10.3.4.1 Architecture
	8.10.3.4.2 Launching process and target connection
	8.10.3.4.3 Configuring VxWorks image to debug on target

	8.10.4 Posix integration
	8.10.4.1 SDL-RT task
	8.10.4.2 Message queue
	8.10.4.2.1 Internal structures:
	8.10.4.2.2 Functions:
	8.10.4.3 Semaphore
	8.10.4.4 Timer

	8.10.5 Windows integration
	8.10.5.1 SDL-RT task
	8.10.5.2 Message queues
	8.10.5.3 Semaphores
	8.10.5.4 Timers
	8.10.5.4.1 Timer cancel
	8.10.5.4.2 Instance kill
	8.10.5.4.3 Timer forcing

	8.10.6 CMX RTX integration
	8.10.6.1 Version
	8.10.6.2 File organization
	8.10.6.2.1 RTDS_Cmx.c
	8.10.6.2.2 CMX files
	8.10.6.2.3 Defines
	8.10.6.2.4 main function
	8.10.6.3 Task slot and mailbox numbering
	8.10.6.4 Task context
	8.10.6.5 Semaphores
	8.10.6.5.1 Types
	8.10.6.5.2 Identification
	8.10.6.6 Timers
	8.10.6.7 Event handling
	8.10.6.8 Examples
	8.10.6.8.1 Installation
	8.10.6.8.2 Utilities
	8.10.6.8.3 Restrictions
	8.10.6.8.4 Tutorial
	8.10.6.8.5 Access Control System

	8.10.7 uITRON 3.0 integration
	8.10.7.1 ID affectation
	8.10.7.2 SDL-RT task
	8.10.7.3 Message queue
	8.10.7.4 Semaphore
	8.10.7.5 Timer
	8.10.7.6 Using uITRON from eCos

	8.10.8 uITRON 4.0 integration
	8.10.8.1 ID affectation
	8.10.8.2 SDL-RT task
	8.10.8.3 Message queue
	8.10.8.4 Semaphore
	8.10.8.5 Timer
	8.10.8.6 Using uITRON 4 from NUCLEUS

	8.10.9 Nucleus integration
	8.10.9.1 Version
	8.10.9.2 Task context
	8.10.9.3 Semaphores
	8.10.9.4 SDL-RT system start
	8.10.9.5 Message queue
	8.10.9.6 Memory management
	8.10.9.7 Testing environment

	8.10.10 OSE Delta integration
	8.10.10.1 OSE 4.5.1
	8.10.10.1.1 Version
	8.10.10.1.2 Socket support
	8.10.10.1.3 printf support
	8.10.10.1.4 Timers
	8.10.10.1.5 Make process
	8.10.10.1.6 Error handling
	8.10.10.1.7 Task context
	8.10.10.1.8 Semaphores
	8.10.10.1.9 SDL-RT system start
	8.10.10.1.10 Signal queue
	8.10.10.1.11 Signal output
	8.10.10.2 OSE 5.2
	8.10.10.2.1 Version
	8.10.10.2.2 Socket support
	8.10.10.2.3 Make process

	8.10.11 OSE Epsilon integration
	8.10.11.1 Version
	8.10.11.2 Timers
	8.10.11.3 Dynamic process creation
	8.10.11.4 Make process
	8.10.11.5 Error handling
	8.10.11.6 Task context
	8.10.11.7 Semaphores
	8.10.11.8 SDL-RT system start
	8.10.11.9 Signal queue
	8.10.11.10 Priorities

	8.10.12 ThreadX integration
	8.10.12.1 Version
	8.10.12.2 General considerations
	8.10.12.3 Timers
	8.10.12.4 Make process
	8.10.12.5 Memory management
	8.10.12.6 Synchronization
	8.10.12.7 Thread management
	8.10.12.7.1 Priority
	8.10.12.7.2 Thread deletion
	8.10.12.7.3 Thread creation

	8.10.13 FreeRTOS integration
	8.10.13.1 Version
	8.10.13.2 General considerations
	8.10.13.3 Timers
	8.10.13.4 Make process
	8.10.13.5 Synchronization
	8.10.13.6 Thread management
	8.10.13.6.1 Priority

	9 - Debugger integrations
	9.1 - Tasking Cross View Pro debugger integration
	9.1.1 Version
	9.1.2 Interface
	9.1.3 Make utility
	9.1.4 Restrictions

	9.2 - gdb debugger integration
	9.2.1 Version
	9.2.2 Interface
	9.2.3 Remote debugging

	9.3 - MinGW debugger integration
	9.3.1 Version
	9.3.2 Library
	9.3.3 Interface
	9.3.4 Console
	9.3.5 Restriction

	9.4 - lldb debugger integration
	9.4.1 Version
	9.4.2 Interface

	9.5 - XRAY debugger integration
	9.5.1 Version
	9.5.2 Interface
	9.5.3 Restrictions
	9.5.3.1 Using Xray debugger
	9.5.3.2 Sending messages
	9.5.3.3 Stopping timers
	9.5.3.4 Message queue

	9.6 - Multi 2000 debugger integration
	9.6.1 Version
	9.6.2 Interface
	9.6.3 Target connexion
	9.6.4 Restrictions

	10 - TTCN-3 reference guide
	10.1 - Acronyms
	10.2 - TTCN-3 architecture
	10.2.1 Port type
	10.2.2 Component type
	10.2.3 Test system interface
	10.2.4 Test system
	10.2.5 Communication
	10.2.5.1 Connection

	10.2.6 Starting PTC behaviour

	10.3 - TTCN-3 test system anatomy
	10.3.1 TTCN-3 Control Interface
	10.3.2 TTCN-3 Executable
	10.3.3 TTCN-3 Runtime Interface

	11 - TTCN-3 concepts support in simulation and generation
	11.1 - Types and values
	11.2 - Operators
	11.3 - Modular
	11.4 - Template
	11.5 - Template matching mechanisms
	11.6 - Tests configuration
	11.7 - Functions and altsteps
	11.8 - Statements
	11.9 - Operations
	11.10 - Attributes

	12 - Mapping of SDL data types to TTCN data types
	13 - TTCN-3 Code generation
	13.1 - Basic principles
	13.2 - Generated Files
	13.3 - TTCN Control Interface
	13.4 - Automatic main function generation (RTDS_TTCN_main.c)
	13.5 - TTCN-3 module and testcase parameters
	13.6 - Adaptation to a target
	13.6.1 Generated data types
	13.6.2 Requirements
	13.6.3 Communication from TSI to SUT
	13.6.4 Communication from SUT to TSI
	13.6.5 External Action
	13.6.6 Log

	13.7 - Naming convention
	13.8 - Debug information
	13.9 - Types used in TTCN-3 generated code - RTDS_TTCN.h
	13.10 - Generated TTCN-3 constants and prototypes - RTDS_TTCN_gen.h
	13.11 - External functions
	13.11.1 Built-in external functions
	13.11.2 User defined external functions

	14 - PragmaDev Studio commands
	14.1 - pragmastudio: main application
	14.1.1 Usage
	14.1.2 Environment variables

	14.2 - pramastudiocommand: command line interface
	14.2.1 print_assoc: display association information
	14.2.2 generate_code: code generation
	14.2.3 import_PR: PR/CIF file import
	14.2.4 export_PR: PR file export
	14.2.5 export_xLIA: xLIA file export
	14.2.6 generate_XML_RPC_wrappers: XML-RPC wrapper generation
	14.2.6.1 Example 1: operators in a SDL newtype
	14.2.6.2 Example 2: external procedures

	14.2.7 shell: RTDS command line interface
	14.2.8 simulate: automated simulation or debug
	14.2.9 object_server: RTDS API server
	14.2.10 diagram_diff: RTDS diagram diff utility
	14.2.11 auto_merge: RTDS diagram merge utility

	14.3 - rtdsSearch: Low-level search utility

	15 - Syntax & semantics check
	16 - Simulator XML connection
	16.1 - Separators
	16.2 - Commands
	16.3 - Simulator answers
	16.3.1 Information messages
	16.3.2 Simulator state changes
	16.3.3 Sent, received and saved messages
	16.3.4 External calls and returns
	16.3.5 Process instance creation and deletion
	16.3.6 Semaphore creation, deletion, take and give
	16.3.7 Proces instance SDL state change

	17 - XMI Import
	17.1 - Diagrams supported
	17.2 - XMI version
	17.3 - Class diagram
	17.3.1 Structure of a Class diagram
	17.3.2 Association and direct association
	17.3.3 Aggregation and Composition
	17.3.4 Inheritance
	17.3.5 Generalization and Realization

	17.4 - Structural diagram
	17.4.1 Structure of a Structural diagram

	17.5 - Communication
	17.5.1 Links and ports
	17.5.2 Interfaces and messages
	17.5.3 Channel

	18 - Model browsing API
	18.1 - General principles
	18.1.1 Architecture
	18.1.2 Organization

	18.2 - Interface detailed description
	18.2.1 Class Agent
	18.2.2 Class AgentClass
	18.2.3 Class Association
	18.2.4 Class Attribute
	18.2.5 Class Channel
	18.2.6 Class Class
	18.2.7 Class Element
	18.2.8 Class GlobalDataManager
	18.2.9 Class Item
	18.2.10 Class ObjectServer
	18.2.11 Class Operation
	18.2.12 Class Procedure
	18.2.13 Class Project
	18.2.14 Class Role
	18.2.15 Class Signal
	18.2.16 Class SignalList
	18.2.17 Class SignalWindow
	18.2.18 Class State
	18.2.19 Class Symbol
	18.2.20 Class Variable

	19 - SGML export for PragmaDev Studio documents
	19.1 - Principles
	19.2 - Documentation generation process
	19.3 - DSSSL stylesheet production

	20 - Experimental exports
	20.1 - Mapping of SDL to IF concepts
	20.1.1 Scope
	20.1.2 Translation table
	20.1.3 Detailed translation rules
	20.1.3.1 Architecture
	20.1.3.2 Communication
	20.1.3.3 Behavior
	20.1.3.3.1 States
	20.1.3.3.2 Transitions
	20.1.3.3.3 Actions
	20.1.3.3.4 Timer
	20.1.3.3.5 Data types
	20.1.3.4 IF observers

	20.2 - Mapping of SDL to Fiacre concepts
	20.2.1 Scope
	20.2.2 Translation table
	20.2.3 Detailed translation rules
	20.2.3.1 Architecture
	20.2.3.2 Communication
	20.2.3.3 Behavior
	20.2.3.3.1 States
	20.2.3.3.2 Transitions
	20.2.3.3.3 Actions
	20.2.3.3.4 Data types

	20.3 - Mapping of SDL to xLIA concepts
	20.3.1 Scope
	20.3.2 Translation rules
	20.3.3 Detailed translation rules
	20.3.3.1 Architecture
	20.3.3.2 Procedure
	20.3.3.3 Communication
	20.3.3.4 Behavior
	20.3.3.4.1 States
	20.3.3.4.2 Input
	20.3.3.4.3 Output
	20.3.3.4.4 Actions
	20.3.3.4.5 Timer
	20.3.3.4.6 Data types
	20.3.3.5 Remote variables

	21 - GNU distribution
	21.1 - gcc options
	21.1.1 Usage: cpp [switches] input output
	21.1.2 Usage: cc1 input [switches]
	21.1.3 Language specific options:
	21.1.3.1 Options for Objective C:
	21.1.3.2 Options for Chill:
	21.1.3.3 Options for C++:
	21.1.3.4 Options for Fortran:
	21.1.3.5 Options for Java:

	21.1.4 Target specific options:
	21.1.5 Usage: gcc [options] file...

	21.2 - ld
	21.2.1 Options
	21.2.2 emulation specific options

	21.3 - gdb commands
	21.3.1 Aliases
	21.3.1.1 delete breakpoints
	21.3.1.2 disable breakpoints
	21.3.1.3 ni
	21.3.1.4 si
	21.3.1.5 where

	21.3.2 Breakpoints
	21.3.2.1 awatch
	21.3.2.2 break
	21.3.2.3 catch
	21.3.2.4 clear
	21.3.2.5 commands
	21.3.2.6 condition
	21.3.2.7 delete
	21.3.2.8 disable
	21.3.2.9 enable
	21.3.2.10 gbreak
	21.3.2.11 hbreak
	21.3.2.12 ignore
	21.3.2.13 obreak
	21.3.2.14 ohbreak
	21.3.2.15 rbreak
	21.3.2.16 rwatch
	21.3.2.17 tbreak
	21.3.2.18 thbreak
	21.3.2.19 watch

	21.3.3 Examining data
	21.3.3.1 call
	21.3.3.2 delete display
	21.3.3.3 disable display
	21.3.3.4 disassemble
	21.3.3.5 display
	21.3.3.6 enable display
	21.3.3.7 inspect
	21.3.3.8 output
	21.3.3.9 print
	21.3.3.10 printf
	21.3.3.11 ptype
	21.3.3.12 reformat
	21.3.3.13 set
	21.3.3.14 tclprint
	21.3.3.15 undisplay
	21.3.3.16 whatis
	21.3.3.17 x

	21.3.4 Files
	21.3.5 Internals
	21.3.6 Obscure features
	21.3.7 Running the program
	21.3.7.1 attach
	21.3.7.2 continue
	21.3.7.3 detach
	21.3.7.4 finish
	21.3.7.5 halt
	21.3.7.6 handle
	21.3.7.7 idle
	21.3.7.8 info handle
	21.3.7.9 jump
	21.3.7.10 kill
	21.3.7.11 next
	21.3.7.12 nexti
	21.3.7.13 run
	21.3.7.14 sattach
	21.3.7.15 sdetach
	21.3.7.16 set args
	21.3.7.17 set environment
	21.3.7.18 show args
	21.3.7.19 signal
	21.3.7.20 step
	21.3.7.21 stepi
	21.3.7.22 target
	21.3.7.23 thread
	21.3.7.24 thread apply
	21.3.7.25 apply all
	21.3.7.26 tty
	21.3.7.27 unset environment
	21.3.7.28 untarget
	21.3.7.29 until

	21.3.8 Examining the stack
	21.3.8.1 backtrace
	21.3.8.2 bt
	21.3.8.3 down
	21.3.8.4 frame
	21.3.8.5 pptype
	21.3.8.6 ppval
	21.3.8.7 return
	21.3.8.8 select-frame
	21.3.8.9 up

	21.3.9 Status inquiries
	21.3.10 Support facilities
	21.3.11 User-defined commands

	22 - ASCII table
	23 - About the reference manual
	23.1 - Lexical rules

	24 - Index

