
USER MANUAL

User Manual
Contents
Introduction - 7

Scope ...7
Licensing ...7

Common features - 9
Project manager ...9

Project 10
Files and directories 10
Packages and folders 10
Supported file types 11
Rearranging the project tree 13
Adding components to the system 14
Sharing project parts 17
Search and replace 18
Interface with traceability tools 24
Preferences 25
User defined external tools 39
Traceability information 44

Editor windows ...56
Tab management 56
Windows menu 57

Diagram editor ..59
Common features 59
SDL editor features 74
MSC editor 83
UML diagrams 115

Text Editor ...121
MSC generation from TTCN-3 source file. 123
SDL generation for comments in a C source file. 124

Documentation generation ..125
Exporting elements as HTML files 125
Export all the publications in a whole project 125
Document editor 126

Prototyping GUI ...151
Prototyping GUI editor 151
Prototyping GUI runner 158

Code coverage results ..161
Generating code coverage results 161
Code coverage results viewer window 161
Merging code coverage results 162

Requirements Table Editor ...164
Principles 164
Covering symbols 168
Covering testcases 170

PragmaDev Specifier - 177
SDL Z.100 project ..177
Page 2 PragmaDev Studio V6.0

User Manual
SDL types and data declarations ..177
General restrictions 177
Pre-defined sorts 178
NEWTYPE declarations 179
SYNTYPE declarations 180
SYNONYM declarations 180
FPAR & RETURNS declarations 181
TIMER declarations 181
SIGNAL & SIGNALLIST declarations 181
SIGNALSET declarations 181
USE declarations 181
INHERITS declaration 182
Data declarations (DCL) 182
Structural element declarations 182

SDL symbols syntax ...183
Model Simulator ..185

Simulator architecture 186
Main simulator options 187
Co-simulation with FMI 188
Launching the Model Simulator 192
Stepping levels 192
MSC trace 193
Displayed information 194
Shell 202
Status bar 210
Breakpoints 211
Sending SDL messages to the running system 213
Model coverage 214
Provided external procedures 214
User defined external operators and procedures 218
Connecting an external tool 220
Command line simulation 220
Raspberry Pi GPIO 221

Importing a PR/CIF file ...224
Source & destination panel 224
Basic options panel 225
Advanced options panels 227
Summary panel 229
PR/CIF import progress and result 229

PragmaDev Developer - 230
SDL-RT project ...230
Data and SDL-RT types declarations ...230

C types declarations 230
SDL-RT messages and message lists declaration 231
SDL-RT timer declaration 231
Semaphore declaration 231
Process declaration 232
Procedure declaration 233
PragmaDev Studio V6.0 Page 3

User Manual
Class description 233
SDL-RT symbols syntax ..234

Task block 234
Next state 234
Continuous signals 234
Message input 235
Message output 236
Saved message 240
Semaphore take 240
Semaphore give 240
Timer start 240
Timer stop 241
Process 241
Object initialization 242
Connectors 243
Decision 243
SDL-RT keywords 244

Code generation ..246
Concerned elements 246
Profiles 248
UML options 296
Generated C++ code 297
Built in scheduler 302

Good coding practise ...309
Memory allocation 309
Shared memory 309
C macros and functions 309

Model Debugger ..311
Debugger architecture 311
Launching the Model Debugger 312
Stepping levels 314
MSC trace 315
Displayed information 316
Shell 322
Status bar 332
Breakpoints 332
Sending SDL messages to the running system 334
Testing 336
Model coverage 336
Connecting an external tool 336
Debugger tree view 336
Command line debug 337

PragmaDev Tester- 338
Levels of support ..338
PragmaDev extensions ..338
TTCN-3 core language file editor ..339
TTCN-3 parameters editor ..341
TTCN-3 co-simulation ..343
Page 4 PragmaDev Studio V6.0

User Manual
Conventions 343
Restrictions 344
Simulation 346
Provided external functions 348

C++ code generation ...351
Stand alone 352
Combined with SDL 352
Combined with SDL-RT 352
Generate the main function 353
RTOS integration 354
Conventions 354
Debug information 355
External functions 355

TTCN-3 automatic generation ...355
From an SDL/SDL-RT architecture 355
From MSCs and/or HMSCs 356
From a complete SDL system via model checking technology 360

PragmaDev Tracer - 361
Overview ...361
MSC & PSC reference guide ..363

General diagram format 363
Links 363
Lifeline components 366
Main symbols 374

Usage ...381
Launching PragmaDev Tracer 381
Connection 381

Graphical user interface ...383
Integration with PragmaDev Studio 383
Tracer window 383

Command line interface ...386
Tracer commands ..387

Command reference 387
Tracing example 398

Importing an MSC-PR file ..402

PragmaDev Studio - 403
Scope ...403
SDL C code generation ...403

Principles 403
ASN.1 codecs for environment messages 403

Performance Analyzer ...405
Objectives 405
Time and payload information 405
Table and graphical analysis 411
SDL Z.100 performance simulation 415

Deployment simulator ...417
Deployment diagram for simulation 417
PragmaDev Studio V6.0 Page 5

User Manual
Profiles for deployment simulation 419
External messages 420
The deployment simulator 422
Simulation modes 426
ns-3 configuration 427

Model validation ..429
Integration with OBP 429
Checking a system against MSC scenarios 435
Other validation experiments 443

Exporting the project as an SDL/PR file ...464
SDL Z.100 Code generation ...467

Index - 468
Page 6 PragmaDev Studio V6.0

User Manual
1 - Introduction

1.1 - Scope
PragmaDev provides a set of modeling and testing tools that helps managing complexity
inherent to developing state of the art systems. PragmaDev Studio integrates different
tools based on international standards. The tools target architects/system engineers,
developers, and testers.

• PragmaDev Specifier helps system engineers to unambiguously specify and ver-
ify the functionalities of the system, and define the best architecture for perfor-
mance or energy efficiency. The technology used results in a graphical and
executable model. Verification and validation of the dynamic of the system is
done with the integrated simulator, and the best architecture is analyzed with a
unique performance analyzer.

• PragmaDev Developer helps software designers to write maintainable and self
documented code. The technology used for development describes the architec-
ture and contains a graphical view of the main paths of execution down to the
code itself.

• PragmaDev Tester helps testers to write validation and integration tests with an
abstract dedicated language. A substantial number of test cases with this tech-
nology are published by international standardization bodies to ensure conform-
ance to their specifications.

• PragmaDev Tracer is common to all other tools. It is used in the early phase to
describe the expected behavior and properties of the system to be developed. It is
used in the later phase to trace execution and verify it is conform to the expected
properties and scenarios described earlier on.

The complete tool set PragmaDev Studio includes bridges from one tool to the other
such as automatic test case generation out of a functional model (model based testing), a
Performance simulator to find the best architecture, and a Network simulator to analyze
deployment of distributed systems.

1.2 - Licensing
A Freemium version of PragmaDev Studio is freely available. It includes all modules with
a project and a file size restriction except external text files and MSC traces. So that
means PragmaDev Tracer is free and comes with the Freemium version of PragmaDev
Studio.

The other modules Specifier, Developer, and Tester are available independently are all
together with a Studio license.

Please note that if you have one of these licenses, you should start the corresponding tool.
For example if you have a Specifier license, to use your unrestricted license, you should
start the Specifier tool (not Studio).
PragmaDev Studio V6.0 Page 7

User Manual
PragmaDev modules are based on a floating license mechanism that can be shared over
your local network. One license is one user at a time. And the same license can be used
over Windows, Linux, Mac, and Solaris.

You can either:

• Rent a license for a monthly fee that includes maintenance (support and
upgrades).

• Buy a license so that you own it for an unlimited amount of time, in this case
upgrades and support are part of an optional annual maintenance fee.

Please find below the detailed features for each module or for the whole Studio.

Table 1: Tool feature matrix

Tool
Feature

PragmaDev
Specifier

PragmaDev
Developer

PragmaDev
Tester

PragmaDev
Studio

PragmaDev
Tracer

MSC-PSC X X X X X

HMSC - Use Case X X X X

Prototyping GUI X X X X

Documentation generator X X X X

Diff - Merge X X X X

ASN.1 X X X X

Traceability X X X X

SDL model editors X X

Model Simulator X X

SDL-RT Model Editor X X

C code generation X X

MSC2TTCN X X

TTCN2MSC X X

Test Simulator X X

Test C code generator X X

Deployment simulator X

Performance analyzer X

PR/FIACRE/IF/xLIA export X

SDL code generator X

Model validation with OBP X
Page 8 PragmaDev Studio V6.0

User Manual
2 - Common features

This chapter includes features common to all modules within PragmaDev Studio. Spe-
cific features are described in the module’s chapter.

2.1 - Project manager
The project manager window is the main window of the application. It’s the first window
that appears when you run PragmaDev Studio, and closing this window quits the applica-
tion.

Project manager window
PragmaDev Studio V6.0 Page 9

User Manual
2.1.1 Project
A project is the set of all needed files necessary to build your system. A project may
include files of many types, as described in “Supported file types” on page 11.

A project is arranged in a tree. For SDL-RT or SDL diagrams, this tree represents the
hierarchy from top-level blocks to leaf processes or procedures. The tree may also
include packages to group files of different types (see “Packages and folders” on page 10).
All diagrams and files referenced by the project tree can be opened from the project man-
ager window by double-clicking on the tree node representing it.

2.1.2 Files and directories
The files associated to nodes in a project tree are stored as relative paths from the direc-
tory containing the project file. This mode allows the project to be on a shared disk so
that it can be used by several users on different machines. This mode is also suited for
sharing a project across different platforms (Windows client and Unix file server, for
example).

2.1.3 Packages and folders
Within a project tree, files and diagrams may be grouped in two different types of con-
tainers:

• Folders are just general-purpose containers, not implying any semantics in the
files or diagrams it contains;

• Packages are also containers for files and diagrams, but also for the elements
they contain. A package represents a namespace for all elements described by or
within system, block, processe, block class, process class, MSC, HMSC, class and
deployment diagrams.

All elements described by or within a diagram which is in a folder are actually in the par-
ent package for this folder. For example:

ProcessClass1 and ProcessClass2 are both in the same package: MyPackage. The
folder MyFolder is just used for grouping and does not imply any organisation on the ele-
ments it contains. So any diagram including a "USE MyPackage;" in its declarations will
be able to instantiate both ProcessClass1 and ProcessClass2.

In a diagram which is in a package, any element is supposed to be in that package, unless
stated otherwise. References to elements outside the diagram’s package is always
explicit: the element is then preceded by the name of its container package followed by
’::’. There are two other ways of referencing elements outside the current package in a
diagram:

• In system, block, process, block class or process class diagrams, a declaration
text symbol may be used. Its text must have a line "USE <package name>;". All
Page 10 PragmaDev Studio V6.0

User Manual
elements in this package are then known in the current diagram, without prefix-
ing by the package name.

• In class diagrams, a class symbol may be enclosed in a package symbol:

Packages and folders may contain other packages or folders. There is no limitation on the
number of nested containers within a project.

NB:

• PragmaDev Studio currently only supports a single "USE" in a diagram. All other
references must be completely specified using the "<package>::<name>" nota-
tion.

• Deployment diagrams cannot reference elements in other packages. They must
be put in the same package as the system they describe.

2.1.4 Supported file types
By default, the following file types may be included in a project:

• Diagrams:
• SDL system,
• SDL block,
• SDL block class,
• SDL process,
• SDL process class,
• SDL procedure,
• SDL composite state (cf. notes 1. & 2. below),
• SDL service (cf. note 1. below),
• SDL macro (cf. note 1. below),
• MSC/PSC,
• High-level MSC,
• UML use case diagram,
• UML class diagram,
• UML deployment diagram,
• IF observer diagrams.

• SDL declarations files. The standard extensions for these files is .pr.

• SDL-RT declarations files. The standard extensions for these files is .rdm.
PragmaDev Studio V6.0 Page 11

User Manual
• C/C++ files: Source and header files are supported (.c/.cpp and .h respec-
tively).

• TTCN-3 core language files (.ttcn3).

• ASN-1 declaration files (.asn1 or .asn).

• Code coverage analysis result files. The standard extensions for these files is
.rdc.

• PragmaDev Studio documents. The standard extensions for these files is .rdo.

• PragmaDev Studio prototyping GUIs. The standard extensions for these files is
.rdu.

• Requirements tables. These tables are stored in regular text files as tab-separated
cells, or Excl-compatible CSV files (semicolon-separated with double-quoted
strings).

• OTF (Open Trace Format) documents can be added to the project and viewed
with the MSC editor.

Notes:

1. These diagram types are only available in SDL language.

2. Composite state diagrams are different from those found in SDL 2000. Please
refer to PragmaDev Studio Reference Manual for a detailed description of the
differences.

It is also possible to define new custom file types, allowing to include any file in the
project. The definition of custom file types is made in the "Project Manager" tab in the
preferences dialog, opened via the "Preferences..." item in the "Studio" menu:
Page 12 PragmaDev Studio V6.0

User Manual
Creating a new custom file type opens the following window:

Notes:

• If the "Application" field is "None", files of this type may be included in the
project, but opening them will rely on the facilities provided by the operating sys-
tem. So you will have to associate an application to this file type using the ser-
vices of your OS.

• Setting the application to "Text editor" allows to do text searches and replace-
ments in the file. Otherwise, when doing a text search or replace in the whole
project, the file is skipped.

• If "Application" is set to "Custom", a full path to the application executable must
be provided in the appropriate field. On Unix, you may only enter the command
name if it is in your PATH.

• If the "Create from PragmaDev Studio" box is checked, it means that files with
this type can be created from PragmaDev Studio project manager. If it is not,
existing files with this type may be included in a project, but not created from it.
The check-box is on by default when the application is "Text editor" and off in
other cases.

• If a file type for PDF files exists (extension .pdf or .PDF) and it specifies an
application, this will be the application used to view PragmaDev Studio manuals.
If no such file type exists, or it has its application set to None, the services of the
underlying OS will be used to open the PDF files.

• If a custom application is defined for files with the extension .c, .cpp and/or .h,
it will be used to open the files instead of the built-in text editor. Please note that
the second note above still applies: if a custom application is associated with C
files, when doing text search and replace in the whole project, these files will be
skipped, which is probably not what you want.

2.1.5 Rearranging the project tree
The nodes within the project tree may be re-arranged after first creation, including order
changing and nesting. These functions can be done either via drag and drop, or using the
copy, cut and paste operations. Several nodes can be moved or copied at a time.
PragmaDev Studio V6.0 Page 13

User Manual
When dragging nodes or during pasting, the cursor changes to a horizontal arrow point-
ing left. Moving this arrow along the project tree will display red horizontal lines at
places where the copied node may be pasted:

The gree arrow indicates where the node will be pasted. In the above example, the node
will be moved or pasted betwwen myFirstText and mySecondText node.

The actual move operation is done by dropping the moved node at the desired position.
To cancel a move operation, just press the "Esc" key.

Please note you cannot move or copy/paste block or process diagrams, since what
appears in the project manager must be consistent with what appears in the diagrams.

2.1.6 Adding components to the system
There are three ways of adding components to your project:

• You can directly add components one by one via the project manager in the
project tree. This operation is described in “Adding a single component” on
page 14.

• You can import a whole directory with all its sub-directories in the project tree.
This operation is described in “Importing a directory” on page 16.

• Operations on diagrams may also automatically add a node in the project tree.
This operation is described in paragraph “Creating and opening components” on
page 74. This way is used to create the part of the project tree that is mapped to
the block/process hierarchy.

2.1.6.1 Adding a single component

This is the preferred way when dealing with packages, source files or top-level nodes for
diagrams (such as systems, block or process classes, UML diagrams, MSC diagrams,
etc…).

To add a component to a node via the project manager, just select the parent node for the
new node, drop down its contextual menu with the right mouse button and select the
Page 14 PragmaDev Studio V6.0

User Manual
"Add child element..." item (or menu "Element", item "Add child..."). The following dia-
log appears:

On the left are listed all catogeries of element that can be added in a project.Once a cate-
gory has been choosen, available node types are listed on the upper right of the window.

The other fields in this dialog are the following:

• Name: the name appearing for the node in the project tree. If not set, this field
will be automatically set if you choose a file in the "File" field.

• File: the name of the file associated to the node. This field cannot be set if the
node’s type is "Package" or “Folder”, since these have no associated file. Other-
wise, the field will be automatically set to a computed default file name, and can
also be modified via the "New" or "Open" buttons, to create a new file and to
select an existing one, respectively.

• Language: this field is only available for diagrams that have different variants
depending on the language used, and if their parent do not already specify a lan-
guage for them. So this mostly includes system, block class and process class dia-
grams, that can be written either in SDL, or in SDL-RT. When the filed is not
greyed out, this information is mandatory: the dialog cannot be validated unless
a language is specified.

• Create legacy diagram: this checkbox is only available for diagrams having a
“new-style” and a “legacy” variant. Checking it will create a legacy diagram
instead of the default, which is to create a new-style diagram. This applies to
MSCs, and to all behavioral diagrams: process, process class, procedure, service
and macro. Please note that the usage of legacy diagrams is deprecated, and that
a lot of editing facilities will be missing in legacy diagrams. This option should
only be used to include in the project diagrams made with an older version of
PragmaDev Studio.

• Auto-sort: allows to ensure a consistent order in the parent’s child nodes. If this
option is checked, folders are placed first in alphabetical order, then packages,
then all other children. Note this option will only work if the parent’s existing
children are already sorted. Otherwise, the behavior is undefined.

To add the child node, fill in all active fields and validate the dialog. The new node then
appears in the project tree.
PragmaDev Studio V6.0 Page 15

User Manual
For the "File" field, selecting the file via the "New…" button allows to create a new empty
component and selecting it via the "Open…" button allows to attach the component to an
already existing file. Please note that if you select the file using "New…" and if you choose
an already existing file, the file will be erased before the component is created.

2.1.6.2 Importing a directory

When a project is created, some files that should be included in it may already exist. For
example, if a project uses an existing code library, but that may evolve with the project,
all the files in this library should be included in the project for convenience. This can be
achieved easily in PragmaDev Studio by using the directory import function. First select
the package that will be the parent of the imported file, then select the "Import direc-
tory..." item in the "Element" menu of the project manager. The import directory options
dialog appears:

This window allows to select the directory to import and the type of the files that will
actually be imported in the project tree. The file types that appear are standard Prag-
maDev Studio types (C source and header files, diagram files) and all the external file
types (see “Supported file types” on page 11). The actual import will create one node for
each file with one of the selected types, mapping directories to packages.

Important note: checking the "PragmaDev Studio diagram files" type in the previous dia-
log will probably not have the result you expect, because the diagram node hierarchy will
not be re-created by this function. The directory import function treats the diagram files
exactly like other files, which means it just creates the corresponding node without ana-
lyzing the contents of the file. Since the diagram hierarchy is described in the diagrams
themselves, it cannot be re-created. If the checkbox for diagrams is checked in the direc-
tory import options dialog, a message will warn you about this issue.
Page 16 PragmaDev Studio V6.0

User Manual
2.1.7 Sharing project parts
It is possible to export a part of a project and to dynamically import it in another project.
All changes made to the shared part in any project will be automatically seen in all other
projects.

Any sub-tree in a project can be shared. To export a sub-tree, select its root node and
select "Export element sub-tree" in the "Element" menu. The sub-tree is exported to a file
with a rdx extension. Once exported, the icon for the sub-tree root will be displayed in
the project manager as follows:

The small arrow in the icon’s lower left part indicates that the sub-tree is shared.

To import the sub-tree in another project, select the node under which the sub-tree
should be inserted and select "Import element sub-tree" in the "Element" menu, then
select the rdx file for the sub-tree to import. The whole sub-tree appears under the
selected node. The icon for the imported sub-tree will be displayed with the same small
arrow as the the project from which it was exported.

It is also possible to make a read-only reference. In this case, PragmaDev Studio forbids
the modification of any element in the imported sub-tree. To make a reference read-only,
open its properties via the menu ‘Element’, then ‘Reference properties...’, and check the
‘Read-only reference’ checkbox:

NB:

• There is no difference in the representation for shared sub-trees in the project
from which it was exported and in the project into which it was imported. This is
intentional, since after the sub-tree has been exported and imported, there is no
difference between both projects: a change on any of them will be seen in both.

• Make sur the rdx file is not deleted or moved, or the sub-tree will disappear from
both projects.

• To cancel the sharing of a sub-tree in a project, select its root node and display its
reference properties via the corresponding item in the "Element" menu. In the
dialog, click on the "Resolve reference" button. The sharing will then be can-
celled and the icon will no more be displayed with the small arrow.
PragmaDev Studio V6.0 Page 17

User Manual
2.1.8 Search and replace

2.1.8.1 Searching the whole project

Searching for some text in the whole project is available by selecting the “Find all…” entry
in the “Edit” menu of the project manager. The find all window appears:

The window is organized in tabs, allowing you to keep the results of several searches. To
create a new tab, just click the “+” at the end of the tab bar. Tabs cannot be closed; they
will all be forgotten when you close the window as a whole.

The text to find is entered in the “Find text” field. The options are:

• “Case” makes the search case-sensitive:

• “Word” searches only for whole words;

• “Regex” searches for regular expressions instead of plain text.
Page 18 PragmaDev Studio V6.0

User Manual
Once the text to find is specified, clicking the “Find all button” will display all the
matches in the lower part of the window:

2.1.8.1.1 Restrictions

The search can also be restricted to only part of the project by clicking the “Restrict” but-
ton, which will display the restriction panel:
PragmaDev Studio V6.0 Page 19

User Manual
• If “All elements in project” is checked on the left side of the panel, all elements in
the projects are searched, considering the filters set on the right side of the panel;

• If “Elements in selected sub-tree” is checked on the left side of the panel, on the
currently selected node and all its descendants will be searched, with the addi-
tional filters configured on the right side of the panel;

• If “Project tree labels” are checked on the left side of the panel, the text is
searched in the element names in project tree itself, and not in the element con-
tents. The filters on the right side of the panel are then not available and will be
greyed out.
Page 20 PragmaDev Studio V6.0

User Manual
The filters on the right side of the panel allow to restrict the search to diagrams wih a
given type, and also to symbols with a type within a given set within these diagrams. For
example, with the following setting:

and nothing else selected, the text would be searched only in state and composite state
symbols in SDL diagrams, and in condition symbols in MSC diagrams.
PragmaDev Studio V6.0 Page 21

User Manual
2.1.8.1.2 Regular expressions

Regular expressions are a language allowing to express more complicated searches than
just text. Most characters in a regular expression match themselves, except the following
ones, that have a special meaning:

• “.” matches any character in the text.

• “*” matches 0 or more repetition of the part just before it in the regular expres-
sion. So for example, “a*” will match “a”, “aa”, “aaaaaaa”, and also “”.

• “+” matches 1 or more repetitions of the part just before it in the regular expres-
sion. So for example, “a+” will match “a”, “aa”, “aaaaaaa”, but not “”.

• “?” makes the part before it in the regular expression optional. So “a?” will match
“a” or the empty string, and nothing else.

• A set of characters can be specified between “[“ and “]” to match any of the char-
acters in the set. So for example, “[abc]” will match “a”, “b”, “c”, but not “d”.
A range can be specified using a “-”: “[a-z]” will match any lowercase letter, and
“[0-9]” will match any digit.
If a set of characters must include the characters “-” or “]”, they can be “escaped”
with a “\”. So “[(){}[\]\-]” will match the characters “(“, “)”, “{“, “}”, “[”, “]”
and “-”.
A set can also be inverted by starting it with the character “^”. So “[^a-z]” will
match any character, except a lowercase letter.

• Regular expressions can be grouped by enclosing them between “(“ and “)”. So
for example, “(ab)+” will match 1 or more repetition of the group “ab”, so it will
match “ab”, “abab”, “ababab”, but not “aaba”.

• The “\” character can be used to reference special groups of characters:
• “\s” matches any space character (space, tab, …);
• “\S” matches any character, except a space character;
• “\b” matches the empty string but only at the beginning or end of a word;
• “\B”matches the empty string but only when not at the beginning or end of a

word;
• “\d” matches any digit;
• “\D” matches anything that is not a digit;
• “\w” matches any letter or an underscore;
• “\W” matches anything but letters and underscores.

2.1.8.2 Replacing text in the whole project

Replacing text in the whole project is done by selecting the “Find / replace” entry in the
“Edit” menu of the project manager. It displays the following window:

The “Next” and “Previous” buttons allow to navigate to the next and previous match
respectively. “Replace” will replace the currently selected occurence; “Repl. & find” will
Page 22 PragmaDev Studio V6.0

User Manual
replace the current occurence and search for the next one. The “Replace all” button dis-
plays a menu where only the entry “everywhere” is available, allowing to do the replace-
ment everywhere in the project.

When searching for a regular expression, it is also possible to include in the replacement
string references to groups in the searched expression. These references are a “\”, fol-
lowed by the order number of the group in the expression. So for example, searching for
“(ab)(cd)” and replacing it with “\2\1” will replace all occurences of “abcd” with
“cdab”.

2.1.8.3 Searching and replacing in the editors

Finding and replacing text is also available in all editors by selecting the entry “Find /
replace” in the “Search” menu. This will display in the window the find / replace compo-
nent just under the quick buttons:

The “Next”, “Previous”, “Repl. & find” and “Replace” buttons are the same as in the find /
replace dialog in the project, but are of course restricted to the current diagram or file.

The “Find all” button will display all matches in the panel on the right side of the window
in the “search results” tab:

Clicking on a match will select the symbol or line where the match was found.

The “Replace all” menu may include the following entries:

• “in selection” will replace all matches within the current selection.

• “from here” will replace all matches from the current position until the end. This
is only meaningful in text files.

• “everywhere” will replace all matches from the beginning to the end.
PragmaDev Studio V6.0 Page 23

User Manual
2.1.9 Interface with traceability tools
Traceability information can be added to PragmaDev Studio projects, enabling to con-
nect it to requirement management tools such as Reqtify. This information is added in
the project itself to individual nodes in the tree: diagrams, files, packages, …

The traceability information for a node can be viewed or changed by selecting the node
and choosing the item "Traceability information…" in the "Element" menu. The following
dialog is then displayed:

If some information has already been entered for the node, it will be displayed in the
"Traceability information" field. Changing this field, validating the dialog and saving the
project will change the information for the node.

Note PragmaDev Studio doesn’t interpret the traceability information at all. It is just
saved in the project XML file as an attribute for the node. The interpretation of the infor-
mation is done by the requirement management tool.

For more details and the description of the integration with the Reqtify tool delivered
with PragmaDev Studio, see the corresponding section “Traceability information” on
page 44.
Page 24 PragmaDev Studio V6.0

User Manual
2.1.10 Preferences
The preferences for the application are opened via the item "Preferences…" in the "Stu-
dio" menu. The dialog that appears is divided in tabs, that are described in the following
paragraphs.

2.1.10.1 Project manager preferences

The "View file names by default" and "View file rights by default" options control
whether the file names and/or access rights will be automatically displayed in the project
manager window when a project is opened.

The option "Allow everything at project level" allows to create any kind of diagram
directly in the project. By default, no other SDL diagram than systems or agent classes
can be created at project level.

The option "Enable file locking" controls whether the files you open for modification are
locked for your personal use or not. If this option is set, two users cannot modify the
same file at the same time.

The “External file types” have been described in “Supported file types” on page 11.
PragmaDev Studio V6.0 Page 25

User Manual
2.1.10.2 Diagram preferences

The “Auto-edit text” option controls whether the text for symbols or links will be auto-
matically opened for modification when the symbol or link is created.

The “Activate Undo” option activates the undo operation in the diagram editor. Deacti-
vating the undo can speed up editing on very large diagrams.

The “Show state/message browser in processes” option controls whether the browser
allowing direct access to transitions for each state and input message is displayed when
opening a process. Refer to paragraph “"View" / "Go to" menu and state / message
browser” on page 78 for further details on this browser.

The “Default editor mode” option controls the default mode for the editor, which can be
“Edition” or “Navigation”. In both modes, a button appears while hovering over a sym-
bol. In edition mode, the button allows to open the diagram associated to the symbol if
any, and clicking on the symbol edits its text; in navigation mode, the button allows to
edit the symbol’s text, clicking on a symbol just selects it, and double-clicking on it opens
the associated diagram.

The “Allow symbol text horizontal overflow” option controls how the text is displayed if
it is too large for the symbol. With this option unchecked, the text will be as wide as the
symbol and will overflow only above and below the symbol. With this option text, no
width will be defined for the text and it may overflow on all sides of the symbol, including
left and right sides. Note that this option has no effect in new-style behavioral diagrams,
where symbols are always adjusted to their text.

The “Toolbar for links on top” option controls the placement of the toolbar for link inser-
tion in diagram editors; by default, this toolbar is placed below the toolbar for symbol
insertion. If this option is checked, the link toolbar will be put above the symbol toolbar.
Page 26 PragmaDev Studio V6.0

User Manual
The “Prefix for shortcut text instead of underlining” option controls the display for sym-
bols with a shortcut text. The default is to underline the symbol text; if for any reason,
another representation is preferred, checking this box will display a prefix looking like
“>>” instead.

The options in the “Allow links crossing” group set on which diagram the crossing of
links will be allowed. This option is today always set for process, procedure and HMSC
diagrams. It can be activated for system, block, class and deployment diagrams by check-
ing the corresponding check-box. Please note once a diagram is saved when the corre-
sponding option is on, the crossing of links will be definitely allowed for the diagram.
There is no way to forbid link crossing for a diagram that allows them.

The font size is the font size for diagrams. It does not apply in the source file editor.

The “Align to” options control what guides will be available in diagrams for symbol posi-
tionning:

• If “Grid” is checked, the symbol center position will be automatically aligned on a
grid. This grid can be displayed by checking the “Shown” checkbox appearing
after the “Grid” option.

• If “Symbol guidelines” is checked, lines will appear as you move the symbols
around, allowing to align them to existing symbols. This allows to align symbol
left sides, top sides, or centers. This feature is only available for new-style behav-
ioral diagrams. Also note that enabling the symbol guidelines will disable the
grid, as symbols cannot be aligned on both the grid and the other symbols.

The "Default zoom" is the initial value for the zoom level for all diagram windows.

The "Display in partition browser" option controls what is displayed in the partition
browser in diagram editors. The display may include the partition order number, its
name or both. If the "Indicate external partitions" checkbox is checked, partitions stored
in external files will be prefixed with a ’*’ in the browser.

The "Semantics checking level" option can be set to:

• "All" to report errors for any problem

• "Critical only" to report errors only for problems preventing the system to work
and only warnings for other problems

The "Ignore warnings" checkbox and entry allow to specify which warnings won’t be dis-
played during a syntax / semantics check. If the box is not checked, all warnings are dis-
played. If the box is checked, warnings having the identifiers specified in the entry will
not be displayed. The warning identifiers should be separated with spaces. Warning
identifiers are documented in PragmaDev Studio Reference Manual.

The "Update publications" option controls whether the publications of a diagram will be
automatically saved when the diagram is saved. See paragraph “Publications” on
page 68.

The "Default symbol size" option controls how symbol are sized when created. If this
option is set to "Adapt to text", the symbol size will not be fixed and will adapt to what-
ever text is entered in it. The other option is "Set to:" and requires a default size to be
entered. If these are set, all symbols will have the specified size when created. The unit
PragmaDev Studio V6.0 Page 27

User Manual
for the size are printer points (same unit as font sizes). Note that this option does not
apply to new-style diagrams (MSCs or behavioral).

The "Symbol availability and colors…" button allows to configure which symbols will
appear in the toolbars in diagram editors, as well as the default colors for all symbols in
diagrams depending on their type. Pressing this button opens the following dialog:

The upper part of the dialog allows to choose what PragmaDev Studio will do in case of a
legacy diagram (diagram coming from older version of PragmaDev Studio tool, called
Real Time Developer Studio):

• Ask what to do: Each time a legacy diagram will be opened, the following win-
dow will be opened asking what to do:
Page 28 PragmaDev Studio V6.0

User Manual
• Keep the old default color: will keep default color from legacy diagram.

• Change their color to the new default: will change color of symbol to the new
default colors.

• Mark them as having the default color: symbols will have the new colors and
will be updated if default color is changed. Doing this breaks the compatibility
with former Real Time Developper Studio versions.

The middle part of the dialog allows to change the default color for all symbols. Two col-
ors may be selected: the one for outline and text and the one for background.

The lower part allows to configure the availability and colors for individual symbol types:
select the parent diagram type for the symbol type and the symbol type itself in the corre-
sponding menus: Its current availability, outline color and background color are then
displayed in the lower part of the dialog. Checking or unchecking the availability box will
make the symbol be present or absent from the toolbars in the diagram editors. Specify-
ing new colors will override the default ones for all symbols with the selected type.

Note that making a symbol type unavailable only prevents it from appearing in the tool-
bars, it doesn’t make it invalid: if a diagram containing such a symbol is opened, it will
still be displayed correctly, and all operations will work on the symbol.

Also note that the symbol and link default colors are dynamic: changing the default color
in this dialog will change all symbols or links marked as having the default color. Setting
a specific color for a symbol or link, or setting it back to use the default is done via the
symbol and link properties panels in the diagram editor (see “Symbol and link proper-
ties” on page 62).

The options in the “MSC diagrams” group apply only to MSC diagrams:

• Checking “Set filter active by default in diff” will automatically select the default
filter options when comparing MSC diagrams. The default filter can be config-
ured via the “Configure default filter…” button. A detailed description of the fil-
ter options can be found in paragraph “Conformance checking: diagram diff &
property match” on page 97.

• The “Command to open external model elements” options allows to specify the
executable to launch to open model elements when a model element identifier is
specified for an item in a MSC diagram. If the “Run this command asynchro-
nously” option is checked, this command will be run without waiting for it to
complete before returning the control to PragmaDev Studio. Note that this pre-
vents any error reporting if the command fails for any reason.
Note that this command will only be used for model elements that are not recog-
nized by PragmaDev Studio. For example, model element identifiers automati-
cally set in traces produced during a debug session will be directly handled by
PragmaDev Studio, and this command will not be used.
For more information about model element identifiers in MSC diagrams, see
“Linking with model elements” on page 371.
PragmaDev Studio V6.0 Page 29

User Manual
2.1.10.3 Text editor preferences

These options are the default values for those found in the "Preferences" menu in the text
editor. They control:

• The font size for texts ("Font size");

• The visibility of the line numbers ("View line numbers by default");

• The visibility of the class/method/function browser ("Show file browser by
default");

• The visibility of the find / replace bar in the editor ("Show find and replace area
by default");

• Whether the search function should warn when the whole current file has been
searched (“Warn when find has searched the whole file”);

• The width for tab characters ("Default tab width");

• Whether the "Tab" key should insert hardware tabs or spaces ("Emulate tabs
with spaces");

• Whether the backspace key should act as if it deleted a tab ("Backspace detabs").
This behavior is only active when there is only whitespace between the beginning
of the line and the current position.
Page 30 PragmaDev Studio V6.0

User Manual
2.1.10.4 Debugger preferences

The options in the “Common options” group are the default values for those found in the
“Options” menu in the debugger and simulator windows. They’re described in chapters
“Model Debugger” on page 311 and “Model Simulator” on page 185. The latter also
includes the description of the options in the “SDL simulator options” group.

2.1.10.5 Tracer preferences
PragmaDev Studio V6.0 Page 31

User Manual
The “Show time indications” option controls whether the absolute times will be recorded
in MSC traces.

If the “Record message data” option is checked, the tracer will record only the message
name for each message, not its parameters.

The “Trace external calls” option allows to capture synchronous calls from SDL opera-
tors or external procedures, to the environment. By default only the undefined ones are
traced. There is a possibility to trace all of them or none of them. The point is be able to
replay a scenario and for that matter to simulate the synchronous behavior of the envi-
ronment.

If the “Wrap length for links” value is not 0, link texts will wrap when they are above this
number of characters. This allows to still be able to read link texts when they are very
long.

The “Shift link text when they appear on top of a lifeline” checkbox controls the place-
ment of link texts when they might be confused with a text on a lifeline. For example, if
without this option checked, a link text would appear like this:
Page 32 PragmaDev Studio V6.0

User Manual
checking the option would make it appear like this:

The “Color link texts” option colors differently the message name and its parameters in
the trace:

The option “Parameter visibility for saved traces” allows to set the visibility level for
message parameters in the MSC diagrams saved from the tracer (see “Message parame-
ters display” on page 94).

If the option “Limit trace height to about” is checked and a number of events is specified,
the height for traces will be limited to this number of events. This allows to avoid perfor-
mance issues when doing big traces. Please note that this only has an impact on the num-
ber of events displayed in the tracer window, and not on the number of events actually
remembered in the trace. All events are still recorded and saving the trace will save them
all.

The “Socket port number” option is for the socket port on which external clients can con-
nect to generate a trace from an external program.
PragmaDev Studio V6.0 Page 33

User Manual
2.1.10.6 General preferences

The “Use fonts provided in installation” option sets the font used for diagrams and
source files to the font delivered with PragmaDev Studio. This option will be automati-
cally set when PragmaDev Studio is launched for the first time.

The “Language” option controls the language used for PragmaDev Studio user interface;
when this setting is modified, PragmaDev Studio will have to be restarted for the changes
to appear.

The “Theme” option controls the GUI theme used for PragmaDev Studio. It will be auto-
matically set to the native look on Windows and macOS.

Checking the option “Show extended menus by default” allow to always display full
menus with all entries in all windows. The default is to show only menus that don’t have
all their options already present as quick-buttons.

The option “Detachable toolbars” makes the toolbars in the various editors detachable
from their parent window.

The option “Tab order” determines how tabs will be ordered in the editor windows. Val-
ues are “Latest last”, “Latest first” or “Alphabetical”. If the “Allow reordering” option is
checked, it will possible to reorder tabs in their parent window. Note that detaching tabs
is always possible.

The “Auto-complete delay” option controls the delay between the last key press event
and the display of the auto-complete list in diagam and text editors. It also allows to turn
off the display. Note that even if the option is set to “Off”, the auto-complete list can
always be displayed “manually” using the “F8” key.

The “Check for new version availability on startup” checkbox allows to have PragmaDev
Studio check if a newer version is available each time it is launched. If there is one, a dia-
Page 34 PragmaDev Studio V6.0

User Manual
log will appear offering to open a web browser on the downloads page on the PragmaDev
website.

The “Error reporting” group allows to configure how much information is sent to Prag-
maDev support when an unexpected error occurs in PragmaDev Studio. The basic infor-
mation that is always sent includes the traceback for the error, and a list of the last
operations that were made during the editing session before the error occurred. By
default, only the kind of operations and the internal identifiers for the symbols involved
are sent, but the “Sent diagram information” option allows to send more than that, which
can be very helpful to correct the condition that caused the error:

• “No information”: no information other than what is described above will be
sent with the error. This means no diagram name or structure, and no texts for
the symbols.
This setting should be used when there are confidentiality issues with your dia-
grams, and you do not want anything about them to be transferred at all. Note
that without any information on the diagram, correcting the error might be diffi-
cult in some cases.

• “Anonymized information”: the information transferred with the error will
include a skeleton of the diagrams you were working on, giving its overall struc-
ture, but with no text for anything. The name of the diagram will not be trans-
ferred.
This offers a trade-off between confidentiality and ease of correction by allowing
to rebuild a diagram that mostly looks like the one you were working on, but that
won’t include any actual text from yours.

• “Full information”: this will include all information available with the error, i.e
the full diagrams you were working on as well as all texts for symbols and opera-
tions.
Use this setting when you have no confidentiality issue on your diagrams. This is
the setting that makes the correction of the problem the easiest.

The other options are platform-dependent:

• The “Use Windows clipboard for PragmaDev Studio copy/paste” option is only
available on Windows. If it is checked, copying symbols from one PragmaDev
Studio instance to another will be possible. Note however that it might have
unexpected results if symbols are pasted in anything else than PragmaDev Stu-
dio.

• On Unix, a group of prefrences control how printing is done:

If the “Use print command” option is checked, printing will be done by running
the given command with the file to print (in PostScript format). The typical value
PragmaDev Studio V6.0 Page 35

User Manual
for this command is “lp”, optionally with options to select the wanted printer.
When this option is used, the print dialog will look like this:

If the “Use command templates” option is checked, the 2 following fields must
be set:
• The “Command returning list of printers” must be set to a command sending

to its standard output the names of all available printers. The typical value is
“lpstat -e”.

• The “Printing command template” must be set to a template for the printing
command, where the string %p will be replaced by the printer name as printed
by the “command returning list of printers”, and %f will be replaced by the
name of the file to print, again in PostScript format. The typical value is
“lp -d ‘%p’ ‘%f’”. In the dialog above, an option has been added to specify
the page size (A4).

When command templates are used, the print dialog will look like this:
Page 36 PragmaDev Studio V6.0

User Manual
2.1.10.7 PR import & export preferences

These preferences are the default values for most of the PR import & export options. The
description of these options can be found at paragraphs “Importing an MSC-PR file” on
page 402 and “Exporting the project as an SDL/PR file” on page 464 respectively.
PragmaDev Studio V6.0 Page 37

User Manual
2.1.10.8 Licensing options

These options allow to specify which kind of license you will be using for PragmaDev Stu-
dio if you have one.

The “Use free version” option indicates that you will not be using any license. This allows
you to use PragmaDev Studio freely on small projects.

The “Use a PLM license from a server” option indicates that you will be using a license
managed by a PLM server. The hostname or IP address of the server and the socket port
on which it listens are set via the “PLM server” and “PLM port number” options, respec-
tively.

The “Use a nodelocked PLM license” option indicates that you will be using a PLM file
dedicated to your computer.

The “Use a POLLM license” option indicates that you will be using a license managed by
the PragmaDev OnLine License Manager. The login name and password specified in the
dialog must be the same as the ones you use on the PragmaDev webiste for the license
management interface.

The “Guess from environment” button allows to try to guess the settings from the envi-
ronment variables set for your system. This is particularly useful if you were using an
older version or PragmaDev Studio or Real Time Developer Studio, that relied on envi-
ronment variables for the licensing information. Please note that this is no more sup-
ported: any change in the environment variables will have to be set back in these
preferences by using this button again.

When PragmaDev Studio is launched for the first time, the licensing information will be
asked interactively and stored in these preferences.
Page 38 PragmaDev Studio V6.0

User Manual
2.1.10.9 Advanced options

As their name implies, these options are for advanced users only. They should be left to
their default values except on explicit advice from the PragmaDev support team.

2.1.11 User defined external tools
The project manager allows to define a set of external tools that may be used on the files
in the project or on the project itself. A typical use of these tools is to interface Real Time
Developer Studio with a configuration management system, but their use is much larger
than that.

External tools appear in new dynamic menus in the project manager. They are defined
via the "Tools" sub-menu in the "Studio" menu of the project manager. The three items
in this sub-menu are:

• "Configure...", allowing to manage external tools (see below),

• "Import..." and "Export...", allowing to share tool definitions between different
users using a representation of these definitions in a text file.

2.1.11.1 Tool menus definition

The "Tools / Configure..." sub-menu opens the following window:

The columns are the name for the menu, the name of the menu item, the command to be
run for the tool, which may include special markers (see “Tool commands” on page 41)
PragmaDev Studio V6.0 Page 39

User Manual
and the shortcut for the item. Defining a new tool or editing an existing one opens the
tool definition window:

where these 4 fields may be entered or modified. The arrow buttons in the main tools
window allow to reorder the tools in their menu.

Below is an example of a typical CVS menu:
Page 40 PragmaDev Studio V6.0

User Manual
Once defined, the menus appear in the project manager window:

There is no way to control the order of the tool menus in the current version of Prag-
maDev Studio.

2.1.11.2 Tool commands

The tool commands are regular OS-dependent commands that will be executed via a
shell or equivalent (sh on Unix, command.com or cmd.exe on Windows). These com-
mands may however include special markers, allowing to get information from the cur-
rent project, the currently selected element in the project manager, or from the user via a
dialog box. These markers are:

• "$(projectFile)": this marker will be replaced by the opened project’s full file
name. If no project is opened, a message will be displayed and the tool command
won’t be executed.

• "$(projectFileDir)": same as $(projectFile), but for the project directory.

• "$(projectFileBase)": same as $(projectFile), but for the project file name
without its directory.

• "$(elementFile)": this marker will be replaced by the full file name for the cur-
rently selected element in the project manager. If no element is selected, a mes-
sage will be displayed and the tool command won’t be executed.

• "$(elementFileDir)": same as $(elementFile), but for the selected element
directory.

• "$(elementFileBase)": same as $(elementFile), but for the selected element
file name without its directory.

• "$(descendantElementFiles)": this marker will be replaced by the list of all
file names for the currently selected element and all its descendants. The file
names will be separated by the standard path separator for the current platform
(’:’ for Unix; ’;’ for Windows).
PragmaDev Studio V6.0 Page 41

User Manual
• "${<label>/<type>[<options>]@<order>}": this type of marker is used to ask
information to the user before executing the command. All markers of this type
will be used to build a dialog where the user may enter information before exe-
cuting the command. The dialog will include one field per marker, built from the
information between the braces in the marker:
• "<label>" will be the text written before the field. It defaults to the empty

string.
• "<type>" is the field type. Today, two types are recognized: "s" for strings and

"b" for booleans. The corresponding field type are a text entry and a checkbox
respectively. The default type is string.

• "<options>" are options for the chosen type. For strings, the only option is its
length (default: 20). For booleans, options are the value when checked and the
value when unchecked, separated by a comma. For example, a field with type
"b[-r,]" will be replaced in the command by "-r" if the user checks the corre-
sponding checkbox, and by the empty string otherwise. The defaults are "1" for
checked and "0" for unchecked.

• "<order>" is the order of the field in the dialog. If not set, the order will be cho-
sen randomly. If set only for a subset of the fields, the ordered fields will
always appear before the unordered ones.

Example:
If a tool command includes the following markers:
• ${Tag name: /s@1}
• ${Move tag: /b[-F,]}
the following dialog will be built:

The "${Tag name...}" marker will be replaced by the contents of the "Tag
name:" entry field in the dialog and the "${Move tag...}" marker will be
replaced by "-F" if the checkbox is checked and by the empty string otherwise.
Page 42 PragmaDev Studio V6.0

User Manual
2.1.11.3 Hooks addition and removal

PragmaDev Studio allows to automatically call a command when an element is added or
removed from the opened project. These "hooks" are configured in the external tools
management dialog in Studio / Tools / Configure... and Hooks tab:

The syntax for the hook commands is the same as the one for the regular tool commands.

Please note that if the command contains user-defined variables (${…}) and if several
files are added or removed in a single operation, the value for the variables will only be
asked once and applied to all added or removed files.
PragmaDev Studio V6.0 Page 43

User Manual
2.1.12 Traceability information

2.1.12.1 Scope

Traceability information can be defined on any element of the Project manager. This
information can then be used in a traceabilitity information tool in order :

• to manage requirements,

• to analyze the impact of modifications.

2.1.12.2 Traceability editor

To add traceability information, select a node in the Project manager and go to the menu
Element / Traceability information :

The traceability information is stored in the XML PragmaDev Studio project file (.rdp) as
the attribute traceabilityInfo of the node tag. The format of the traceability informa-
tion depends on the target traceability tool.

2.1.12.3 Integration with Reqtify

2.1.12.3.1 Organisation

An integration with the Reqtify requirment management tool is delivered with Prag-
maDev Studio. This integration is located in the sub-directory share/3rdparty/
Reqtify of the installation directory, which contains the following files:

• rtds.br: PragmaDev Studio behavior file. This file contains the scripts allowing
Reqtify to import a project file and to open a diagram or text file in it.
Page 44 PragmaDev Studio V6.0

User Manual
• rtds.types: PragmaDev Studio type file. This file describes the format for the
imported file in Reqtify.

• pragma.bmp & pragmaM.bmp: PragmaDev logo and its transparency mask. This
image is used to represent PragmaDev Studio projects in Reqtify.

• rtds_*.bmp & rtds_*M.bmp: Images for the nodes in a project tree, with their
associated transparency mask. All nodes are represented: diagrams, textual files,
packages, folders, requirements tables, prototyping GUIs, performance anaysis
settings, and so on.

• pragmastudio_RDP_to_Reqtify.exe: Stand alone program that extracts infor-
mation from PragmaDev Studio project file and generates an information file
that conforms to the type defined in rtds.types, and therefore readable by
Reqtify.

2.1.12.3.2 Installation for Reqtify

This paragraph make the assumption that the Reqtify toolset is installed in
%REQTIFY_HOME% directory (usually C:\Program Files\Reqtify vXXX).. The installa-
tion of the integration simply consists in copying the following files from
%RTDS_HOME%\share\3rdparty\Reqtify:

• pragmastudio_RDP_to_Reqtify.exe must be copied to:
%REQTIFY_HOME%\bin.w32;

• rtds.br must be copied to %REQTIFY_HOME%\config\otscript\2;

• rtds.types must be copied to %REQTIFY_HOME%\config\types\Design;

• All .bmp files must be copied to %REQTIFY_HOME%\config\images\RTDS. If the
RTDS subdirectory does not exist, it must be created.

Note that the integration may already be present in the Reqtify installation. If there is
already a file named rtds.types in %REQTIFY_HOME%\config\types\Design, you
probably don’t need to do anything.
PragmaDev Studio V6.0 Page 45

User Manual
2.1.12.3.3 General architecture

Reqtify relies on these previously installed files to work as described in the following dia-
gram:

A PragmaDev Studio diagram or a text file in a project can be opened directly from
Reqtify. Reqtify also checks if the PragmaDev Studio project file has been modified. If the
file has been modified, it calls the pragmastudio_RDP_to_Reqtify utility to generates a
project file understandable by Reqtify.

Reqtify

PragmaDev Studio
project

PragmaDev Studio
simplified project file

pragmastudio_RDP_

to_Reqtify.exe

calls

generates

PragmaDev Studioopens

read by

checks modifications

stores
Page 46 PragmaDev Studio V6.0

User Manual
2.1.12.3.4 Usage

It is now possible to add a PragmaDev Studio project into Reqtify. To do so, either create
a new project, or use the "Edit project…" item in the "File" menu in an existing Reqtify
project. The project configuration dialog appears:
PragmaDev Studio V6.0 Page 47

User Manual
To add a PragmaDev Studio project to the Reqtify project, click the "Add a document"
button (), then click on the project canvas above:

Keeping the newly created document selected, use the table below to select the Prag-
maDev Studio project: give it a name in the "Name" column, set its "Type of Analysis" to
"PragmaDev Studio", then click in the "File or Directory" cell, click the "…" button that
appears in the cell and select the project file (.rdp):
Page 48 PragmaDev Studio V6.0

User Manual
The icon & name for the document then changes in the project canvas to show the docu-
ment is now the selected PragmaDev Studio project:
PragmaDev Studio V6.0 Page 49

User Manual
Clicking "Apply" will create or update the Reqtify project. The PragmaDev Studio project
will then appear in the Reqtify project views in a very similar way as it appears in the
project manager:

Double-clicking in Reqtify on a diagram or text file node will open the imported Prag-
maDev Studio project, then open the diagram or text file.

2.1.12.3.5 Format for traceability information

The traceability information for all nodes in the project tree has the following formats:

• For a node covering one or more requirements:
cover="<REQ. ID 1> <REQ. ID 2> ..."

• For a node defining one or more requirements:
requirement="<REQ. ID 1> <REQ. ID 2> ..."
Page 50 PragmaDev Studio V6.0

User Manual
The requirement identifiers are those appearing in the other documents in the Reqtify
project.

2.1.12.3.6 Information imported from requirements tables

The PragmaDev Studio / Reqtify integration also automatically uses the information
stored in requirements tables in the PragmaDev Studio project to automatically create
covered and/or defined requirements:

• The identifier used for the requirement is the one appearing in the first column
of the requirements table.

• A covered requirement is automatically added to the parent diagram of every
symbol that appears in the third column of the table.

• A covered requirement is automatically added to the parent TTCN file of every
testcase that appears in the fourth column of the table.

For example, for the following line in a requirements table:

the requirement REQ002 will be automatically added as a covered requirement to the
node for diagram pLocal.rdd in the project tree, and to the node for the TTCN source
file TTCN_TestsAndControl.ttcn, since it contains all the testcases listed as testing it in
the table.
PragmaDev Studio V6.0 Page 51

User Manual
2.1.12.3.7 Example

The following example creates a link from an Excel spreadsheet to a PragmaDev Studio
project. The Excel spreadsheet is actually the one used to generate the requirements
table in CSV format that is imported in the PragmaDev Studio project:

The requirements are listed the normal way: requirement identifier in the first column,
requirement description in the second one, then 2 columns, one for the symbols covering
the requirement and another one for the testcases testing it.

After exporting it in CSV format and importing it in PragmaDev Studio, the symbols cov-
ering the requirements can be inserted in the table as explained in “Covering symbols” on
page 168:
Page 52 PragmaDev Studio V6.0

User Manual
After that, running a co-simulation with the testcases automatically inserts the testcases
in the 4th column:
PragmaDev Studio V6.0 Page 53

User Manual
One of the requirements is not covered by a symbol in a diagram, so it can be set via the
traceability information on the corresponding node in the project tree:

Both the Excel spreadsheet and the PragmaDev Studio project can then be added in a
Reqtify project, with a cover link between the two:
Page 54 PragmaDev Studio V6.0

User Manual
After analysis, Reqtify will show the links in the Graphical View editor:
PragmaDev Studio V6.0 Page 55

User Manual
2.2 - Editor windows

2.2.1 Tab management
Most windows are organized into tabs: if a new element is opened from the project man-
ager, it will open a new tab in an existing editor window for this kind of elements.

If needed, a tab can be dragged out of its parent window to create a new window:
Page 56 PragmaDev Studio V6.0

User Manual
A tab can also be moved from one window to another, just by dragging it from its former
parent window’s tab bar and dropping it in its new parent’s:

If the former parent window had only one tab, it will be closed automatically.

The default tab order in all tab bars is given in PragmaDev Studio general preferences
(see “General preferences” on page 34). It can be alphabetical, last opened first, or last
opened last (the default). It is also possible to allow tab reordering, in which case a tab
can be moved within its parent tab bar to put it in a new position. Note that tab reorder-
ing does not work well with the alphabetical tab order, as tabs will be reordered automat-
ically each time a ne element is opened in the same window.

2.2.2 Windows menu
All windows in PragmaDev Studio have a menu labelled "Windows". This menu allows to
perform common operations on windows, as well as to navigate between the opened
ones.

The first part of this menu contains the following entries:

• "Remember size and position…" records the position and size of the current win-
dow and applies both automatically for all new windows of the same kind;
PragmaDev Studio V6.0 Page 57

User Manual
• "Forget recorded size & pos…" forgets any recorded position and size for the
windows of the same kind as the current one and reverts to the default behavior,
which is to let the window manager place any new opened window.

• "Restore recorded size & pos..." will put back the window to the recorded size
and position if any. This can be useful when the window has been moved or
resized.

These choices are actually recorded in PragmaDev Studio preferences file, so they will
apply even after PragmaDev Studio is closed and reopened.

The last part in the "Windows" menu contains entries for all opened window kinds in the
current session:

• If a window of this kind has tabs, the menu entry is the window kind (e.g "Dia-
gram editor"), with an associated cascade menu having one entry for each tab in
any window of this kind. The entry for the tab is the file name for the opened dia-
gram. Selecting this entry will raise the corresponding editor window, and select
the specified tab.

• If a window of this kind does not have tabs, it will have a single entry in the
menu, with the name giving the window type and the element displayed in it.
Selecting this entry will raise the corresponding window.

Note that the project manager also always has an entry in this menu, which is always the
first and is named "Project", followed by the name of the currently opened project.

During debug sessions, there is another entry placed between the first and last parts of
the "Windows" menu in all diagram editor windows. It is named "Set current tab as tar-
get for debugger". This entry will force all diagrams opened from the debugger to appear
in the current tab. This tab will be automatically renamed to add a prefix "[D]" before the
diagram name, and will be moved to the first position in the window’s tab bar. Then, each
time the execution stops in the debugger on a symbol in a diagram, the diagram will be
opened in this tab, replacing the one that was already in it. This avoids to end debug ses-
sions with a lot of tabs. Note that if a diagram is already opened in another tab or another
window, it won’t be moved to the debugger target tab; its window will just be raised and
its tab selected.
Page 58 PragmaDev Studio V6.0

User Manual
2.3 - Diagram editor
Two types of diagrams exist in PragmaDev Studio. Normal mode diagrams are diagrams
actually made with PragmaDev Studio, and legacy mode diagrams are diagrams made
with the older version of PragmaDev Studio, called Real Time Developer Studio.

The diagram editor is the window where all types of diagrams may be edited. The editor
window is the same for all types of diagrams, and its basic features are the same. It may
however have a few extra features depending on the type of the displayed diagram.

Diagram editor window

2.3.1 Common features

2.3.1.1 Editor modes

Most editors have two modes, that can be switched either via two options in the “View”

menu, or via the / button in the toolbar:
PragmaDev Studio V6.0 Page 59

User Manual
• In navigation mode, symbol texts are only editable via a button appearing when
the mouse pointer hovers over the symbol:

Clicking on a symbol selects it, and double-clicking anywhere in it opens the dia-
gram associated to it if any.

• In edition mode, symbol texts are editable directly by clicking on the text. To
select it, the click has to happen on the symbol, but outside its text. When the
mouse pointer hovers over the symbol, another button may appear, allowing to
open the diagram associated to the symbol if there is one:

The button will only appear if there is an associated diagram to the symbol, or if
there can be one, even if it doesn’t exist yet.
As clicking between a symbol’stext and its border can sometimes be tricky,
there’s also another way to select a symbol: when nothing is selected, shift-click-
ing on it anywhere will select it, even if the click is done in the text.

Note that in the UML class and deployment diagram editors, only the main text for sym-
bols have an associated button. Attribute and operation texts are always edited by click-
ing on them.

2.3.1.2 Contextual help for declarations

For symbols containing declarations, help is available via the contextual menu triggered
by right clicking in the symbol text while it is opened for modification:

For each declaration kind is given its name in the current language, as well as its equiva-
lent in C when applicable, or a short explanation of what the type is. Selecting an entry in
Page 60 PragmaDev Studio V6.0

User Manual
the menu will insert a skeleton for this kind of declaration at the current insertion posi-
tion.

Note that todaay, this menu is only available in SDL declaration symbols.

2.3.1.3 Selecting multiple symbols

Multiple selection is available in most diagrams. Note however that the selection can be
restrained to something meaningful. For example, in a behavioral diagram, you will only
be able to select symbols that are in the same transition or decision branch and that fol-
low each other. This is because no operation could be performed on a random set of sym-
bols.

Multiple selection is done by surrounding the symbols to select with the selection rectan-
gle:

or by extending the selection by shift-clicking on other symbols. Note that in behavioral
diagrams, this will select all symbols between the selected one and the shift-clicked one:

shift +
PragmaDev Studio V6.0 Page 61

User Manual
2.3.1.4 Frame concept

All legacy diagrams have a surrounding frame, containing all the symbols in the diagram.
You can’t put symbols outside that frame. For SDL system and block diagrams, the frame
also represents the external boundary of the agent, and channels may be connected to it.

In the new editors for MSC and behavioral diagrams introduced in PragmaDev Studio
V5, there is no surrounding frame, as it was not used for these kind of diagrams.

2.3.1.5 Symbol and link properties

Each symbol or link has a property sheet allowing to enter all its features in a guided way.
The actual properties depend on the type of the symbol or link. It may be opened by
selecting a symbol or link and choose "Properties…" in the contextual menu; it will open
in the browser zone on the right side of the diagram editor window.

The basic property sheet for a symbol is the following:

• Text and outline color allows to select the color of the text in the symbol and its
outline.

• Background color allows to select the background color of the symbol.

• The symbol shortcut text may be used to specify an alternate text to display in the
symbol and to open its "real" text in an external editor. It may be used for sym-
bols with a very long text to avoid taking too much space in the diagram. If this
shortcut text is set, it will appear in the symbol instead of its actual text with a
specific presentation, depending on the option chosen in the diagram prefer-
ences:
Page 62 PragmaDev Studio V6.0

User Manual
• If the "Prefix for shortcut text instead of underlining" is not checked, it will
appear underlined:

• If the "Prefix for shortcut text instead of underlining" is checked, it will
appear with a prefix:

Double-clicking on the symbol shortcut text will open a text editor showing the
symbol’s actual text.

• The PR code suffix is only available for symbols declaring a SDL agent. This text
will be inserted after the agent declaration in exported PR files whenever the
actual agent is not defined. This is used to keep Geode-style external references
in PragmaDev Studio diagrams; it should usually be left empty.

• The symbol description is only used for documentation purposes.

• Spent time units and Payload units are values assigned to a symbol relevant for
performance analysis (see “Performance Analyzer” on page 405).

The default property dialog for a link only includes its color:

Please refer to the paragraphs describing the editors for examples of property sheets for
specific link types.

2.3.1.6 Moving symbols

Symbols in a diagram may be moved by using the mouse. Some diagrams also allow to
select a symbol or a group of symbols and to move them with the arrow keys:

• Pressing the arrow keys alone will move the symbol or group by one grid cell;

• Pressing the arrow keys with the control key depressed will move the symbol or
group by one point.

When possible, the symbol moves are constrained by the diagram logic:

• In MSC diagrams, lifelines can only be moved horizontally, and all the events
happening on them move with the lifeline. Also, condition, MSC references and
inline expression symbols can only be moved vertically so that the lifelines they
concern stay the same.

• In behavioral diagrams, moving a start, state or label symbol will move the entire
transition or block of transitions attached to it. The moves of transitions in a
PragmaDev Studio V6.0 Page 63

User Manual
state block are also constrained: they can only be moved horizontally to reorder
them.

NB: MSC or behavioral diagrams in legacy form actually allow to move any symbol in
every direction.

2.3.1.7 Modifying links

There are 2 kinds of links that can appear in diagrams:

• Straight links appear only in MSC diagrams: the link goes in a straight line from
its starting point to its ending point, the line possibly being horizontal or oblique.
These links cannot be directly edited: to modify the link, the end points have to
be moved and the link follows.

• Broken links are present in most other diagrams: they are made of several seg-
ments that can be either vertical or horizontal. There are no oblique lines in a
broken link. These also have end points that can be moved.

In the diagram editor, the end points of a link can be moved via the diamond-shaped
handles appearing when the link is selected:

These handles can be moved at another spot on the same symbol (e.g, moving a link end
along a lifeline in a MSC), or from one symbol to another.

If a link have segments, a segment may be moved via the handle that appears in the its
middle when the link is selected:

If needed, segments will be automatically created or deleted:

press on handle, then drag and release

press on handle, then drag and release
Page 64 PragmaDev Studio V6.0

User Manual
NB: in behavioral diagrams, the links are only a representation of the symbol sequence
and can neither be selected, nor modified.

2.3.1.8 Button and tool bars

The diagram editor window has several button bars and tool bars:

• The button bars are horizontal and are placed at the top of the window, just
above the tabs. They give access to all usual operations.

• The tool bars are vertical and are placed on the window’s left side. They allow to
insert elements in the diagram: symbols, links, or other items, depending on the
kind of diagram. An additional tool bar - usually the first one in the column -
allows to switch back to selection mode.

Insertion of symbols is usually done by clicking on the symbol insertion tool, then click-
ing on where the symbol should be created in the diagram zone. In behavioral diagrams,
though, when a symbol must be created after another one in a transition, the predecessor
symbol must be selected, and clicking on the symbol insertion button will create the new
symbol as a successor of the selected one automatically. Note that only valid symbol
types for successors of the selected one will be active.

Depending on the diagram type, a link insertion tool bar may also be present. This tool
bar will contain one button for each link type allowed in the diagram. Make sure you
select the right type for the symbols you want to link, as all symbols do not accept all
kinds of links between them.

The link insertion is made by clicking on the button corresponding to the link type you
want to insert, then pressing the mouse button over the first symbol and dragging to the
other symbol. If you want to manually indicate a path between the two symbols, shift-
click on the first symbol, then shift-click on each corner for the link. Holding the shift key
allows to restrict the move to horizontal or vertical lines. For example:

Other tool bars may be present, as for example in the MSC diagram where there is a spe-
cific tool bar for lifeline components: timer starts, time-out and ends, time constraints,
liefeline segments (method, suspended), action symbols, and so on.

The button and tool bars have a common aspect and behavior: By default, both have a

header looking this: . It is at the left for button bars and at the top for tool bars. By

click with
move with shift pressed

move with shift pressed

click click
move

shift pressed

click with
shift pressed
PragmaDev Studio V6.0 Page 65

User Manual
clicking on this header and dragging it away, the bar can be detached from its parent win-
dow and displayed in its own window.

Symbol tool bar for blocks

To put the tool bar back in its parent window, just close the tool bar window.

Note you can turn this feature off for tool bars if you don’t need it in PragmaDev Studio
preferences, “General” tab (see “General preferences” on page 34). Button bars will how-
ever always be detachable.

Notes:

• Some diagrams have a tiny lock icon looking like this: at the top of the tool
bars zone. This allows to turn on or off the “sticky” mode for symbol and link
insertion:
• The default behavior is to insert a single symbol or link: once one symbol or

link has been inserted, the editor returns to selection mode.
• Clicking once on the icon turns on the “sticky” mode: the editor will no more

return to selection mode after the first symbol or link insertion, and any num-
ber of symbols or links may be inserted in a row.

• To go back to "non-sticky" mode, press the lock icon again or select the selec-
tion tool.

• The legacy form of the MSC diagrams have specific tools that appear in the same
tool bar as the selection tool. See “Specific tools” on page 84.

2.3.1.9 Partitions

Large diagrams can be split into partitions. A partition is a set of pages that may contain
any number of symbols and links. Partitions may be added, deleted and printed via the
“Diagram” menu.

Navigating through partitions can be done by using the left-most toolbar in a diagram
window or with the partition browser, displayed at the right of the diagram. If several
browsers are available, the partition browser can be selected via the “ ” tab at the top
of the browsers:

Notes:

• A partition can only be deleted if it doesn’t contain any symbol or link.
Page 66 PragmaDev Studio V6.0

User Manual
• Partitions are not available in MSC diagrams.

2.3.1.10 Page setup

To ensure a WYSIWYG behavior, all partitions in a diagram include a page setup that will
be the one used when printing it. This page setup may be edited via the "Partition page
setup..." item in the "Diagram" menu in diagram editors. It will appear in the browser
zone on the right side of the diagram window:

The fields “Preset”, “Landscape”, and “Page size (cm)” are used to specify the paper size.
The “Margins (cm)” are automatically removed from the usable area for the partition
and when printing. If the "Add page footer" option is checked, a footer will be displayed
on each printed page, containing the name of the printed file and the page number. The
height of this footer is also removed from the usable area for the diagram. This usable
area is displayed with its dimensions in the bottom part.
PragmaDev Studio V6.0 Page 67

User Manual
The number of pages in MSC and behavioral diagrams will grow as needed as symbols
are added to them. For other kinds of diagrams, there is a fixed number of pages that has
to be defined via an additional menu:

The “Pages” field allows to specify the number of rows and columns of pages in the parti-
tion. Note that for diagrams showing this field, the new page setup will have to be explic-
itely applied in order to be taken into account: since the configured zone can be too small
to contain all the existing diagram contents, the change may fail, so it cannot be applied
automatically.

A default page setup can be configured in the project manager (menu "Studio", "Default
page setup..."). This default will be used for all elements in the project that cannot have
their own, for example textual files, or the project itself.

For diagram having a fixed preset page number, there is a shortcut to add a row or col-
umn of pages on every partition: along each side of the edge pages, the following buttons
appear:

These buttons will add a page column or row to the partition, respectively.

2.3.1.11 Publications

2.3.1.11.1 General presentation

It is possible to attach to any diagram a set of publications. A publication is a set of sym-
bols that will be exported as one or several external image file(s). These publications are
dynamic: the set of exported symbols is remembered and you can re-export them at any
time, or ask to have them exported automatically when you save the diagram (see para-
graph about diagram preferences in “Diagram preferences” on page 26).
Page 68 PragmaDev Studio V6.0

User Manual
These publications can be used by importing them in any word processing software that
has an "insert with link" or "import by reference" function. This function allows to insert
a file into the current document, but keeps a reference to the inserted file so that any
modification to the inserted file will be reflected automatically in the document. Since
PragmaDev Studio will update the publications after each diagram modification, it will
ensure that the contents of the document importing them will always be up to date.

Notes:

• When saving a diagram having publication, a dialog may appear asking whether
to update the publications. This behavior is controlled by the "Update publica-
tion" option in the diagram preferences (see “Diagram preferences” on page 26).

• On Windows or macOS, the selected symbols may also be directly copied to the
Windows clipboard by using the item "Copy as bitmap" in the "Edit" menu
(shortcut: Shift-Ctrl-C). This feature is not available on other Unix platforms.

• The publications may also be used in documents written using a markup lan-
guage like SGML, XML or HTML. For example, with HTML, images may simply
be imported via the tag without giving any dimension for the
image so that they will always be read from the image file.

• Some word processors (e.g. FrameMaker) remember the size you gave to any
imported graphics, even if these were imported by reference. PragmaDev Studio
publications still work with these, but you may end up with distorted graphics in
the final document if the size of a publications changes.

2.3.1.11.2 Creating a publication

There are currently 5 types of publications:

• Symbol publications will export a set of given symbols;

• Transition publications will export all symbols in a given transition, identified by
its state and message input or continuous signal;

• State publications will export all symbols in all transitions attached to a given
state symbol;

• Partition publication will export a whole partition;

• Diagram publications will export the whole diagram.
PragmaDev Studio V6.0 Page 69

User Manual
These publications are available via the entries "Export/publish …" in the "Export" menu
in diagram editors. All these entries open the following dialog:

The dialog allows to set:

• The type for the exported image(s): PNG, JPEG, EPS for Encapsulated Postscript
or CGM. Another type named ’Doc’ is also available. It should be used for publi-
cations that are only used in PragmaDev Studio documents. These kind of publi-
cations don’t actually export anything until the document they’re included in is
itself exported to a given format. For more information, see “Document editor”
on page 126.

• Whether the exported image(s) should be wrapped in a HTML file. This should
be used if the publication consists in several images or pages. Importing the
HTML file in a word processing software allows to import the whole set of
images in one operation, and to keep it up to date even if the grows or shrinks
afterwards. Note that this option should only be used for PNG or JPEG images,
as browsers usually can’t display Encapsulated Postscript or CGM images.

• The zoom factor applied before exporting.

• For partition and diagram publications, each exported image contain by default a
whole partition. Checking the "Split images into pages" option allows to export
an image per printed page in the diagram or partition.

• The file name for the exported image; please note a suffix can be added to this
name if the publication exports several images.

• Whether the file name for the publication should be remembered as an absolute
pathname, or relative to the diagram file name.
Page 70 PragmaDev Studio V6.0

User Manual
• Whether the exported images should be saved in a publication or not. If the
option is not checked, the export will be done one time, but not kept up to date
with the diagram. If the option is checked, the publication will be saved with the
name indicated in the text field.

2.3.1.11.3 Documenting a publication

The “Texts” tab allows to associate texts with the publication. Clicking on it changes the
dialog to show two text editors:

These editors are used to create or edit the styled texts that will automatically appear
before and after the publication image when included in a document. For more informa-
tion, see “Styled text editor” on page 140.

The list in the left part of the dialog contains the names for the already existing publica-
tions. Clicking on one of the names will display the attributes for the publication in the
dialog as in the "Manage publications" dialog. It is possible to go back to the current one
by clicking the ’<<New>>’ entry, which is always the first in the list. The actual export is
done by clicking ’Apply’ or ’OK’.
PragmaDev Studio V6.0 Page 71

User Manual
2.3.1.11.4 Managing publications

The last item in the "Export" menu is named "Manage publications..." and opens the
same dialog as above, except it won’t show a ’<<New>>’ entry:

The zone in the dialog’s left part lists the names for all publications in the current dia-
gram. Clicking on one of the names will display the publication attributes in the right
part, and allows to change some of them. The ’Show’ button will display the exported part
of the diagram; the ’Export’ button allows to explicitly update an existing publication.

2.3.1.11.5 Documentation hints

PragmaDev Studio allows to display directly in a diagram which parts of it are docu-
mented via publications and basic information about the publications themselves. This is
done via documentation hints, that are little icons appearing in the top right corner of
symbols. These hints are turned off by default; to turn them on, select "Show symbol doc-
Page 72 PragmaDev Studio V6.0

User Manual
umentation hints" in the "View" menu in the diagram editor. The hints are then shown in
the diagram editor as follows:

There are two types of documentation hints that can appear in the top right corner of
symbols, each with two variations:

• indicates that the symbol itself is exported;

• indicates that the symbol is exported with all the symbols that logically fol-
lows it. This symbol can only appear in behavioral diagrams. On a state symbol,
it means that all the transitions attached to this state symbols are exported; on
an input, continuous signal, start or connector in symbol, it means that the whole
transition after it is exported.

The two variations of each hint indicate wether there are texts recorded in the associated
publications:

• If the hint is white (or), the associated publication doesn’t contain any text;

• If the hint is grey (or), the associated publication has some text associated.

This allows to visually identify the publications needing documentation, for example in
the case of automatically generated publications (see “Full documentation generation”
on page 130). When documentation hints are displayed, clicking on one of the hints auto-
matically opens the publications dialog with the corresponding publication dialog (see
“Managing publications” on page 72).
PragmaDev Studio V6.0 Page 73

User Manual
2.3.2 SDL editor features

2.3.2.1 Creating and opening components

Some diagrams may contain symbols that are defined via another diagram. E.g., block
and system diagrams may contain process and block symbols that will be described via
process and block diagrams. These diagrams are displayed as children of the first dia-
gram in the project tree in the main window (see “Project” on page 10).

The definition diagrams for symbols are not added to the project as described in the
paragraph “Adding components to the system” on page 14, but as follows:

• Select the symbol for which you want to create the definition diagram;

• Select the item "Open definition..." in the contextual menu or the "Edit" menu or
double-click on any part of the symbol, except its text (hint: the cursor should be
an arrow, not a text caret);

• If the definition diagram for the selected symbol doesn’t exist, the project man-
ager will pop up and ask if you want to create it. If you answer "OK", the "Add
component" dialog described in “Adding components to the system” on page 14
will allow you to enter the features for the new node.

• The definition diagram will then appear in the current window if it’s reusable, or
in another one if it’s not.

You may open definition diagrams for the following symbol types:

• Block and process symbols in block or system diagrams, including instances of
block or process types;

• Block types and process types in block or system types diagrams;

• Process creation symbols in process or procedure diagrams;

• Procedure declarations and procedure call symbols;

• Composite state declarations or usage symbols;

• Service symbols in composite state diagrams;

• Declaration text boxes containing an "INHERITS" line in process types;

• MSC references in MSC and HMSC diagrams.

Automatic creation of definition diagrams is also supported for all these symbols, except
the process creation symbol, where the created process may be anywhere in the system.

Please note:

• Renaming or deleting a symbol having a definition diagram will rename or delete
the node in the project tree. The deletion will display a confirmation dialog, ask-
ing whether the diagram file should be deleted.

• The reverse is not true: deleting or renaming a node in the project manager will
not update the corresponding diagram. For example, if the name for a process
diagram node is changed in the project manager, trying to open this process
from its parent diagram will fail and display the dialog asking if the process dia-
gram must be created.
Page 74 PragmaDev Studio V6.0

User Manual
2.3.2.2 Automatic insertion

This feature allows to automatically create a symbol just below the current symbol with a
link between the two. It is available in process, process type, procedure, macro and
HMSC diagrams. It allows to easily create a vertical flow of symbols without having to
create all symbols and links manually.

The automatic insertion is done by double-clicking in legacy mode or by simple click in
normal mode on the symbol tool for the symbol you want to insert:

The automatic insertion will also choose automatically the "best" link type for linking the
two symbols:

Double-click(legacy) or click (normal) on "State" symbol;

Make sure it is selected
Manually inserted "Start" symbol

"State" symbol automatically inserted
below current symbol.

Double-click(legacy) or click (normal) on "Signal input" symbol;

"Signal input" symbol is automatically inserted
below current symbol.

Automatic insertion of a condition after a task block

Automatic insertion of a task block after a condition
PragmaDev Studio V6.0 Page 75

User Manual
The position of the auto-inserted symbol is also computed to avoid symbol overlap:

Auto-insertion is also provided for comment and text extension symbols where they are
supported. These symbols will be inserted at the right of the selected one:

2.3.2.3 Automatic transition selection in legacy mode

Sometimes, a symbol must be inserted in the middle of an existing transition. This can be
easily done in normal mode by selecting upper symbol et clicking in the wanted symbol
in the left toolbar. But in legacy mode, this case is not handled by the automatic insertion
described above, as this feature won’t move existing symbols. To ease such an insertion,
Page 76 PragmaDev Studio V6.0

User Manual
PragmaDev Studio allows to automatically select all symbols following a given one in a
transition. This is done via the "Edit" or contextual menus, item "Select to end":

This allows to move all symbols following a given one to make space for a new one
inserted before it.
PragmaDev Studio V6.0 Page 77

User Manual
Once this is done, the new symbol can be inserted in the middle of an existing link by
selecting the link and double-clicking on the symbol tool, as for auto-insertion below
symbols:

2.3.2.4 "View" / "Go to" menu and state / message browser

The process and process type editors include a feature allowing you to go directly to a
given signal input in a given state. This feature is available:

• Via the "Go to" sub-menu in the "View" menu. This sub-menu includes one sub-
menu per state defined in the process or process type. The sub-menu for a state
includes an item for each signal input defined for this state. Selecting one of
these items displays the corresponding symbol.

• Via the state / message browser that may appear in the right part of the editor
window. This browser shows each state in the process, followed by each input
message accepted in this state. Clicking on the message name displays the corre-
sponding symbol in the diagram.

2.3.2.5 State and connector usage

The "View" / "Go to" menu and the state / message browser show the entry states and
messages in transitions. PragmaDev Studio also allows to find where a given state is used
as a next state. This is also available for connectors: for a given "in" connector, it is possi-
ble to show where it is used as an "out" connector. This is done by selecting the state or
Page 78 PragmaDev Studio V6.0

User Manual
"in" connector symbol and selecting "Show usage…" in the "Edit" or contextual menu.
The following window appears, showing all symbols using the given state or connector:

Each line contains a diagram file name, a symbol identifier and the text for this symbol.
Double-clicking on a line (or selecting it and pressing the "Show" button) will open the
given diagram and display the symbol.

Note that for process classes, the symbols using the state or connector in the super-class
or all sub-classes are also displayed.

2.3.2.6 Diagram diff

PragmaDev Studio allows to make a graphical diff of two diagrams within a project, or of
a diagram within the project with an external diagram. This feature is available in the
diagram editor via the "Compute differences with diagram…" item in the "Diagram"
menu, or in the project manager in the "Make diff on diagram…" item in the "Element"
menu.

The diff is configured via the following dialog:

The first diagram is always taken in the current project. The second diagram can either
be chosen among the current project compatible diagrams in the drop-down menu, or
read from an external file by using the "Browse…" button. If the "Logical diff only"
option is checked, only logical differences between the two diagrams will be reported. If
this option is not checked, differences may be reported for elements that appear in both
diagrams if the symbol defining them have moved or has been resized.
PragmaDev Studio V6.0 Page 79

User Manual
The results for the diff is displayed as follows:

Both compared diagrams are opened and automatically placed side by side on the screen.
The different parts are identified by colors in the editors (NB: the colors set for symbols
are ignored when in diff mode).

The window below the editors allow to navigate through the differences. This window has
3 possibles layouts:

• The "Tiny" layout is the one shown above:

The only thing it allows is to navigate through the differences, to recompute the
diff, and to generate a PDF report for the diff (see below).

• The "Brief" layout is as follows:

The differences are grouped by transition. For each difference, only the number
of impacted elements is displayed. When navigating through differences, the
currently displayed one is identified by the green borders on each side. Clicking
on a difference will make it current and display the corresponding elements in
the diagrams.
Page 80 PragmaDev Studio V6.0

User Manual
• The "Detailed" layout is as follows:

The differences are grouped and shown as in the "Brief" layout, but a full descrip-
tion is given for each difference.

If one of the diagrams is modified while showing differences, the differences can be
recomputed using the "Recompute diff." button.

In all layouts, the “Generate PDF report…” button allows to generate a PDF document
displaying all differences between the two compared diagrams. Each page in the docu-
ment shows one difference, with the partition in the first diagram for the impacted ele-
ments on the page left side, and the partition in the second diagram on the page right
side. The impacted elements are highlighted using the same colors as in the graphical
diff. The description for the difference as displayed in the dialog is printed under the par-
titions. Here is an example of a page in a diff PDF report:
PragmaDev Studio V6.0 Page 81

User Manual
Note that it is possible that one of the sides does not appear in the report, in the case of
an addition or a removal of elements between the two diagrams.
Page 82 PragmaDev Studio V6.0

User Manual
2.3.3 MSC editor
This kind of editor is used for Message Sequence Charts. A MSC diagram describes a
sequence of events happening in a system, with a set of “lifelines” represented as vertical
lines, with symbols representing events attached to them.

There are 3 main kinds of MSC diagrams, which are all recognized by PragmaDev Studio:

• Basic MSCs represent a sequence of events that have actually happened during a
system execution. They will contain a lifeline for each process or block in the sys-
tem, and events will be message exchanges, message saves, timer starts, timer
resets, etc… They are typically obtained by using the MSC tracing functionality in
the simulator or the debugger (see “MSC trace” on page 193 and “MSC trace” on
page 315).

• Specification MSCs will contain the same kind of events, but can group them
within other symbols with attached semantics. For example, a sequence of events
can be isolated in another MSC diagram that will be referenced via a “MSC refer-
ence” symbol. Or a sequence of events can be enclosed in an “inline expression”,
allowing to specify this sequence is optional, or can be repeated several times.

• Property Sequence Charts are another kind of specification MSCs that are used
to describe “if/then” conditions: if a given sequence of events appear in a dia-
gram, then another sequence must appear behind it, or must not appear behind
it.

The whole format for MSCs - basic & specification - and PSCs is described in “MSC & PSC
reference guide” on page 363. Note that there is no specific editor for each kind of dia-
grams: all symbols are available in the editor, and the kind of diagram is recognized auto-
matically from what it contains.

The MSC editor itself is mainly the same as the editor for other SDL diagrams. However,
there are a few extra features that may be available depending on the type of MSC dia-
grams:

• Normal diagrams
These are the default diagrams created with PragmaDev Studio (v5.0 and above).

• Legacy diagrams
PragmaDev Studio allows editing of MSC diagrams created with previous ver-
sions of the tool (up to Real Time Developer Studio v4.6.1).

The features of the MSC editor and their availability are described in the following para-
graphs.
PragmaDev Studio V6.0 Page 83

User Manual
2.3.3.1 Specific tools

The selection tool in MSC diagrams allows to select symbols and links, just as in other
editors. It also allows to select a rectangular zones, that can be copied and pasted and
exported as image files:

Note that copying and pasting rectangular zones will work only for full “horizontal slices”
of the diagram: if a rectangular zone is selected, but does not span the full diagram width,
it will be automatically extended when copied or cut.

For example, if this zone is selected:

Selected
lifeline

Selected
message link Rectangular selection
Page 84 PragmaDev Studio V6.0

User Manual
copying it will automatically extend the zone to the full width of the diagram and display
a warning:
PragmaDev Studio V6.0 Page 85

User Manual
When pasting a rectangular zone, a horizontal insertion line will be displayed:
Page 86 PragmaDev Studio V6.0

User Manual
Clicking in the diagram while the insertion line is displayed will paste the copied zone at
this position:

Note that the copy will fail if any object has an end within the slice but the other end out-
side it, such as a lifeline starting before the slice and ending in it. The paste will fail if one
of the copied lifelines does not exist at the paste position.

Rectangular selections will not work in legacy diagrams. Those have 2 other tools in addi-
tion to the selection arrow:

• allows to select a time range within the diagram: all events occurring to all
lifelines between a given start time and a given end time may be selected, copied,
cut and/or pasted somewhere else in the diagram. While this tool is selected,
horizontal guidelines follow the mouse cursor to indicate precisely what will be
selected.
To select a time range, press the mouse button at the desired start time and drag
to the desired end time.
Once a time range has been copied or cut, pasting is done by clicking at the
desired insertion time. The paste operation also displays a horizontal guideline,
and may be cancelled by hitting the Esc key or by selecting the regular selection
tool.
PragmaDev Studio V6.0 Page 87

User Manual
Please note that it’s impossible to select a time range in a diagram and to paste it
in another.

• allows to insert empty space in the diagram: press the mouse button at the
desired insertion position and drag. When releasing the button, and if it’s possi-
ble, a space having the length between the start and end position will be inserted
in the diagram.

Note: these tools are not available in normal MSC diagrams. However:

• Selecting a range in these diagrams is straightforward, i.e., simply click-and-drag
the mouse to select the desired area;

• Inserting an empty space is not possible, but most insertions will actually push
down everything below the inserted item, making such a feature unnecessary.

2.3.3.2 Symbol creation

Creating symbols in MSC diagrams works mostly the same way as for other diagrams, as
described in “Button and tool bars” on page 65. Some of these tools have a special behav-
ior, mostly because of the nature of the MSC diagrams, which describes mostly a
sequence of events, and not individual symbols:

• When creating lifelines, only the horizontal position will be considered: lifelines
are always created starting from the top of the diagram and going to the bottom.
The only exception are for lifelines created dynamically by another one. For
these, an instance creation link must be created, staring from its creator. The
lifeline head will then go down to the position where it starts.

• The creation of a lost (resp. found) message is done by selecting the message cre-
ation tool and clicking on the right side (resp. left side) of the lifeline sending it
(resp. receiving it). For example:
Page 88 PragmaDev Studio V6.0

User Manual
Note that in legacy diagrams, lost and found messages have their own specific
symbol that must be created the usualy way, and a message link has to be created
between the lost (resp. found) message symbol and its sender (resp. receiver)
lifeline.

• For conditions, MSC references and inline expressions, they must be created
over the lifelines they impact. This is done simply by making them span these
lifelines, and optionally all the events that must be included in them:

Once created, this symbols can be moved up or down by dragging them, and
resized horizontally via the handles appearing on their sides when they are
PragmaDev Studio V6.0 Page 89

User Manual
selected, which is the way to make them impact other lifelines than the ones
setup at their creation:
Page 90 PragmaDev Studio V6.0

User Manual
Excluding from the symbol a lifeline included in it can be done via the circular
handles appearing at the connection points between the symbols and the life-
lines:
PragmaDev Studio V6.0 Page 91

User Manual
• For inline expressions, their kind can then be changed by selecting it in the box
appearing when the mouse cursor is over its text:

NB: in legacy diagrams, lifelines can be included or excluded from a condition or MSC
reference by selecting both and selecting “[Un]span lifeline(s)” in the contextual menu
(opened via a right-click). However, there is no visual indication about lifelines impacted
by a given symbol. The lifelines are always behind the symbol, whether they are impacted
or not.

2.3.3.3 Manipulating components in lifelines

To the difference of all other symbols, lifeline are composite symbols: they may include
several components like segments, timers or time constraints. They may also die before
the end of the diagram or survive it.
Page 92 PragmaDev Studio V6.0

User Manual
In normal diagrams these features are managed via the toolbar; in legacy diagrams they
are managed via the context menu (right-click on the lifeline):

The items (button for normal, menu item for legacy) carry out the following actions:

• or “Lifeline dies/survives”
Toggles the instance tail / instance stop ending for the lifeline:

• Remaining buttons or “Add to lifeline”
Adds to the lifeline a segment, an action symbol, a timer or a time constraint.
After selecting an item in the toolbar or sub-menu, press the mouse button at the
desired position in the lifeline, and drag to its end position (if applicable). To
cancel the insertion, hit the Esc key or select the selection tool .

Note: A Message save can be inserted via the button in normal diagrams or

 in legacy diagrams.

The “Delete” menu item in legacy diagrams has a special meaning if a lifeline item such
as a component, timer or time constraint is selected. In this case, only the item is deleted,
not the entire lifeline. A confirmation dialog will always specify what is deleted. It is
impossible to copy or cut a single item. To remind you of this, when a lifeline item is
selected, the whole lifeline will still appear as selected, but with white handles instead of
black ones.

Toolbar for normal diagrams Context menu for legacy diagrams
PragmaDev Studio V6.0 Page 93

User Manual
Note: In normal diagrams these actions are distinct, i.e., “Delete symbol” and “Delete
lifeline” depending on where the contextual menu was triggered.

2.3.3.4 MSC symbol and link properties

Sybmols and links in MSC diagrams mostly use the same property sheet as regular sym-
bols and links, as described in “Symbol and link properties” on page 62. The only addi-
tion is the identifiers for the model elements attached to the symbol or link:

These will be recorded automatically if the MSC diagram is a trace from a simulation, or
has been created via PragmaDev Tracer commands including the appropriate options
(see “Common options and arguments” on page 387). They can also be specified “manu-
ally” via the symbol or link properties.

PragmaDev Studio will open itself the model elements that it has recorded in traces. For
other ones, the command specified in the preferences will be used (see “Diagram prefer-
ences” on page 26).

2.3.3.5 Message parameters display

A specific sub-menu in the “View” menu controls the message parameter visibility:

• A visibility set to “Full” displays the full text for the message parameters as it is
recorded in the diagram file. The parameters for structured messages are then
displayed in the format described in paragraph “Sending SDL messages to the
running system” on page 334. This can make the diagram quite difficult to read,
as this format is quite complex;

• A visibility set to “Abbreviated” still displays completely parameters for non-
structured messages, but only displays the first level of parameter values in
structured parameters. An example of this visibility can be seen below;

• A visibility set to “None” hides all message parameters.
Page 94 PragmaDev Studio V6.0

User Manual
This visibility setting is stored with the diagram. Please note it is only possible to modify
the text for the message parameters if the visibility is set to “Full”.

When the visibility is set to “None” or “Abbreviated”, structured messages are indicated
by a “»” before their name. Their parameters may be displayed by clicking on the mes-
sage link: a panel then appears in the right part of the editor window displaying the
parameters as a tree. For example, for a message with the full text:
mParams(|{param1|=1.7|,param2|=0x80533D8|:|{len|=6|,buffer|=
0x804EEFA|:zz|}|})

the display with parameter visibility set to “Abbreviated” and the link selected is:

Other information is also displayed in the panel:

• The sender and receiver process;

• The states of the sender and receiver processes before and after they sent or
received the message;
PragmaDev Studio V6.0 Page 95

User Manual
• If model element identifiers are specified for the message send or the message
receive, their presence will also be notified in the panel:

Double-clicking on the “Sending element” or “Receiving element” tree node will
open the corresponding element, either with PragmaDev Studio if it’s an element
it can handle, or via the command to open external model element specified in
the preferences (see “Diagram preferences” on page 26).
Page 96 PragmaDev Studio V6.0

User Manual
2.3.3.6 Conformance checking: diagram diff & property match

PragmaDev Studio offers 3 levels of conformance checking:

• A MSC trace can be compared to another MSC trace, used as a reference. This
can typically be used for regression testing, the reference trace giving the wanted
behavior, and being compared to a newly obtained trace.
In this kind of comparison, all events in both diagrams are compared one by one
without any interpretation of any kind. This is mainly intended for trace compar-
isons, but it also works on other diagram kinds, as items normally only present in
specification or PSC diagrams are taken into account too, e.g inline expressions
or relative time constraints.

• A MSC trace can be compared to a specification diagram. For this comparison,
the semantics in the specification is taken into account. For example, if there is
an ‘opt’ inline expression in the specification containing a sequence of message
exchanges, the comparison will interpret it, and consider that the diagrams are
matching if the sequence is there, or if it is not there at all.
This allows to describe expected scenarios in a powerful way via specification
MSC diagrams and match the execution traces against them later.

• Occurrences of a property described in a PSC diagram can be found in a MSC
trace. In this case, the semantics are considered in the PSC diagram, as well as
the PSC specific elements. Note that this is different from a specification vs. trace
comparison, as properties describe a small part of a scenario that can actually
match several times in a trace. MSC specification diagrams describe a whole sce-
nario, and will be matched entirely on the trace.
Properties are a good and powerful way to specify wanted and unwanted behav-
ior in the designed system.

2.3.3.6.1 Basic MSC diff: trace vs. trace, spec. vs. spec., …

The basic MSC diff just compare two diagrams events by events and reports the found
differences. This kind of comparison is launched by selecting ‘Compare diagrams…’ in
PragmaDev Studio V6.0 Page 97

User Manual
the ‘Diagram’ menu, or by clicking the button in the toolbar. The following dialog then
appears:

Selecting the basic MSC diff is done by selecting the corresponding value in the ‘Diff type’
field. The name for first MSC will be automatically set to the name of the currently dis-
played diagram. For the MSC to compare, it can be either selected in the list attached to
the ‘Second MSC’ field, or loaded from a file via its ‘Browse…’ button. Once selected, the
arrow in the right part of the dialog allows to exchange the two MSCs if the comparison
must be done the opposite way.

PragmaDev Studio allows to exclude some elements from the comparison based on their
type. This is done by checking the ‘Filter activated’ option:

All the shown element types can be included or excluded from the comparison. The ‘All’
button will check all the boxes if any of them is unchecked, and uncheck them if all are
checked. The ‘Consider data’ option allows to compare messages without looking at their
actual parameters. If the option is unchecked, only the names of the message are com-
pared and nothing else, even if it is present.
Page 98 PragmaDev Studio V6.0

User Manual
The option ‘Display full results’ at the bottom of the dialog allows to display only a sum-
mary of the comparison results instead of the full set of differences. To display the sum-
mary, just uncheck the box.

If this option is checked and after validating the dialog, PragmaDev Studio puts each dia-
gram in its own window and displays them side by side. A dialog also appears at the bot-
tom of the screen, allowing to browse through the found differences:

A summary of the differences is displayed at the top. Each difference will be highlighted
in red in the diagram displayed on the left, and in blue in the diagram displayed on the
right. The text in the dialog gives a short description of the identified difference. The
arrows allow to browse through the differences. The option ‘Highlight’ allows to highlight
all differences in both diagrams to get a quick view of what differs without having to
browse through all the differences.
PragmaDev Studio V6.0 Page 99

User Manual
2.3.3.6.2 Spec vs. trace comparison

Comparing a specification diagram to an actual trace is done the same way as for a basic
MSC diff, except the diff type has to be set to ‘Spec. vs. trace’ in the dialog:

Note also that the specification diagram must be the one specified in the field ‘Spec MSC’
in the dialog, which is always the first one. If needed, the diagrams can be swapped by
using the arrow button on the dialog’s right side. The same filters are provided as for a
basic MSC diff.
Page 100 PragmaDev Studio V6.0

User Manual
Once validated, the found differences are displayed in the same way as for a basic MSC
diff; only the way to perform the comparison changes, as semantics in the specification is
taken into account where it wouldn’t be in a basic MSC diff:

2.3.3.6.3 Property match

Matching a PSC diagram against a MSC trace is done the same way as for the other kinds
of comparisons, except the diff type has to be set to ‘Property match’:

Note that the PSC diagram has to be the one specified in the ‘Prop. MSC’ field, which is
always the first one. If needed, the diagrams can be swapped with the arrow button on
the right side of the dialog. The same comparison options are provided as for basic MSC
PragmaDev Studio V6.0 Page 101

User Manual
and specification vs. trace comparisons, but they are less significant here, as a property
diagram is always partial.

Once validated, the property matches and violations are displayed in a similar way to the
display of differences in the other kinds of comparisons. Mostly the colors and the differ-
ence descriptions differ: each matched element in the property or the MSC diagram will
be displayed as green, and each unmatched one as red. The difference description will be:

• ‘Property match’ if the property matches:
Page 102 PragmaDev Studio V6.0

User Manual
• ‘Violated property!’ if the property does not match:

• ‘Possibly violated property’ in some very specific cases where it is impossible to
tell if the property is matched or not. A typical example where this case happens
is the following:

If the trace contains a message m1 from A to B, followed neither by a message m2
from A to B, nor by a message m4 from B to A, there’s no way to know which part
of the alternative should have matched. But if it was the first part, the message m2
is not there, so the property doesn’t apply, and if it was the second one, the
required message m4 is not there either, so the property is violated. In this case, a
possible property violation will be reported.
PragmaDev Studio V6.0 Page 103

User Manual
Note that a property is not necessarily violated if something doesn’t match in it. Typi-
cally, an unmatched fail message means the property is matched.

2.3.3.6.4 Legacy diagram diff

The comparison of legacy MSC diagrams is done mostly the same way as for other dia-
grams, but the results are displayed in quite a different way.

To run a comparison on two legacy MSC diagrams, use the “Compare with other dia-
gram…” entry in the editor’s “Diagram” menu. The following dialog appears:

Here the two MSC diagrams can be selected from the current project or from the file sys-
tem. Filters can also be applied on the result of the MSC comparison.

Once validated, the result of the comparison will appear in a new diagram, where the dif-
ferences are marked with different colors. The resulting MSC identifies the lifelines (pro-
cesses) between the two diagrams by their name and if necessary (if there are several
processes with the same name), by the sequence of their events. If two lifelines in the two
diagrams represent the same process but do not have the same name, they will not
match.
Page 104 PragmaDev Studio V6.0

User Manual
For example, if the comparison is made on the two following diagrams:

First MSC diagram in comparison
PragmaDev Studio V6.0 Page 105

User Manual
Second MSC diagram in comparison

The differences are quite clear:

• The slave process takes the semaphore sem in the first diagram, but not in the
second.

• The processes master and sonproc exchange messages stillAlive, ack and
die in the second diagram, but not in the first.

• Process sonproc dies in the second diagram, but not in the first.
Page 106 PragmaDev Studio V6.0

User Manual
The results of the comparison will be display as follows:

The differences are identified by colors: in the comparison results diagram, the events
specific to the first diagram are represented in red, and the events specific to the second
diagram are represented in blue.
PragmaDev Studio V6.0 Page 107

User Manual
2.3.3.7 Filtering

Large MSCs might get very difficult to read; In that case the MSC filtering feature can be
used to remove useless information from the diagram.

This functionality is accessed via the “Diagram” menu:

• For normal diagrams use the sub-menu “Filter out”:

Any selected filter will be applied directly to the current diagram.

• For legacy diagrams use the menu item “Filter diagram...”; the following window
will pop-up:

A new MSC diagram will be created (and added to the project) based on the orig-
inal, but with the selected events filtered out.
Note: The resulting MSC might not have the same layout as the original MSC.
This is because the original MSC is translated to a list of a MSC events that is fil-
tered. The resulting MSC is built out of the sequence of left events. So for exam-
ple the vertical space between events is always the same.

2.3.3.8 Lifeline collapsing and expanding

As filtering allows to hide specific information, it is sometimes needed to hide what’s
happening between specific lifelines. For example, several instances can be tasks in the
Page 108 PragmaDev Studio V6.0

User Manual
same entity, and it can be practical to see what’s happening to this entity rather than to
each individual instance.

PragmaDev Tracer allows this kind of operation via lifeline collapsing: several lifelines
can be collapsed in a single one, all events happening on these lifelines disappearing, as
well as the events happening between the collapsed lifelines. An example of collapsing is
given in paragraph “Collapsed lifelines” on page 374. To get the second diagram, the life-
lines B and C must be selected, then collapsed via the ‘Collapse lifelines’ operation in the
contextual menu opened by a right click.

2.3.3.9 MSC PR import

It is possible to import MSCs stored in PR (Phrasal Representation) textual format as
defined in ITU-T Z.120 recommendation. The MSC must be event oriented (as opposed
to instance oriented) and the CIF information if any will be ignored.

A Z.120 MSC PR example
PragmaDev Studio V6.0 Page 109

User Manual
In the project manager, go to the “Project / Import MSC-PR file...” menu and select the
file to import.
Page 110 PragmaDev Studio V6.0

User Manual
The resulting MSC will be added to the project:

Imported MSC
PragmaDev Studio V6.0 Page 111

User Manual
2.3.3.10 MSC PR export

It is possible to export MSCs to an event oriented Z.120 MSC PR file. In the MSC diagram
to export, go to the “Diagram / Export as PR...” menu.

The results of the export is as follows:

Export MSC PR example

2.3.3.11 Open Trace Format (OTF) support

Traces in OTF support can be viewed in PragmaDev Studio in the MSC editor. To add an
OTF trace right click on the project and Add a child element... / Requirements to the
project. The following window will pop up:
Page 112 PragmaDev Studio V6.0

User Manual
This format is read-only: the traces cannot be modified, and the diagram cannot be saved
back in OTF format.

As OTF traces are often very low-level and include a very big number of events, they are
often truncated when opening them to avoid displaying a huge diagram that would be
very difficult to work with. If they are, a warning is displayed in the editor’s notification
zone:
PragmaDev Studio V6.0 Page 113

User Manual
The range of displayed events can be changed by using the entries of the “Event range”
sub-menu in the “View” menu:

• “Next event range” will move the “event window” forward, displaying the same
amount of events, but starting just after the last event that was previously dis-
played.

• “Previous event range” will move the “event window” backward, displaying the
same amount of events, but ending just before the first event that was previously
displayed.

• “Custom event range…” will display the following dialog:

Note that displaying a big number of events is highly likely to have an impact on
the performance of the editor.
Page 114 PragmaDev Studio V6.0

User Manual
2.3.4 UML diagrams

2.3.4.1 Symbol properties

For symbols that may show attributes and/or operations (class symbols in class dia-
grams, nodes and components in deployment diagram), it is possible to edit these
attributes and operations in a guided and structured way, without any need to remember
the syntax for the texts themselves. This can be done by using the “Structured edit…”
button in the symbol’s properties:
PragmaDev Studio V6.0 Page 115

User Manual
The symbol’s texts can then be edited in the following dialog:

This property sheet is divided into 3 or 4 tabs depending on the selected symbol. These
tabs are described in the following paragraphs.

2.3.4.1.1 “Texts” tab

This tab is shown above. It contains the standard symbol colors and the textual represen-
tations for all texts associated to the selected symbol: class header, attributes and opera-
tions. The operations do not appear for nodes or components since they are meaningless
for these symbols. Two check-boxes are also available, allowing to hide the attribute and
operation parts in the displayed symbol respectively.
Page 116 PragmaDev Studio V6.0

User Manual
2.3.4.1.2 “Class” tab

This tab is the second one in the dialog:

It contains the class’s stereotype, package name, name, and list of properties. All these
will be included in the class header as:

<<stereotype>> package-name::class-name {property-name=property-value}

Properties can be added with the button at the bottom left; they can be removed with

the button appearing next to them:
PragmaDev Studio V6.0 Page 117

User Manual
2.3.4.1.3 “Attributes” tab

This tab is the third in the dialog:

The list in the left part allows to manage the attributes. Attributes may be created/

deleted via the buttons or re-ordered via .

The fields in the right part allows to modify the attribute selected in the list. The text for
the attribute will be:

visibility name[multiplicity] : type = default-value {property-string}

The visibility is rendered as the standard UML character (’+’ for public, ’#’ for protected,
and ’-’ for private). The multiplicity, type, default value and property string are included
only if they are not empty.

Any modified attribute will be automatically updated in the attributes text in the “Text”
tab.
Page 118 PragmaDev Studio V6.0

User Manual
2.3.4.1.4 “Operations” tab

This tab is the fourth in the dialog:

This tab is not available for nodes or components (in deployment diagram), as these do
not have any operations.

The list in the left part allow to manage the operations. The buttons are the same as for
the attributes (see above).

The fields in the right part allow to modify the operation selected in the list. The text for
the operation will be:

visibility name(parameters) : return-type {property-string}

where parameters is a comma-separated list of parameters formatted as follows:

direction name : type = default-value

The visibility is rendered as the standard UML character (’+’ for public, ’#’ for protected,
and ’-’ for private). The return type and property string for the operation and the type
and default value for the parameters are included only if they are not empty.

Constructors and destructor are defined with the UML stereotypes: <<create>> and
<<delete>>.

Any modified operation will be automatically updated in the operations text in the “Text”
tab.
PragmaDev Studio V6.0 Page 119

User Manual
2.3.4.2 Link properties

Specific properties for association, aggregation and composition links may be modified
via their Additional properties... These can be accessed (with the link selected) via “Prop-
erties...” in the contextual menu or “Edit” menu:

The Additional properties... window will pop-up:

The Reverse button will make the link read “from SYMB3 to SYMB2” (instead of “SYMB2 to
SYMB3”).

For both class symbols at the ends of the link, the dialog allows to modify the navigabil-
ity. The rules for the navigability are those defined by UML:

• If both navigation options are selected, each class will have an attribute repre-
senting the association.

• If a single navigation option is selected, only the class symbol “from” which the
navigation is enabled will have an attribute for the association.

2.3.4.3 Access to generated C++ files

Double-clicking on a class symbol in a class diagram opens the generated C++ file for the
class if there is one. Please note the file is not generated if it does not yet exist.
Page 120 PragmaDev Studio V6.0

User Manual
2.4 - Text Editor
The PragmaDev Studio Text Editor is the window where all types of text files may be
edited. The window is the same for all type of files. It may have extra features depending
on the type of the displayed file.

The Text Editor has predefined syntax highlighting for C/C++, SDL-PR (declarations
only), SDL-RT declarations, ASN.1, and TTCN-3. A browser at its right side also lists all
the functions, classes and methods in the file, and allows to jump to any of these by click-
ing on their name. This browser is available for C/C++ and TTCN-3:

Syntax highlighting and function browsing is also available for other languages such as
Python, Common Lisp, XML DTDs and CORBA IDL. This support may be partial only.
PragmaDev Studio V6.0 Page 121

User Manual
The current line and column numbers are indicated in the zone at the bottom of the edi-
tor. Line numbers can also be displayed on the left side of the window by selecting the
“Line numbers” entry in the “Preferences” menu:
Page 122 PragmaDev Studio V6.0

User Manual
Between the line numbers and the text itself is the zone for code-folding buttons. These
appear on the first line of each block of code. Clicking on this button allows to “fold” the
block:

Clicking again on the button allows to unfold a previously folded block.

Code-folding is available for C/C++, TTCN-3, ASN.1 and Python files.

2.4.1 MSC generation from TTCN-3 source file.
PragmaDev Studio gives the possibility to generate an MSC view of a TTCN-3 module. An
MSC diagram will be generated for each testcase and function of this module. To get this

MSC view, click on the View graphical representation button . A dialog will open,
looking like follows:

This dialog allows to select the functions and testcases in the current TTCN module that
will be represented as MSC diagrams. By default, all are selected.
PragmaDev Studio V6.0 Page 123

User Manual
Once the dialog is validated, a MSC diagram editor will appear for each selected function
or testcase, containing its MSC representation. Note that these diagrams are temporary:
they are generated in temporary files which will be deleted as soon as the editor is closed.
To keep the MSC representation, it is possible to use “Save as…” in the “Diagram” menu.

2.4.2 SDL generation for comments in a C source file.
PragmaDev Studio also gives the possibility to generate SDL diagrams from specific com-
ments in a C source file. To generate an SDL representation of a C file, click on the View

graphical representation button when a C source file is open in the editor. The C
macros are described in the PragmaDev Studio Reference Manual.
Page 124 PragmaDev Studio V6.0

User Manual
2.5 - Documentation generation
PragmaDev Studio offers three ways to document your project: export whole or a part of
the project as an html document, export the publications as graphics, organize the publi-
cation in a full document orgainized in chapters.

2.5.1 Exporting elements as HTML files
There are two ways of exporting elements as HTML files:

• Exporting a single element

• Exporting the whole project

These two ways are described in the paragraphs below.

2.5.1.1 Exporting a single element

Exporting an element is done via the "Save element as HTML..." item in the "Element"
menu. An element must be selected in the project tree.

When exporting, all elements referenced by the exported one are also recursively
exported, and links are created for each referenced element. For example, if the exported
element is a block diagram and includes a process symbol, the element describing this
process is also exported. In the HTML file for the block, a link will be created on the pro-
cess symbol which will open the HTML file for the process.

The destination directory for all the HTML files is asked to the user.

2.5.1.2 Exporting the whole project

Exporting the whole project is done via the "Export as HTML..." item in the "File" menu.
This kind of export does the same thing than exporting all elements in the project, but
also generates an HTML file for the whole project. This file includes two frames: the one
at left hand contains a representation of the project tree and the one at right hand may
contain any HTML file for any element in the project. Clicking on a node in the left frame
opens the corresponding element in the right one.

The file name for the HTML file for the project is asked to the user. All other HTML files
will be generated in the same directory than this file. If a file in this directory has the
name of a generated file, it will be silently replaced.

2.5.2 Export all the publications in a whole project
PragmaDev Studio allows to export diagrams or parts of diagrams as publications to be
able to include them in external documentation. Publications are described in “Publica-
tions” on page 68.

It is possible to export all publications in all diagrams in a whole project. This allows to
be sure that everything is up to date in the external documentation. Please note that this
function will open all diagrams in the project, even if they have no publications at all. So
it may be quite long for large projects.
PragmaDev Studio V6.0 Page 125

User Manual
2.5.3 Document editor

2.5.3.1 General presentation

PragmaDev Studio’s way of handling documents is a bit different from what one can find
in word processors. In a word processor, a document is just a set of paragraphs, usually
having a style - named or not -, and each paragraph typically contains ranges of charac-
ters, optionally styled, and/or images. There is sometimes a notion of document struc-
ture in terms of chapters, containing sub-chapters, containing sections, and so on, but
this structure is deduced from the paragraphs.

On the contrary, PragmaDev Studio mainly uses the structure: a document is a set of
chapters, sub-chapters, and so on, and the styles applied to the paragraphs are deduced
from the structure. More precisely:

• A document is defined as a tree of sections. The top-level sections are the chap-
ters; the ones under the chapters are the sub-chapters, and so on…

• Each section also has a section header, which is the text and images that will
appear in the section before its sub-sections.

A section header is composed of header items, which can be:

• Text items: these items just contain styled text.

• Publication items: these items are references to publications in diagrams, as
described in “Publications” on page 68. Such a header item will automatically
include in the document:
• The text before the publication if any;
• The part of the diagram that is exported via the publication;
• The text after the publication if any.

• Table items: these items contains a table, each of the table cells being a text item.

• External picture items: these items reference an image in a PNG file.

• External file items: these items just include the contents of an external file in the
document, all text having a given style.

1. INTRODUCTION

1.1. Object of the document

This document is about …

1.2. Scope

This document applies to …

2. USE CASES

2.1. Diagrams

…

Section with level 1

Section with level 2

Header for section 1.1
Section with level 2
Header for section 1.1
Section with level 1

Section with level 3

…

Page 126 PragmaDev Studio V6.0

User Manual
This allows to document the diagrams “on the fly” when the need arises by creating a
publication and entering the texts before and after it. When the final document is writ-
ten, it will just gather the parts already documented via publications, maybe with some
additional explanation texts in text, external picture or table header items.

A fully documented system is available in the example files delivered with PragmaDev
Studio. It can be found under PragmaDev Studio installation directory, under examples/
Specifier/AccessControl.

Here is a typical view of the document editor:

The left part of the window shows the section tree for the document, and the right part
shows a text field allowing to change the selected section title and the list of its header
items.

Sections can be added or removed from the section tree by using the “Section” menu, or
the contextual menu in the section tree (right-click). The section tree can be rearranged
via drag and drop.

Existing header items may be rearranged via the arrow buttons in the

right-bottom corner of the window, or deleted via the button. Header items can also
be copied, cut and pasted from section to section, or even from document to document.
PragmaDev Studio V6.0 Page 127

User Manual
New header items can be added by selecting “New header item…” in the “Section” menu,
or by clicking the button in the lower part of the window. This opens the following
dialog:

The upper zone allows to choose the type of header item to insert - text, publication,
table, external image or external text file - and all required information for the header
item:

• The parent diagram and the publication name for publication items. Note that
only publications for currently opened diagrams are shown in the dialog, so the
parent diagram for the publication to insert has to be opened before trying to add
the header item.
Page 128 PragmaDev Studio V6.0

User Manual
• For table items, either the initial number of rows, or a CSV file with its format
information, the style to give to cells - normal and header -, and the number of
rows in the CSV file to use as header rows.

• For external picture items, the file name for the referenced PNG image file and
whether its path should be remembered as an absolute or a relative path from
the document file’s parent directory.

• For external text file items, the name of the file to include and the paragraph
style to use for its text.

The lower zone in the dialog allows to specify where the new item will appear.

Once created, a text header item will appear like this:

The text in the item is the beginning of the text actually entered in the item.

Publication header items will appear like this:

The first line of text is the diagram file name, and the second one is the publication name.

Table items will appear like this:

The first line includes the first table header line if any and the second one gives the table
size.

External picture items will appear like this:

The first line is the full path of the referenced PNG file and the second line indicates if the
reference is absolute or relative.

From the document editor window, it is also possible to export a document directly to a
PDF file, or to a format that a word processor can handle. The formats available today
are:

• RTF, which can be used with all the major word processors;

• OpenDocument format, which is an ISO-standard for text documents, mainly
used by OpenOffice.org and other open-source word processors;

• SGML; this format is for advanced users and won’t be described further in this
document. Please refer to the corresponding section in the reference manual for
further details.
PragmaDev Studio V6.0 Page 129

User Manual
To be able to export a document in these formats, PragmaDev Studio needs to attach pre-
sentation attributes to the texts in the document. This is done via defining styles and set-
ting up options for the documentation, as described in the sections “Documentation
styles & options” on page 131.

2.5.3.2 Full documentation generation

Sometimes, a project cannot be documented “on the fly”, or just has not been. To be able
to document all diagrams in a project more easily, PragmaDev Studio allows to automat-
ically generate a document from a project. This feature will create all the necessary publi-
cations in all the diagrams in the project and gather them in a document with a standard
structure.

To create a document automatically, just create a new empty document, open it, then
select “Auto-generate from project…” in the “Document” menu. The following dialog is
displayed:

The options in the dialog are the following:

• Create publications in behavior diagrams
Allows to specify the level at which the publications are created in behavioral dia-
grams such as processes or procedures. The available choices are:
• For each partition

A publication will be created for each partition in the diagram, exporting all its
symbols;

• For each state symbol
A publication will be created for each state symbol in the diagram, exporting
all the transitions connecting to it;

• For each transition
A publication will be created for each input or continuous signal symbol in the
diagram, exporting the transition attached to it.

• Paragraph styles for files
Allows to specify if the declaration files in packages should be included in the
generated document or not, and if they should, which paragraph style to set for
their text. The available choices for this options are None (don’t import files) to
prevent declaration files from being document, and all the available paragraph
styles.

After validating the diagram, publications are automatically created in all diagrams in
the project, the section tree is created in the document and publication items are created
in all section headers. The structure will be created from the project tree, in the same
order, but only including elements that actually have some contents. For example, if a
package only contains C files, that are not documented, there will be no section for this
package in the generated document. If one is needed, it can be added afterwards.
Page 130 PragmaDev Studio V6.0

User Manual
Note that publications are not always recreated by the generation process. If there is an
existing publication that exports exactly the same set of symbols than the one that should
be created, the document generation does not create anything and picks up the existing
one. This allows to use the document generation of partially documented projects: If
existing publications have attached texts before or after the exported symbols, these are
kept and will end up in the final document. The diagrams can be reviewed after the gen-
eration to add missing texts, for example by using the documentation hints as described
in section “Documentation hints” on page 72.

2.5.3.3 Documentation styles & options

Documentation styles & options are configured at project level by selecting the entry
‘Documentation styles & options’ in the ‘Project’ menu in the project manager. It allows
to define all the styles that can be used in documents, setup how they will appear on
screen and in all available export formats, and to define the general options for docu-
mentation exports. This is done in the following dialog:

The two tabs in the dialog allow to define the styles and export options. The styles tab
displays a list of existing styles on the left side, with buttons allowing to create, delete or
rename a style. There are 2 kinds of styles:

• Paragraph styles are identified by a in front of their names; they define the
appearance for whole paragraphs. This concept is the same as the usual styles
found in word processors. Typical options for paragraphs include the font for the
paragraph text, its margins, its alignment, and so on…
Paragraph styles are described in detail in subsection “Paragraph styles” on
page 137.
PragmaDev Studio V6.0 Page 131

User Manual
• Character styles are identified by a in front of their names; they define the
appearance for range of characters within paragraphs. Options for these styles
are just a font (with its family, its size and its style), a color, and whether the text
with this style should appear in the document index.
Character styles are described in detail in subsection “Character styles” on
page 136.

Projects created with older version of PragmaDev Studio may have missing styles, espe-
cially for exports. In this case, a warning will be displayed when the project is opened
saying that the missing styles have been created and should be reviewed. It is advised to
do so, as the values for the options will be default values and some styles might even end
up being invalid. See the description of indicators in “Style definitions” on page 133 for a
way to spot quickly which options can cause issues.

Also note that styles for the OpenDocument export format are actually not used when
exporting. Today, this kind of export is based on a document template, from which the
styles are imported. So you just have to make sure that all character and paragraph styles
in PragmaDev Studio also exist in the template document with the same name.

The documentation options appear like follows:

• The option ‘Min. image reduction factor’ defines how images will be sized when
included in the exported document. The default is to adapt the image size to the
width and/or height of the page. This option allows to specify that images should
always be reduced at least by this factor before doing any other adaptation.

• Selecting the ‘Style name in indexed character styles’ checkbox allows to indi-
cate that index entries must appear as ‘<text> (<character style name>)’ in the
generated index. The default is to include only the text without any prefix.
For example, if the text “engine” appears anywhere with the character style
“External element” defined as an indexed style (cf. “Character styles” on page 136
for this option), it will appear in the generated index for the document as:
• “engine” if the option ‘Style name in indexed character styles’ is not checked;
Page 132 PragmaDev Studio V6.0

User Manual
• “engine (External element)” if the option ‘Style name in indexed character
styles’ is checked.

• The options in the ‘Indexed concepts’ group define which elements will appear
automatically in the index. For example, if ‘Packages’ is checked, all package
names will appear in the index, wherever they are found: in “USE” clauses, in
UML class diagrams, and so on.

• The ‘Concept name in indexed concepts’ checkbox allows to include the concept
name in all generated index entries specified in the ‘Indexed concepts’. For
example, a package named ‘Classes’ would appear as “Classes (package)” in the
index with this option checked. The default is to use only “Classes” as the index
entry text.

2.5.3.3.1 Style definitions

The ‘Documentation styles & options’ dialog allows to setup all options that will be used
to display the various styles as well as when they will be exported to any of the supported
document formats.

To indicate the scope of the changes, a selector named ‘Scope of changes’ is always
present on the top of the options for the style. It can have the following values:

• ‘Display & all exports’: with this value, everything configured in the dialog will
impact how the style is displayed and how it will be exported in all export for-
mats. For example, if the font for the style is set to ‘Times’, this font will be used
when displaying the text and when exporting in OpenDocument, RTF, HTML,
PDF and SGML formats.
This is the easiest and fastest way to define options for the documents, as every
option needs to be setup only once. Be aware though that it can have unwanted
side-effects: some option values are not available in all export formats, and hav-
ing the same value for all of them is sometimes simply impossible. So once
option values have been defined for everything, they may have to be adjusted for
specific export formats.
Indicators in front of option values will help you figure out which ones need
adjusting. See below.

• ‘Display’: with this value, everything configured in the dialog will only impact
how the style is displayed. Note that some options are either meaningless or not
available when displaying text, so they will be greyed out if this scope is selected.

• ‘<export format> export’: with one of these values, everything configured in the
dialog will only impact the style used when exporting a document to the specified
format. Available export formats are OpenDocument, RTF, HTML, PDF and
SGML.

After configuration, indicators may appear in front of option values in special conditions:

• If the option does not have the same value for all styles, it will have an “informa-
tion”indicator in front of it:
PragmaDev Studio V6.0 Page 133

User Manual
Hovering over the indicator with the mouse pointer will display a tooltip explain-
ing why it is present:

• If the value for this option for one of the styles might be invalid, it will have a
“warning” indicator in front of it:

Again, a tooltip displayed when hovering over the indicator will explain its pres-
ence:

The problem will typically happen for the text font, as some export styles have a
limited set of fonts that will always be available, when any other one will depend
on what’s installed on the system where the document will be opened.

• If the value for this option for one of the styles is invalid, it will have an “error”
indicator in front of it:

Again, the tooltip will give the reason for the error:

This problem occurs for styles having only a defined set of fonts that are avail-
able, and no other will work.
Page 134 PragmaDev Studio V6.0

User Manual
Since most issues happen with the text font, a special selector for fonts is used for docu-
mentation options. It looks like follows:

In addition to all the fonts that could be identified on the current system and that will
appear in the “Standard” tab, there is a specific set of fonts in the “Preferred” tab that will
list the fonts that are guaranteed to work for this export styles, whether they actually are
installed on the current system or not. For example, for the PDF export style, the “Pre-
ferred” tab looks like this:

This indicates that only the “Courier”, “Helvetica” and “Times” fonts will always work
when exporting PDF.
PragmaDev Studio V6.0 Page 135

User Manual
2.5.3.3.2 Character styles

Character styles appear as follows in the ‘Documentation styles & options’ dialog:

The “Scope of changes” option is explained in “Style definitions” on page 133. The other
options are:

• ‘Font’: the font for the text with its size and style (normal, italic, bold, etc…).
Clicking on the button containing the font name will open a font selector, which
is the one described in “Style definitions” on page 133.

• ‘Color’: color for the text. Clicking on the color will open a color selector.

• ‘Indexed’: if checked, texts with this style will automatically appear in the index
in the generated document.

This last option is actually the only way to define “custom” index entries today. Note that
this may lead to duplicate existing character styles to be able to define the index. For
example, a character style can be defined for bits of code in a document, with typically a
fixed-width font. If class, attribute or operation names are included in the text, and if the
index should reference these names, it is possible to duplicate the code style to a style
named indexed_code for example, and to use indexed_code for all these names.
Page 136 PragmaDev Studio V6.0

User Manual
2.5.3.3.3 Paragraph styles

Paragraph styles appear as follows in the ‘Documentation styles & options’ dialog:

The ‘Scope of changes’ options is described in “Style definitions” on page 133. The other
options are displayed in groups:

• ‘General options’: these options apply to the style as a whole and are not specific
to the display or any export format. They will only be modifiable if the selected
scope is “Display & all exports”.
• ‘Style type’: can be “Normal”, “Heading”, “List header” or “List para.”.

A “Normal” style is for paragraphs within the text with no particular
attributes. They are typically used for the body of the text, or in some special
styles such as paragraphs containing code.
A “Heading” style is for section headers. They usually include a section num-
ber. Note that these paragraphs do not appear in the document editor, as the
sections are only displayed in the section tree with no particular style.
A “List header” style is for bulleted or enumerated lists. These paragraphs are
the first one in list items and include the bullet or number.
A “List para.” style is for paragraph within a bulleted or enumerated list, but
that are continuation of the previous item. They usually have the same mar-
gins as the list header paragraph, but do not include a bullet or number.
PragmaDev Studio V6.0 Page 137

User Manual
• ‘Level’ is only available for ‘Heading’, ‘List header’ or ‘List para.’ styles. It
gives the nesting level of the section or list.

• ‘Text options’: these options control the appearence of the text as well as the text
appearing in th header if any (secion header or list bullet or number).
• ‘Font’: the font for the paragraph text, with its size and style (normal, italic,

bold, etc…). Clicking on the button containing the font name will open a font
selector, which is the one described in “Style definitions” on page 133.

• ‘Color’: the color for the text. Clicking on the color button will open a color
selector.

• ‘Heading width’: the width for the paragraph heading if applicable, in centi-
meters. This option is only available for paragraph having a heading, i.e sec-
tion headers and list headers. See the description for the ‘Layout options’
below for a detailed explanation of this option and how it relates to the mar-
gins.

• ‘Heading char. style’: the character style for the heading if applicable. This
option is only available for paragraph having a heading, i.e section headers
and list headers. The value is the name of a character style. If left blank, the
heading text will have the same style as the paragraph text.

• ‘Heading text’: text for the heading if applicable. This option is only available
for paragraph having a heading, i.e section headers and list headers. The
heading text may contain markers for the section or list number in many for-
mats, and the number for the parent section or list. These markers don’t need
to be explicitly typed and can be entered by using the menu available via the

 button:

For example, for a classic section numbering with “1. ” for the first level, “1.1. ”
for the second one, “1.1.1. ” for the third one, and so on, the heading texts
would be:
• “<Decimal number for current heading>. ” for the heading at level 1;
• “<Parent heading number w/out spaces>.<Decimal number for current

heading>. ” for headings at all other levels.

• ‘Layout options’: these options concern the general layout of the text on the
page, i.e the various margins.
• ‘Alignment’: text alignment, which can be ‘Left’, ‘Right’, ‘Center’ or ‘Full’ for

full justification on the left & right borders.
• ‘Left margin’: the distance between the page border and the main paragraph

text, in centimeters. See below for a more detailed explanation.
• ‘First indent’: the distance between the border of the main paragraph text and

the position where the first paragraph line starts, in centimeters. This value
Page 138 PragmaDev Studio V6.0

User Manual
can be negative if the first line of the paragraph starts before the main text.
See below.

• ‘Right margin’: the distance from the right border of the main paragraph text
to the right side of the page, in centimeters. See below.

• ‘Line spacing’: the space between the lines of the paragraph, in centimeters.
The value 0 means standard spacing. Use a negative value to bring lines closer
to each other, and a positive value to increase the spacing.

• ‘Space above’: the minimum space above the paragraph, in centimeters. See
below.

• ‘Space below’: the minimum space below the paragrph, in centimeters. See
below.

Here is a graphical explanation of the various margins and spacings, with L = left
margin, R = right margin, F = first indent, HW = heading width, SA = space
above and SB = space below:

The paragraph at the top is a “normal” paragaph with a first line starting a bit to
the right of the main paragraph text, so the first indent is positive. The paragraph
at the bottom is a heading with its first line starting to the left of the main para-
graph text, a heading having the specified width and more space above and
below than a normal paragraph.
Note that actual space between 2 paragraphs is the maximum value of the space
below set for the first one and the sapce above set for the second one.

• Pagination options’: these options control where the page breaks can and cannot
happen.
• ‘Page break before’: forces a page break at the beginning of all paragraph with

this style. Note that this means the ‘Space above’ value is never used.
• ‘Keep with next’: forces the paragraph to stay on the same page as the one fol-

lowing it if possible.
• ‘Keep with previous’: forces the paragraph to stay on the same page as the one

preceding it if possible.
PragmaDev Studio V6.0 Page 139

User Manual
• ‘Widow/orphan lines’: controls the number of lines in the paragraph that can
end up alone at the top or bottom of a page. For example, if set to 2, if the
paragraph ends up at the bottom of the page and there isn’t enough space to
write 2 lines, the paragraph will be moved to the next page.

2.5.3.4 Styled text editor

Once the styles are set up, they will be available in all editors for texts, either in publica-
tions or in section header items. Such an editor is shown below:

The bottom zone contains the actual text. The menus at the top allow to select:

• The paragraph style ("¶"). This style is applied to the current paragraph or to all
selected paragraphs.

• The character style ("ƒ"). This style is applied to the selected characters.

Note that not all paragraph styles are available in all contexts: as said in “Documentation
styles & options” on page 131, PragmaDev Studio is more strict than usual word proces-
sors and will not allow to create inconsistent list nesting (like a paragraph inside a list
with level 2 just after a list header with level 1). Trying to do an operation on the text that
would create such an inconsistency will be refused.
Page 140 PragmaDev Studio V6.0

User Manual
2.5.3.5 Table editor

Double-clicking on a table header item in a document section opens it in an editor such
as the following one:

All table cells are editable as normal styled texts, except the paragraph and character
style selectors are above the table. Navigating through table cells via the tab and shift-tab
keys is possible. Columns can be manipulated via their header:

Adding and deleting rows is done via the similar buttons in the row header.

The special column allows to define the header rows for the table: clicking on the

for a given row makes it the last row in the table header.

2.5.3.6 Exporting documents

Documents can be exported to 6 types of documents:

• Documents in PDF formats. This produces a directly readable and printable doc-
ument. This kind of export is completely handled by PragmaDev Studio. Note
however that this export format won’t allow to integrate the exported document
in a larger one, and that the output is hardly configurable at all.

Dragging resizes the column
Adds a column to the right
Deletes the column
Adds a column to the left
PragmaDev Studio V6.0 Page 141

User Manual
• Documents in Rich Text Format (RTF). This document format is accepted as
input by a lot of word processor applications. The export for this format is totally
handled by PragmaDev Studio.

• Documents in Open Document Text format (ODT). This format is the native one
for Open Office and its derivatives. The export for this format requires a template
actually defining the styles used in the document.

• Documents as a HTML page, or a set of HTML pages. This export can be based
on a template defining the layout of the final document.

• Documents in LaTeX format, i.e. a text file containing standard LaTeX markup.
This export can be “raw”, i.e. contain only the body of the document, or use a
template, which can specify the document header with its class, the packages it
uses, and so on.

• Documents in Standard Generalized Markup Language (SGML). This export is
for advanced users and will not be described in this manual. It is detailed in
PragmaDev Studio Reference Manual.

It is possible to record for a document a default export, that will record all the necessary
information: document format, destination, and template if any. This default export can
be specified either when exporting, or via the export options dialog. To specify the cur-
rent export as the default while exporting, all export dialogs include the following choice:

The options are:

• ‘No’ to perform the export only and not record the current export as the default
one.

• ‘Yes - absolute template path’ to export and record the current export as the
default export, storing the path to the template as an absolute path.

• ‘Yes - relative template path’ to export and record the current export as the
default export, storing the path to the template as a relative path from the docu-
ment path.
Page 142 PragmaDev Studio V6.0

User Manual
Note: this choice is only a checkbox for exports not supporting templates, such as RTF:

The document export options dialog is opened by selecting “Export options…” in the
“Document” menu:

The available options are:

• The export type
HTML, Open Document, RTF, PDF, LaTeX or SGML.

• Destination
It can be either a file or a folder depending on the export type.

• Use template
Whether a template should be used or not, if applicable, and the template file
itself. The template is not available for RTF or PDF exports, required for Open
Document and SGML exports, and optional for HTML and LaTeX exports.

• Store relative template path
An indicator specifying if the path to the template should be stored as a relative
path from the document path, or as an absolute path.

• First title level
The first level of titles to export. This option can be used when the exported doc-
ument is integrated in a larger document. If set to 2, for example, all sections at
the highest level in the document will be exported using a style for the second
level of heading, as defined in the documentation options, all sections under
these at level 3, and so on.
PragmaDev Studio V6.0 Page 143

User Manual
2.5.3.6.1 Exporting as RTF

Exporting a document as an RTF file is quite straightforward: just select “Export as” ->
“RTF” in the “Document” menu of the document editor window. PragmaDev Studio will
ask for the file to export to, then export the document to that file.

2.5.3.6.2 Exporting as PDF

Exporting as PDF is quite straightforward too: selecting “Export as”, then “PDF” in the
“Document” menu will just ask the file to export to, and export the PDF to the given file.

2.5.3.6.3 Exporting as OpenDocument format

As said in “Documentation styles & options” on page 131, PragmaDev Studio does not
actually use the export styles defined in the document when exporting to OpenDocument
format. The styles are taken from a template, which is another file in OpenDocument for-
mat. So selecting “Export as” -> “OpenDocument” in the “Document” menu in the docu-
ment editor will open a dialog asking for the destination file and the document template.
Once both files are specified, PragmaDev Studio will export the document to the speci-
fied destination file.

2.5.3.6.4 Exporting as HTML

There are some limitations on the options actually taken into account for styles when
exporting to HTML:

• The minimum image reduction factor is actually used to create thumbnails for
images in the document. If set to less than 1, thumbnails will be created and
inserted in the exported HTML file, with a link to the actual image with the full
size.

• The font and text color specified in paragraph styles is not used today.

• The heading width is never used.

• Heading texts are only used for section headings. Those specified for lists are not
used, as HTML provides its own list bullets or numbers. PragmaDev Studio only
uses the heading text to try to figure out if a list should be bulleted or numbered.

• The Full alignment is replaced by Left, as full justification is not available in
HTML.

• All margins and spacings are not used.

• The Page break before option is only used in some cases (see below).

• The other options related to pagination are not used as they are meaningless in
HTML.

There are actually two kinds of HTML exports available:

• The first is the basic one, exporting the whole document to a single HTML file. In
this mode, no table of contents or index is generated. This is the mode used when
no template is specified for the export.

• The second mode allows much more control over the files that will be actually
exported, and must be used if a table of contents or index is needed. This kind of
export is based on templates.
Page 144 PragmaDev Studio V6.0

User Manual
Both modes actually export several files, including at least the main HTML file and the
exported images (in PNG format). So exporting to HTML from the document editor will
actually ask for a destination directory where all the files will be created. To prevent files
from being overwritten by the export, PragmaDev Studio will issue a warning if the cho-
sen directory is not empty.

As said above, the mode allowing the greater amount of control over the exported file is
template-based. A template consists in one or several HTML files containing specific tags
that will be replaced by PragmaDev Studio during the export process. Available tags are:

• <!--%REFTMPL[xxx.html]-->
Indicates that the template references the file xxx.html, which is another tem-
plate. This tag will typically be used for files referenced by the current one in any
way, for example via a link or in a frame. This tag will not be replaced in the final
exported document.

• <!--%REFFILE[xxx.yyy]-->
Indicates that the template references the file xxx.yyy, which is not a template
and should not be parsed, but just copied in the destination directory. This tag
will typically be used for included images for example. This tag will not be
replaced in the final exported document.

• <!--%TOC[target=xxx,indent=yyy]-->
This tag will be replaced by the document’s table of contents. The part
“target=xxx” is optional and may be used to indicate the target for the links
generated for the section titles (attribute target for HTML hyperlinks). The part
“indent=yyy” is also optional and indicates the indentation width between two
section levels. The value yyy should be a valid table column width specification
(attribute width for HTML tag td).

• <!--%INDEX[target=xxx]-->
This tag will be replaced by the document index. The part “target=xxx” has the
same semantics as the same part in the %TOC tag for the links generated for index
entries.

• <!--%DOC-->
This tag will be replaced by the whole document contents. This contents will
include anchors for the hyperlinks generated in the table of contents and the
index if any.

• <!--%PAGE-->
This tag will trigger a multiple export for the file containing it. The file will be
copied as many times as there are pages in the document. A suffix containing the
page number will be added to each copy. The page break will be triggered by the
attribute Page break before set in the export options for paragraphs.
The generated contents for all pages will include the destination anchors for all
hyperlinks generated in the table of contents and index. A template should there-
fore either contain a %DOC tag, or a %PAGE tag. If it contains both, the behavior is
undefined.

• <!--%NEXTPAGE--> and <!--%/NEXTPAGE-->
This two tags will be replaced respectively by the open tag and the close tag for
PragmaDev Studio V6.0 Page 145

User Manual
the hyperlink to the next page if any. These tags should only appear in the same
template as the %PAGE tag.

• <!--%PREVPAGE--> and <!--%/PREVPAGE-->
Same as the NEXTPAGE tags, but for the previous page.

All these tags must be alone on a line, with only whitespace before or after it, but not
within.

The template is actually composed of the top-level template file specified in the HTML
export dialog, plus all the file it references via a %REFTMPL or a %REFFILE tag, plus all files
referenced via a %REFTMPL or a %REFFILE tag in these ones, etc. All these files will be cop-
ied to the destination directory for the export, and only these ones. So any file actually or
potentially used by any of the templates must be referenced via a %REFTMPL or a %REF-
FILE tag, or it won’t be copied and will be unavailable in the exported document.

An example template for HTML export is available in PragmaDev Studio example
projects, in $RTDS_HOME/examples/Specifier/AccessControl.

2.5.3.6.5 Exporting as LaTeX

There are two types of LaTeX exports for PragmaDev Studio documents:

• The first export kind is the “raw” export, which is selected when no template is
used. The exported file will only contain the body of the document without any
header. This can be used in the document must be included in a bigger one.

• The second export kind uses a template. This template can be used to turn the
export into a full LaTeX document by specifying a header with the document
class, the used packages, and so on. The format for the template is described
below.

A template for LaTeX export is itself a LaTeX file containing standardized comments,
that must appear alone on a line. These comments are:

• %%%CONTENTS%%%
This comment will be replaced by the actual contents of the document, which will
contain only the markup for the document sections and text.

• %%%USEEPSIMAGES%%%
If present, this comment has only an effect if the document includes external
PNG images. In this case, if an image in /path/to/image.png is included in the
document, and there is an encapsulated Postscript version of the image in /path/
to/image.eps, then the generated LaTeX document will use the encapsulated
Postscript version. If this line is not present, or if no EPS version of the image
exists, the PNG is converted to encapsulated Postscript.

Note that the styles definition for the LaTeX export format are very partially used. The
appearence of the exported document will depend mostly on the LaTeX document class
and the packages it uses. The only impact of these styles will be the following:

• If a paragraph or character style uses an italic font, the text in the exported
LaTeX document will be tagged with \textit{…};

• If a paragraph or character style uses a bold font, the text in the exported LaTeX
document will be tagged with \textbf{…}, unless it appears in a section title;
Page 146 PragmaDev Studio V6.0

User Manual
• If a paragraph or character style uses a non-proportional font, i.e. a font having
the same width for all characters, the text in the exported LaTeX document will
be tagged with \texttt{…}. Non-proportional fonts are recognized by their fam-
ily name. The following standard fonts are recognized as non-proportional:
• Courier and its variants (Courier New or Courier-New);
• DejaVu Sans Mono;
• Bitstream Vera Sans Mono;
• Lucida Console;
• Typewriter;
• computer-modern-typewriter.

• If a paragraph or character style uses a color for the text that is not black, the text
in the exported LaTeX document will be tagged with \textcolor[rgb]{…}{…}
to display it in the proper color.

• If a paragraph has an alignment that is not full justification, the corresponding
LaTeX environment will be used wherever it is possible. For example, a centered
paragraph will be enclosed with \begin{center} and \end{center}.

All other display attributes are ignored.

Heading styles are also mapped to the corresponding LaTeX command:

• 1: \part{…}

• 2: \chapter{…}

• 3: \section{…}

• 4: \subsection{…}

• 5: \subsubsection{…}

• 6: \paragraph{…}

• 7: \subparagraph{…}

Heading styles with a level greater than 7 cannot be used. For a document that should not
include any parts, the first title level can be set to 2 in the document export options. If the
exported LaTeX document is supposed to be an article which does not have the ‘chapter’
level, the first title level can be set to 3.

2.5.3.7 Using exported documents

When exporting a document to any format, PragmaDev Studio will only export the docu-
ment body. Usual things like a title page, a table of contents or the document index can-
not be created by PragmaDev Studio, since it can’t know how to format them, or place
them in the document.

It is however possible to create these items and link them with the document body cre-
ated by PragmaDev Studio in all tools. This section presents how to do such a thing with
the two major word processors: Microsoft Word and OpenOffice.org.

2.5.3.7.1 In Microsoft Word via RTF

Dynamically adding things to the part of the document generated by PragmaDev Studio
in Microsoft Word is quite easy:
PragmaDev Studio V6.0 Page 147

User Manual
• Export the document body to a RTF file using the “Document” -> “Export as” ->
“RTF” menu in the document editor.

• In Microsoft Word, create a new empty document.

• Define the page layout that your document should have: page size, margins,
header, footer and so on…

• Add to the document all pages that should be inserted before the document body
created by PragmaDev Studio. This would typically be a title page and a table of
contents for example. If created here, the table of contents will be empty.

• At this point, do a dynamic insertion of the RTF file generated by PragmaDev
Studio by selecting the “Insert” -> “File…” menu. In the file selection dialog that
appears, select RTF in the file types menu in the bottom, then select the RTF file
created by PragmaDev Studio. Then open the menu attached to the “Insert” but-
ton and select “Insert as link”. This will dynamically import the RTF file within
the Word document.

• After that, create all items that should go after the document body in your docu-
ment, typically the index.

• Select everything in your document and ask to update the fields via the F9 key. If
asked whether to update only page numbers or the whole table or index, select
the second option.

That’s all; you should now have a full document including everything needed. Whenever
your document changes in PragmaDev Studio, just export it again to the same RTF file,
then open the Word document, select all and press F9.

2.5.3.7.2 In OpenOffice.org via OpenDocument format

Defining the items that should be added to the document body exported by PragmaDev
Studio in OpenOffice.org is done via a specific document type called a master document.
This kind of documents may contain text and refer to other external documents as well.
To define such a document, just select “New” -> “Master document” in OpenOffice.org
Writer “File” menu. This will display a regular document window with a navigator win-
dow near it. This navigator window allows to add items in the master document.

The page setup - page size, margins, header(s), footer(s), and so on… - should be done
directly in the master document.

Regular text, such as the title page, can be added directly in the master document win-
dow as in any regular document. Creating such a text will create a line labelled “Text” in
the navigator window.

Inserting a table of contents should be done via the navigator window by selecting the
line before the point where it should be inserted and selecting “Index” in the “Insert”
menu. The standard index / table of contents insertion dialog will appear; just set up the
options as you would in a normal document.

To include the document body exported by PragmaDev Studio in the master document,
select the item before the insertion position and select “File…” in the “Insert” menu.
Select the file exported by PragmaDev Studio and validate.

To add an index, the operations are the same as those to insert a table of contents.
Page 148 PragmaDev Studio V6.0

User Manual
Note: Once created, the master document will include a copy of all character and para-
graph styles that were in the document exported by PragmaDev Studio when it was
inserted. Any following changes will only have an impact in the exported document, and
not in the master document including it.

2.5.3.8 Questions and answers

This section includes a number of questions that may arise when using the documenta-
tion system in PragmaDev Studio with their answers.

• How can I create a “bold” or “italic” character style as in a word proces-
sor?
If the character style should just put the characters in boldface or in italic without
any font change, you can’t: character styles in PragmaDev Studio always include a
font family. If you plan to use the style in a regular text, just set the same font family
as in your default paragraph style. If you mix several font families within the same
document, you’ll have to define several “bold” or “italic” character styles: one per
font family that you’re using.

• Several paragraph styles I’ve defined in the documentation display
options do not appear in the styled text editors. Why?
All paragraph styles marked as section headings in display options (Type is Head-
ing) are intended to be used internally by PragmaDev Studio for section titles when
it exports a document to a given format. They should not be used directly in texts,
so they won’t appear in the paragraph styles menu in the styled text editors.

• I’ve selected some paragraphs in a styled text editor that I want to
delete, but nothing happens when I hit the “Del” or “Backspace” key!
As said in “Documentation styles & options” on page 131, PragmaDev Studio is
quite strict when handling list nesting: you can’t have a list with level 2 directly
appearing after a normal paragraph, or have a paragraph declared as inside a list
with level 2 appear after a list header with level 1. This is required to be able to
export to structured document types such as HTML. If an operation would create
PragmaDev Studio V6.0 Page 149

User Manual
an inconsistency in list nesting, PragmaDev Studio will forbid it. So for example, if
you have the following selection:

PragmaDev Studio will forbid the deletion, since it would make the “keypad” list
header with level 2 appear just after the paragraph “The system is physically sepa-
rated in two parts:”, which is a normal paragraph not inside a list. So this would cre-
ate an inconsistency in list nesting. Trying to delete this selection will therefore do
nothing.
To be able to delete these paragraphs, you first have to change the styles for the
paragraphs after the selection or before it to ensure that list nesting will be consis-
tent after the deletion.
Page 150 PragmaDev Studio V6.0

User Manual
2.6 - Prototyping GUI
PragmaDev Studio has a built-in GUI editor to ease model validation. This allows to
describe a graphical interface that will interact with the model.

2.6.1 Prototyping GUI editor
Insert a Prototyping GUI element in the project:

This will create a Prototyping GUI file and add the corresponding component in the
project tree:
PragmaDev Studio V6.0 Page 151

User Manual
Double-clicking on this component will open a new empty GUI editor:

The editor is divided in three parts:

• The trigger tree on the left to describe which events will trigger actions on the
display.

• The graphical layout in the middle to design what the GUI will look like.

• The output tree on the right to describe the actions to be executed when the GUI
is stimulated.

In the middle area six types of graphical elements can be inserted: buttons, text displays,
and LEDs, text inputs, frames, and gauges:

Each time one of these elements is inserted, a corresponding tree item is added in the
right area.
Page 152 PragmaDev Studio V6.0

User Manual
Let’s consider for example we are adding one of each widget in the display:

Right click on the widget to change its color:

Double-click on the name in the tree to edit the name of the widget:

Click on the widget text to edit it:
PragmaDev Studio V6.0 Page 153

User Manual
Right click on widget containing text to change the text color:

A text display and a LED generally do not generate any output action. Let’s add an action
to the Admin button: right click on the corresponding element in the output tree and all
the available message in the system will be displayed:

In this example, we are using the AccessControl SDL Z.100 example. Let’s say the ’card’
message will be sent to the system when the user clicks on ’My button’. The parameters
associated with the message will be automatically displayed and the expected type is
diplayed to ease editing:
Page 154 PragmaDev Studio V6.0

User Manual
In that example the administrator card should have ’MasterCard’ as its parameter. Dou-
ble click on the type and enter the desired parameter value:

Now let’s consider the incoming display message parameter value is to be displayed in
the text display widget. Let’s get to the trigger tree and create a case:

In the new element, it is now possible to add cases. Each case is a set of filters to be veri-
fied and actions to do when the filters are verified. In our case, we will not have any filter
since we want to display the parameter value all the time.
PragmaDev Studio V6.0 Page 155

User Manual
The syntax to access parameter value has the following form:
param<number>{.<field name>]}*

In our example we just need to access the value of parameter 1:

We could also use the DISPLAY type of action to display a specific text that has nothing
to do with the parameters value.

To access an Entry value use the following syntax:
|$[<entry name>]

In the example below:

Pressing MyButton will send the message card and the value of its first parameter will be
the concatenation of the string TheCard and of the value in the entry MyEntry. For
example TheCard42.
Page 156 PragmaDev Studio V6.0

User Manual
Let’s have a look at some other cases with the AccessControl example:

In this example the three triggers: open, close, and displayMessage are considered.

• openDoor
Each door is a separate case with one filter. For the first door the filter Door 1
will check if the first parameter is equal to 1. If the filter is verified, the color of
the LED will switch to green. It is also possible to use the RVB form: #00FF00. In
the Door 2 case, the filter verifies the value is 2 and sets the second LED to
green. And so on...

• closeDoor
There is only one case with no filter. That means when the close message is
received all the actions are executed. In our case, all the LEDs are set back to red.

• displayMessage
There is no filter so the first parameter of the display message is printed in the
display.

Each button generates an output. Let’s consider three examples:

• Key1
When this button is pressed, the key message is sent to the system with its first
parameter set to 1

• Key2
When this button is pressed, the key message is sent to the system with its first
parameter set to 2

• AdminCard
PragmaDev Studio V6.0 Page 157

User Manual
When this button is pressed, the card message is sent to the system with its first
parameters set to MasterCard.

2.6.2 Prototyping GUI runner

2.6.2.1 Within the simulator or debugger

To start the prototyping GUI, click on the button in the Simulator or the Debugger:
Page 158 PragmaDev Studio V6.0

User Manual
The GUI will connect automatically to the running system. That’s it.

2.6.2.2 Standalone prototyping GUI with external executable

If an executable is generated by PragmaDev Developer or PragmaDev Studio with stan-
dalone prototyping GUI runner support (see “Debug and trace options” on page 252), the
prototyping GUI can be run by itself:

• Build the executable for your system with the appropriate profile.
PragmaDev Studio V6.0 Page 159

User Manual
• Once the executable is built, select the prototyping GUI in the project and click

the quickbutton in the toolbar. The prototyping GUI runner appears, dis-
playing a ‘Waiting for connection’ message:

• Run the generated executable. It will connect to the prototyping GUI running in
PragmaDev Studio and will allow you to interact with it just as you would do
within the debugger or simulator.

Also note that when building with standalone protoyping GUI support, a file with the
name of the executable and the extension .rdy will be generated in the code generation
directory. This file can be distributed to anyone having a PragmaDev Studio installation,
even in free mode, and running the file will run the prototyping GUI and the generated
executable, allowing anyone to test it.
Page 160 PragmaDev Studio V6.0

User Manual
2.7 - Code coverage results

2.7.1 Generating code coverage results
Code coverage results cannot be created directly in the project manager. They are always

obtained via a debug or simulation session, by clicking on the button in the debug-
ger or simulator window (see “Model coverage” on page 336 and “Model coverage” on
page 214). Note that the option activating code coverage analysis must be checked in the
code generation or simulation options for this feature to be available; see “Profiles” on
page 248 and “Main simulator options” on page 187.

Generating the code coverage results for a debug or simulation session will automatically
create a code coverage results node in the project manager and open it. Note that the
results set has to be saved in order to be kept. If the code coverage results viewer win-
dows is closed without saving, the code coverage results node will disappear from the
project.

2.7.2 Code coverage results viewer window
The window allowing to view the results of a code coverage analysis looks like follows:

Code coverage analysis result window

The tree shows:

• At its first level, all processes in the system;
PragmaDev Studio V6.0 Page 161

User Manual
• At its second level all states, connector entries and start symbols in each process;

• At its third level, all message inputs, message save and continuous signals for
each state;

• At its last level, all symbols in the transition.

For each node is displayed the minimum and maximum number of hits for the symbol or
transition or process. If the minimum and maximum are the same, a single number is
displayed. Colors allow to identify at once non-covered symbols or groups: if it has not
been covered at all, it will appear as red; if it has only been partially covered, it will
appear as orange.

A third column in the viewer gives the testcases covering the symbol on the line if any
and available. Information about testcase coverage is only available after a co-simulation
of a set of TTCN testcases and a SDL system. See “Co-simulation code coverage analysis”
on page 171. Only the number of covering testcases is displayed in the viewer. The full list
of testcases is displayed in a popup menu when right clicking on the cell. The menu items
allow to display the testcases themselves in a text file editor.

The tree may be expanded, collapsed and sorted using the “Edit” menu. Double-clicking
on a node will display the corresponding symbol if any.

NB: the states displayed at the second level of the tree are just a way to summarize the
information for all transitions for this state. Therefore:

• The numbers displayed for the node are not the number of times the process
went into that state. It’s the number of transitions with this state as initial state
executed by the process.

• There is no symbol corresponding to such a node: for a given state, each transi-
tion may be represented with a specific state symbol in the diagram, but only one
state symbol will appear in the code coverage results. So it can’t be associated to
a single symbol.

2.7.3 Merging code coverage results
PragmaDev Studio allows to merge the different code coverage results sets obtained in
several debug or simulation sessions. To do so, open one of the sets to merge and select

“File / Merge…” in the menu, or click on the button. A dialog appears, allowing to
select the other sets to merge with the current one:
Page 162 PragmaDev Studio V6.0

User Manual
The hierarchy is the one in the project manager, showing only the code coverage results.
Each set can be selected by checking the box in front of it. The checkbox in front of a
package or folder name allows to select all the code coverage results sets in this package
or folder.

Once validated, all the selected sets are merged with the current one, and a new results
set is created in the project for the merge results and opened immediately. As code cover-
age results created during debug or simulation, this set has to be saved to be actually
inserted in the project.
PragmaDev Studio V6.0 Page 163

User Manual
2.8 - Requirements Table Editor

2.8.1 Principles
There are two ways of creating requirements in PragmaDev Studio:

• A requirement table can be created and filled in the application.

• All requirements can be created within a spreadsheet application and exported
in a format readable by PragmaDev Studio. The generated file can then be
imported in PragmaDev Studio as a requirements table. This is probably the gen-
eral usage, as requirements are often defined outside of the application.

The input formats for requirement tables supported by PragmaDev Studio are the text
formats supported by Microsoft Excel:

• The CSV format, where each row is on its own line in the exported file, the cells
separated by a semicolon (’;’) and double-quoted when necessary.

• The text format, where each row is also on its own line in the exported file, and
the cells seperated by a tab character and not quoted in any way.

PragmaDev Studio identifies the format with the extension of the file: .csv or .txt. Of
course, requirements tables can be created with any other spreadsheet application, as
long as they are exported using one of the 2 formats above.

The requirements table must have at least 2 columns and at most 4. The first row is con-
sidered by PragmaDev Studio as the title row, all others describing one requirement. The
first column is the requirement identifier, and the second one its description. Only the
title is considered for the 2 last columns: PragmaDev Studio will use them to store its
own information: the symbols and testcases covering the requirement; see “Covering
symbols” on page 168 and “Covering testcases” on page 170.
Page 164 PragmaDev Studio V6.0

User Manual
Here is an example of a requirements table created in LibreOffice Calc:

Once exported in CSV format with the parameters specified above, it can be inserted in a
PragmaDev Studio project the usual way: select the parent node for the requirements
table (usually the project node), then use the “Add child element…” item in the contex-
tual menu or via the menu “Element / Add child...”. Then select the “Requirements table”
in the “Requirements” category, and choose the exported CSV file via the “Open” button:
PragmaDev Studio V6.0 Page 165

User Manual
Once added, the table will appear in the project:

and double-clicking on the corresponding node will open the requirements table editor:

Requirements can also beadded to or deleted from the table within the editor. When a
row is selected, this is done via the buttons at the bottom of the editor window, or via the
entries in the “Edit” menu:

• Clicking on , selecting “Insert row above” or pressing Control+R will insert a
requirement row above the selected one.

• Clicking on , selecting “Insert row below” or pressing Control+Shift+R will
insert a requirement row below the selected one.

• Clicking on , selecting “Delete row” or pressing Control+Delete will delete the
selected row.
Page 166 PragmaDev Studio V6.0

User Manual
This can be used to create a requirements table from scratch: if the CSV file selected
when inserting the table in the project does not exist, opening the table will actually
always display a single empty row:

Double-clicking on a “Requirement id.” or “Description” cell will open it for edition and
allow to specify the identifier and the description for the requirement. Adding new
requirement rows allows to create the table completely.

Once the table has been inserted in the PragmaDev Studio project, it is possible to associ-
ate to each requirement the symbols covering it. After that is done, and if TTCN testcases
have been written for the designed system, PragmaDev Studio can itself extract from the
code coverage information gathered during a cosimulation of the system and its testcases
the testcase coverage for each requirement. These topics are described in the next sec-
tions.
PragmaDev Studio V6.0 Page 167

User Manual
2.8.2 Covering symbols
Specifying covering symbols for requirements is done via a copy/paste operation: the
symbol must be selected in its parent diagram, its traceability information copied, and
then pasted in the requirements table. Here are the steps in detail:

In an editor diagram, when a symbol is selected, an item “Copy traceability info.” is avail-
able in the contextual menu as well as in the “Edit” menu. Note that the traceability infor-
mation for a symbol has no actual representation and cannot be pasted anywhere else
than in a requirements table. The paste must also be done within the same PragmaDev
Studio session as the copy. The requirements table must be in the same project as the
symbol.
Page 168 PragmaDev Studio V6.0

User Manual
Once copied, the traceability information can be pasted in the requirements table by
using the contextual menu on the table’s third column:

Once pasted, the covering symbol will appear as an icon giving its type followed by the
first characters in its text:
PragmaDev Studio V6.0 Page 169

User Manual
Several symbols can be declared as covering the same requirement. In that case, all the
symbols will all appear in the third table column:

Double-clicking on one of the symbol representations in the requirements table will open
its parent diagram and select the symbol.

PragmaDev Studio also offers another representation of the covering of the requirements
by the symbols via the requirement matrix, that can be generated and displayed via the

“Table / Generate requirement matrix…” menu, or simply by clicking the button:

Each line in the matrix represents a requirement, and each column a symbol. An ‘X’ in
the cell indicates that the requirement is covered by the symbol.

2.8.3 Covering testcases
Once the symbols covering the requirements have been specified in the requirements
table, PragmaDev Studio can automatically extract the information of the covering
testcases from a cosimulation of SDL and TTCN. This extraction is done in 2 steps:
Page 170 PragmaDev Studio V6.0

User Manual
• A co-simulation must be run on the TTCN testcases and the system they test with
code coverage analysis turned on, as explained in “Generating code coverage
results” on page 161. The code coverage results must then be extracted.

• The results of the code coverage analysis must be imported in the requirements
table.

These two steps are described in the following sections.

2.8.3.1 Co-simulation code coverage analysis

To allow PragmaDev Studio to extract this information, a simulation must be run using a
simulation profile with code coverage analysis turned on:

Then, the co-simulation of TTCN and SDL must be launched as explained in “TTCN-3 co-
simulation” on page 343: a TTCN module containing a control part or testcases must be
selected in the project manager, and the simulation run on it. The simulation can then be
PragmaDev Studio V6.0 Page 171

User Manual
done the usual way, as explained in “Simulation” on page 346. At the end of the simula-

tion session, the code coverage can be extracted by using the button:
Page 172 PragmaDev Studio V6.0

User Manual
The extracted code coverage results will be opened automatically. In addition to the
information of coverage on each symbol, they will also include the testcase coverage
information:

To each symbol in the simulated system is not only associated the minimum and maxi-
mum number of executions of the symbol, but also the number of testcases that covered
PragmaDev Studio V6.0 Page 173

User Manual
it. To actually list these testcases, it is possible to right click on the number of testcases in
the “Covering testcases” column:

The contextual menu displays the names of the testcases that actually covered the sym-
bols. Selecting one of the items will open its parent module in the text file editor, and
position the insertion point directly on the declaration of the testcase.

2.8.3.2 Importing testcase coverage information in requirements

To be able to import testcase coverage information in a requirements table, the following
prerequisites must be met:

• The requirements table must include symbols covering the requirements,
entered as explained in “Covering symbols” on page 168.

• The results of a code coverage extraction must be available in the project,
obtained during a TTCN + SDL co-simulation as explained in “Co-simulation
code coverage analysis” on page 171.
Page 174 PragmaDev Studio V6.0

User Manual
To automatically include the testcase coverage information in the requirements table,
open the table, then select “Get testcases from code coverage…” from the “Table” menu.
A dialog appears:

In this window, select the set of code coverage results to extract the testcase coverage
information from and press OK. The 4th column in the table will then be automatically
filled with the names of the testcases covering the requirements:
PragmaDev Studio V6.0 Page 175

User Manual
The testcases are all those covering any of the symbols present in the 3rd column of the
table. Each testcase appears on a line in the cell, and double-clicking on it opens it in the
text file editor.

Note that these testcases are not modifiable, except by clearing all of them (item “Clear
covering testcases…” in the “Table” menu), or by importing coverage information from
another results set, which will replace the current covering information.
Page 176 PragmaDev Studio V6.0

User Manual
3 - PragmaDev Specifier

3.1 - SDL Z.100 project
PragmaDev Specifier helps system engineers to unambiguously specify and verify the
functionalities of the system, and define the best architecture for performance or energy
efficiency. The technology used results in a graphical and executable model. Verification
and validation of the dynamic of the system is done with the integrated simulator, and
the best architecture is analyzed with a unique performance analyzer.

PragmaDev Specifier is based on SDL models. For information on the language itself,
please refer to the language reference documents. PragmaDev projects are generic. In
order to work with PragmaDev Specifier an SDL system must be created. For that matter
start a new project, right click on the project and select addc hild element. Select active
architecture and system in the window:

3.2 - SDL types and data declarations
The types and data declarations in SDL projects are defined in the ITU-T recommenda-
tion Z.100. The supported version is SDL-92 some restrictions or additions described in
the following paragraphs.

All declarations are made in standard text boxes:

The dashed text-box used for SDL-RT declarations in SDL-RT projects is not used.

3.2.1 General restrictions
The following SDL-92 features are not supported in PragmaDev Studio:
PragmaDev Studio V6.0 Page 177

https://www.itu.int/rec/T-REC-Z.100/en
https://www.itu.int/rec/T-REC-Z.100/en

User Manual
• Declarations referencing each other will not work. For example:
/* Uses synonym toto_dflt as default value */
NEWTYPE toto
STRUCT
 i INTEGER;
 s CHARSTRING;
DEFAULT toto_dflt;
ENDNEWTYPE;

/* Uses type toto for synonym type */
SYNONYM toto_dflt toto = (. 0, 'xxx' .);
will not work.

• Qualifiers in identifiers (<<qualifier>> name) are not supported.

• Optional definitions via SELECT are not supported.

• Context parameters are not supported.

3.2.2 Pre-defined sorts
The following pre-defined sorts are available:

• Boolean

• Integer

• Natural

• Real

• Character

• CharString

• Time

• Duration

• Pid

Literal names for control characters such as NUL, STX or DEL are not supported. These
characters must be created via the Num standard operator with the corresponding ASCII
code.

All standard operators are available, with the following additions and restrictions:

• The operations available on the CharString sort are also available on the Char-
acter sort. So the expression:
s := ’foo’ // ’o’
is valid (in strict SDL-92, this should be written:
s := ’foo’ // MkString(’o’)).
The standard MkString operator is however still supported.

• The internal operators (operators with name ending with ’!’) are not supported.

Here is a complete list of supported operators for all pre-defined sorts:

• Num : character -> integer
Page 178 PragmaDev Studio V6.0

User Manual
• Chr : integer -> character

• MkString : character -> charstring

• Length : charstring -> integer

• First : charstring -> character

• Last : charstring -> character

• Substring : charstring, integer, integer -> charstring

3.2.3 NEWTYPE declarations
The standard SDL-92 NEWTYPE declaration is supported, with the following additions
and restrictions:

• Inheritance is not supported.

• Choice sorts are supported. These can be written either in SDL-2000 syntax:
NEWTYPE MyChoiceType
CHOICE

field1 Type1;
field2 Type2;

ENDNEWTYPE;
or in ObjectGeode syntax:
NEWTYPE MyChoiceType
CHOICE {

field1Type1,
field2Type2

}
ENDNEWTYPE;
ObjectGeode syntax will however issue a warning when used since it is non-stan-
dard.

• In STRUCT or CHOICE types defined via the SDL-92 syntax, the ’;’ after the list of
fields is mandatory.

• Optional fields in STRUCT types are supported: for each optional field x in a
STRUCT, a read-only boolean pseudo-field xPresent is added, indicating wether
x is present or not. A field is set present when a value is assigned to it. There is no
way of setting back a present field ‘non present’. The notation for STRUCT initial-
izers with missing fields ‘(. x, , z .)’ is not supported.

• The available pre-defined generators are:
• Array with the standard notation for array initialization ‘(. x .)’ and ele-

ment access for reading and writing my_array(index);
• PowerSet with the standard operators incl, del, take and length;
• String with the standard operators mkstring, length and //. Operators

first, last and substring are only available for the CharString sort.

• User-defined generators are not supported.

• LITERALS in a NEWTYPE can only be used alone. Mixing literals with STRUCT or
CHOICE or a generator will issue a syntax error.

• The CONSTANTS clause in a NEWTYPE is not supported.
PragmaDev Studio V6.0 Page 179

User Manual
• Ordered literal types (via OPERATORS ORDERING) are not supported.

• Operator diagrams are not supported, as well as textual operator declarations.

• Operators defined without parameters are supported, but will generate a warn-
ing. Calls to these operators may be written operator() or just operator.

• Polymorphism for operators is not supported, i.e. two operators cannot have the
same name, even if their parameter types are different.

• Quoted infix operator names are not supported (“+”, “*”, etc.)

• Operators declared EXTERNAL are not supported.

• Extended literal or operator names are not supported.

• AXIOMS are not supported.

• Only basic types for indices in ARRAY types are fully supported. Indices of com-
plex types such as STRUCT or CHOICE will not work everywhere (e.g they will work
as expected in simulation, but not in code generation).

• For simulation, it is possible to make the scope for NEWTYPE’s global: having two
types with the same name in two different agents will then not work. This is done
by checking the option “Manage all types in a single system-wide scope” in the
project generation options. This option is unchecked by default.

3.2.4 SYNTYPE declarations
The standard SDL-92 SYNTYPE declaration is supported, with the following additions
and restrictions:

• The closed ranges in CONSTANTS clauses may be written either min:max (stan-
dard), or min..max.

• ObjectGeode syntax for SIZE constraints is supported, so it’s possible to write:
SYNTYPE MyStringType = CharString(SIZE(0:16)) ENDSYNTYPE;
instead of:
SYNTYPE MyStringType = CharString SIZE(0:16) ENDSYNTYPE;
The first syntax will however issue a warning since it is non-standard.

• As for NEWTYPE’s, the scope for SYNTYPE’s can be made global. See “NEWTYPE
declarations” on page 179.

3.2.5 SYNONYM declarations
The standard SDL-92 SYNONYM declaration is supported, with the following restrictions:

• A synonym for a structure or array primary (. … .) will not work if the type is
not specified. So the following SYNONYM declaration:
SYNONYM myValue = (. ’xxx’, 0 .);
is invalid and must be re-written:
SYNONYM myValue MyStructType = (. ’xxx’, 0 .);

• External synonyms are not supported.
Page 180 PragmaDev Studio V6.0

User Manual
• As for NEWTYPE’s, the scope for SYNONYM’s can be made global. See “NEWTYPE
declarations” on page 179.

3.2.6 FPAR & RETURNS declarations
The standard SDL-92 FPAR declaration is supported with no restriction in process, pro-
cess type and procedure diagrams, as well as the RETURNS declaration in procedures;
RETURNS declarations with a variable name are not supported.

These two declarations must however be placed alone in a text box, preferably together if
both are present.

3.2.7 TIMER declarations
The standard SDL-92 TIMER declaration is supported with the following restriction:
timer parameters are not supported. The unit for the timer duration is seconds.

Please note that the declaration for a timer is not mandatory: if a SET with a time-out
value is present in a process or procedure, the timer is automatically declared. The decla-
ration must however be done if the timer is started using a SET without time-out value.

3.2.8 SIGNAL & SIGNALLIST declarations
The standard SDL-92 SIGNAL and SIGNALLIST declarations are supported with the fol-
lowing restrictions:

• Signal and signal list names are case-sensitive.

• Signal inheritance is not supported.

• Refining signals to sub-signals is not supported.

3.2.9 SIGNALSET declarations
SIGNALSET declarations are not needed and not supported in PragmaDev Studio.

3.2.10 USE declarations
The standard USE declarations are supported with the following additions and restric-
tions:

• USE clauses may appear at all levels in the architecture.

• Specifying imported items in USE clauses is not supported (e.g. "USE MyPackage
/ NEWTYPE MyType" is invalid)

USE clauses may not be mixed with other declarations in a text box.

Please note these differences with the standard are considered when exporting to a PR
file: all USE clauses are inserted at system level, in conformance with the Z100 PR for-
mat.
PragmaDev Studio V6.0 Page 181

User Manual
3.2.11 INHERITS declaration
The standard SDL-92 INHERITS declaration is supported in process type diagrams.
Inheritance is not available for block types. This declaration must be placed alone in a
text box.

3.2.12 Data declarations (DCL)
The standard SDL-92 DCL declaration is supported with no restrictions. Remote vari-
ables are available, so the REMOTE, IMPORTED, EXPORT and IMPORT declarations are sup-
ported as well.

3.2.13 Structural element declarations
All standard SDL-92 structural element declarations are supported, except system types,
procedure types, and service types, and with the addition of the SDL-2000 composite
state:

• System;

• Block;

• Process;

• Procedure, both regular and remote;

• Package;

• Block type (named block class in PragmaDev Studio);

• Process type (named process class in PragmaDev Studio);

• Composite state;

• Service;

• Macro.

The following restrictions apply:

• Names for these elements are case-sensitive.

• Process types are only allowed in packages and cannot be defined in systems,
blocks or block types.

• Inheritance in block types is not supported, so VIRTUAL, REDEFINED or FINAL-
IZED processes or process types in block types are not needed and not supported.

• Inheritance for procedures is not supported.

• Package diagrams are not supported. To define the contents of the package, the
following diagrams and files are used:
• For textual declarations (e.g. types, synonyms, signals, …), a SDL declaration

file (.pr) is used.
• For agent classes declarations, a class diagram is used (see “Class description”

on page 233). Note that passive classes cannot be associated in any way to
SDL agents, as SDL does not have the necessary syntax elements to manipu-
late them.
Page 182 PragmaDev Studio V6.0

User Manual
• Gates in process and block classes are declared in their parent package’s class
diagram. SDL-style gate definitions inside class diagrams are not supported.

• Macro diagrams can only contain a single pseudo-transition, starting with a
macro inlet. State symbols are not supported in macro diagrams, as well as
inputs, priority inputs, continuous signals or saves. Declarations are not sup-
ported in macro diagrams, except for the macro formal parameters.

• The graphical representations for SDL-2000 composite states and for SDL-92/
96 services have been merged:
• A composite state never directly contains a state machine. The diagram asso-

ciated to a composite state always contains one or more “concurrent state
machines”, similar to SDL-92/96 services and represented the same way. The
channels from the parent process boundary services and between services
have also been re-introduced in composite state diagrams.

• Composite state diagrams cannot define entry points for the state machines it
contains (restriction from SDL-2000).

• Composite states in processes must be declared with the symbol used in SDL-
2000 for composite state types, and should be used with the symbol used in
SDL-2000 for composite state type instantiation

This allows to graphically distinguish composite states from “normal” states.
• History states are available with the SDL-2000 syntax:

3.3 - SDL symbols syntax
The syntax for all symbols is compliant with the SDL-92 Z100 recommendation, with the
following exceptions:

• Virtualities (VIRTUAL, REDEFINED, FINALIZED) in start, input, save and continu-
ous signal symbols are valid, but ignored: all transitions are considered virtual by
default.
PragmaDev Studio V6.0 Page 183

User Manual
• For timers, SET and RESET symbols have a specific shape:

• In signal input and save symbols, NONE or PROCEDURE … are not supported.

• In signal output symbols:
• Only one signal can be specified.
• Specifying the receiver with both TO and VIA is not supported.
• VIA may only be followed by a single gate or channel name.

• In expressions, the pseudo-operator ANY or ANY(sort) is only partially sup-
ported: it will work in simulation if sort is a basic type with a discrete and finite
set of values (e.g Boolean, or a SYNTYPE based on Integer with a min:max CON-
STANTS clause).

The pre-defined variables SELF, PARENT, OFFSPRING and SENDER are available in pro-
cesses, process types and procedures. Please note however that procedures defined in
processes do not use their parent process’s SENDER and OFFSPRING variables, but have
their own local ones. So for example, in this case:

the OFFSPRING used in the process’s task block will be the pid for Process1, not the one
for Process2. Note however that the values for the SENDER and OFFSPRING variables are
initialized with the values found in the parent process when entering a procedure.

The pre-defined variable THIS in process types is not supported.
Page 184 PragmaDev Studio V6.0

User Manual
3.4 - Model Simulator
Two ways of debugging an SDL system are available in PragmaDev Studio:

• The system can be transformed to C code and debugged with the same debugger
as for SDL-RT;

• The system can be executed within PragmaDev Studio using an internal simula-
tor.

Both approaches have their advantages and drawbacks:

• When exporting the system to C code:
• The C code is compiled to a native executable, so the execution is quite fast.
• The supported concepts are limited; the limitations are the same as in SDL to

SDL-RT conversion, as described in the corresponding section in the Refer-
ence Manual.

• The execution semantics is not the one described in the Z100 standard, but
the one of the underlying RTOS, which can be quite different.

• When using the internal simulator:
• Since the execution happens within PragmaDev Studio, a far better control of

the running system is available.
• The code in the SDL system is actually interpreted, so the execution is slower

than when exporting to C.

The architecture and options for the C code generation approach are exactly the same for
SDL and SDL-RT, so they won’t be described again here. For details, please refer to the
sections “Code generation” on page 246 and “Model Debugger” on page 311. This section
describes the internal Model Simulator.
PragmaDev Studio V6.0 Page 185

User Manual
3.4.1 Simulator architecture
The Model Simulator allows you to execute and debug your SDL system. To do so Prag-
maDev Studio generates a byte code out of the SDL description and executes it.

The Model Simulator has all the expected features of a debugger. It allows you to:

• Graphically trace the internal behavior of the system

• Graphically step in the SDL diagrams

• Visualize all key internals of your system such as:
• Processes,
• Timers,
• Local variables in the current process,
• Pending messages in the system.

• Send SDL messages to your system,

• Modify SDL state,

• Modify variables value.

SDL generated
byte code

Executorbyte code
generator

SchedulerSimulator
GUI

SDL
editor

MSC
tracer

PragmaDev Studio user interface
SDL byte code compiler/debugger
Source code

external
operators or
procedures

xml-rpc

Customized
GUI

socket
Page 186 PragmaDev Studio V6.0

User Manual
3.4.2 Main simulator options
A few options are available when simulating the model. They can be configured in the
“Generation / Options...” menu:

Please note the same window might contain code generation options that are not
described in this paragraph.

The available options are:

• Manage all types in a single system-wide scope
SDL declarations have scope. That means the types declared in an agent are only
visible in the declaring agent and all its sub-agents. For example two different
types with the same name could be declared in two agents at the same level in the
architecture. Even though this is supported by PragmaDev Studio it might create
confusion or generate major issues when generating code. For that reason it is
possible to for a single system level scope to make sure all declarations are
unique.

• Force default values for all types
All SDL variables will be initialized with a default value if no initialization is done
in the model.

• Defer byte-code loading at execution time
The process for simulation starts with an internal byte-code generation repre-
senting the system to be simulated. This byte code is loaded and is executed by
the executor. If the system is very large, loading the byte code might take a long
time and consume a lot of memory. This option allows to load the byte code in
memory only when it is to be executed.

• Treat internal messages before external ones
By default, internal and external messages all end up in the same unique system
queue. The order of execution is the order of the messages in the queue: first in
first out. This option allows to execute first all messages exchanged internally in
the system, and when all internal messages have been executed the messages
coming from the environment. This is to reflect that in a lot of systems messages
are exchanged internally much faster than with the environment.

• Activate model coverage analysis
PragmaDev Studio V6.0 Page 187

User Manual
In order to optimize performance and memory consumption, model coverage
information is not handled during simulation by default. It is necessary to acti-
vate this option to retrieve it.

• Add suffix to external procedure names
With this option checked it is possible to “catch” external procedure calls in
TTCN tests via getcall/reply. The drawback being that SDL operators are han-
dled the same way, so it is not possible to have an external procedure and an
operator with the same name.

• Use XML-RPC for operators
During simulation when undefined operators or external procedures are called, a
window will pop up to ask for the return value of the operator or the external
procedure. It is also possible to call an implementation of the operator or the
external procedure via XML-RPC. XML-RPC has a standardized way of format-
ting and communicating so that the XML-RPC server can call any type of imple-
mentation such as C, Java, Perl... The first option identifies where the XML-RPC
server is (IP address or host name) and on which port it communicates. The sec-
ond option identifies an optional module in which the operator or procedure is
actually implemented. More information can be found in “User defined external
operators and procedures” on page 218.

3.4.3 Co-simulation with FMI
The Model Simulator supports FMI 2.0 (Functional Mock-up Interface v2.0) for Model-
Exchange (import only) and CoSimulation (master only).

3.4.3.1 SDL system for co-simulation with FMI

To co-simulate an SDL system with an FMU (Functional Mock-up Unit) the following
should be considered while modeling the system:

• Communication with the FMU is done only via the environment:
• FMU input variables are SDL messages send from the system to the environ-

ment.
• FMU output variables are SDL messages sent from the environment to the

system.

• SDL messages used to communicate with the FMU should have a single parame-
ter of one of the following types:
• Boolean
• Integer
• Real
• CharString

• FMU variables can be queried in SDL behavior diagrams using the predefined
external procedures found in PragmaLib. Care should be taken when calling
Page 188 PragmaDev Studio V6.0

User Manual
these procedures to make sure the returned value is valid and the intended one
during FMU execution. As a general rule these procedures (a) should not be
called during the start transition, and (b) it is advisable to call them during tran-
sitions triggered by FMU outputs. If a variable needs to be queried before any
FMU output is received, then (c) a timer should be used to ensure the validity of
the returned value.

The available procedures for querying FMU variables are (see “Querying FMI2
variables” on page 217):
• PragmaDev_fmi2GetBoolean(<variable name>)
• PragmaDev_fmi2GetInteger(<variable name>)
• PragmaDev_fmi2GetReal(<variable name>)
• PragmaDev_fmi2GetString(<variable name>)

a) not valid b) valid c) valid
PragmaDev Studio V6.0 Page 189

User Manual
3.4.3.2 Simulator options for co-simulation with FMI

These options can be configured via the “Generation / Options...” menu, in the “FMI2”
tab:

The available options are:

• Use FMI2
Enables co-simulation with FMI in the Model Simulator.

• Time unit
Unit of time to be used in SDL for co-simulation with FMI. For example, if a
timer is started in SDL like SET(NOW+10, aTimer) and the time unit is set to
‘ms’, then the timer will fire after 10 milliseconds when co-simulating with an
FMU.

• Step size
This is the time interval (in time units) at which the DoStep (in FMI2 CoSimula-
tion) or SetTime (in FMI2 ModelExchange) functions will be called by the Model
Simulator during co-simulation.

• Log level
Level of log messages generated by the FMU during co-simulation. These mes-
sages will be displayed in the Model Simulator window.
Page 190 PragmaDev Studio V6.0

User Manual
• FMU kind
The FMU kind to use in co-simulation (either CoSimulation or ModelExchange)
if both of them are supported by the given FMU.

• FMU file
The FMU to use for co-simulation.

• FMU variables
A table of all FMI2 variables found in the FMU file.
• The “Start” value can be edited when applicable by double-clicking the corre-

sponding cell in the table and entering a new value.

• An “SDL message” can be mapped to an FMU input or output by double-click-
ing the corresponding cell in the table and choosing one of the available mes-
sages in the list.

• The “Trigger” for an FMU output can be set by double-clicking the corre-
sponding cell in the table and entering a new value.

A trigger is a comma separated list of conditions. The mapped SDL message
will be sent to the SDL system only if one of the conditions is fulfilled. By
default (no trigger set) the SDL message will be sent every step size. A condi-
tion is defined using one of the SDL boolean operators (‘=’, ‘<’, ‘>’, ‘<=’, ‘>=’, ‘/
=’) followed by a value of the same type as the output variable. For Integer and
Real types all operators can be used in conditions, while for Boolean and
String types only the ‘=’ and ‘/=’ operators are allowed. A list of conditions is
checked from left-to-right every step size. If a condition is fulfilled, then an
SDL message is sent, and the condition is marked as checked. A checked con-
dition will not be evaluated in the next step. A condition check-mark is
removed when another condition is fulfilled and thus checked. If the trigger
consists of a single condition then the message can be sent only once during
the co-simulation, i.e., when the condition if fulfilled.

An example for co-simulation with FMI can be found in PragmaDev Studio example
projects, in $RTDS_HOME/examples/Specifier/WaterTank_FMI.
PragmaDev Studio V6.0 Page 191

User Manual
3.4.4 Launching the Model Simulator

The Model Simulator is started from the “Generation / Execute” menu or from the
quick button.

Byte code is generated out of the SDL description and the simulation environment is
started in the background. The Model Simulator window is started automatically and you
are ready to debug your system.

The Model Simulator window

All static processes are already present in the Process information list and each static
process has its Start message pending in the SDL system queue.

The Model Simulator can be restarted at any time with the reset button or shell
command. The underlying simulation environment is restarted and cleaned up.

3.4.5 Stepping levels
Since your source code is a composite of graphical SDL symbols and textual SDL lines of
code, the Model Simulator offers several ways to execute the code:

• Run with SDL key events trace information,
Menu “Options / Free run” de-activated. This is the default setup where
the Model Simulator traces all SDL key events and displays textual and /
or SDL and / or MSC traces.

• Run without SDL key events trace information,
Menu “Options / Free run” activated. When this option is activated the
system runs freely and no trace information is printed.
Page 192 PragmaDev Studio V6.0

User Manual
• Stop execution,

Stops execution of the running system.

• Stepping

Step line by line in the SDL code,

Step-out of an SDL procedure function,

Step-in a SDL procedure.

• Step until the next SDL key event such as:

• Message sending,
• Message received,
• Timer started,
• Timer cancelled,
• Timer went off,
• SDL state modification,
• SDL process created,
• SDL process deleted.

• Run until the end of the transition,

• Run until all signals are consumed except timers.

3.4.6 MSC trace
The MSC Tracer allows you to graphically trace execution of the system with its SDL key
events. It is possible to configure the MSC trace to define at which level of details the
architecture of the system should be represented. The MSC trace can be made at system,
block, process or any combination of agents. Any agent selected will be represented by a
lifeline in the MSC diagram. Any messages exchanged inside the agent will not be seen on
the MSC. The default view is the most detailed one, with a lifeline for each process.

• Configure the MSC trace
PragmaDev Studio V6.0 Page 193

User Manual
The quick button opens the MSC trace configuration window:

The following options are available:
• Show system time information,
• Record and display message parameters,
• SDL architecture elements to trace.

• Start the MSC trace

• The quick button starts the MSC Tracer. By default the trace is active.

• Stop the MSC trace

• The quick button stops the MSC Tracer.

• Trace the last SDL events (backTrace)

• The quick button opens a MSC Tracer and displays the last SDL events.
The number of logged events is between 50 to 100.

The tracer window itself is described in “Tracer window” on page 383.

3.4.7 Displayed information
The Model Simulator window is divided in 5 parts described below.

If needed, the displays can be refreshed at any time with the refresh button or
shell command.
Page 194 PragmaDev Studio V6.0

User Manual
The information to refresh can be setup in the “Options / Refresh options...” menu as
explained in “Refresh options” on page 201.

3.4.7.1 Processes

The Process information part list all processes defined in the SDL system. The displayed
information is:

• Name
This field displays the name of the process as defined in the Process create SDL
symbol. Several tasks can have the same name. The Pid should then be used to
distinguish them.

• Pid
This field shows the unique internal Process Identifier of the process.

• Sig
This field shows the number of signals waiting in the process queue.

• SDL state
This field is the internal SDL state of the SDL process as defined in the SDL dia-
gram. The RTDS_Start signal is a signal used to execute the start transition of
the process.

When the system is running the active process line is printed in red.

Process information window

To distinguish processes with the same name but in a different block, a tool tip shows up
when the cursor is over the process name and displays the full architecture path down to
the process:

Double-clicking on a process name will also open the corresponding diagram in an editor
window.

The Process information window also allows to modify the SDL state of a process. To do
so right click on the SDL state column of the process line. A pop up menu will list all the
PragmaDev Studio V6.0 Page 195

User Manual
available SDL state that have been defined in the system. Select one and the SDL state is
modified.

3.4.7.2 System queue

Model Simulator handles all pending signals in a single system queue.

The displayed information is:

• Pid
This field shows the unique internal Process Identifier of the receiver process of
the pending signal.

• Receiver
This field displays the name of the receiver process of the pending signal.

• Signal
This field shows the name of the pending signal.

That allows to:

• Execute the signal inputs in the order the signals have been sent.
Page 196 PragmaDev Studio V6.0

User Manual
• Re-order the pending signals.

That is a key feature of the Model Simulator since it makes the process scheduling inde-
terministic allowing full system validation whatever the ordering is.

The signal on the top is the next to be executed. Double click on a signal in order to put it
up front in the system queue:

System queue re-organization example

When signals are saved in an instance, the saved signal will also appear in the system
queue, just after the first signal that will be received by the instance that saved it, or at
the end of the queue if there is no such signal. To indicate that the signal is a saved one, it
will be displayed in italics and its name will be surrounded with slashes:

Such messages cannot be put to the top, so double-clicking on them will display an error
message in the PragmaDev Studio shell and do nothing.

3.4.7.3 Timers

The Timer info part displays all on-going timers started from the SDL design. The dis-
played fields are:

• Pid
Identifier of the process that started the timer.

• Name
Name of the timer as defined in the SDL design.
PragmaDev Studio V6.0 Page 197

User Manual
• Time left
Time left before the timer goes off.

SDL semantic specifies a transition takes no time, so system time does not increase
unless a timer goes off or a new system time value is set. However, this is not the case
when performance simulation is enabled (see “SDL Z.100 performance simulation” on
page 415).

There are 3 ways to manipulate timers in the Model Simulator. Selection is done through
the “Options / Timers” menu:

Timer handling selection menu

• Fire timers manually
In that mode, once all signals in the system have been executed, the system
hangs. To make a timer go off, double click on the timer line. System time will
increase by the value of the timer’s time left and all other timers with a value less
or equal will also be fired.

• Fire timers automatically
In that mode, once all signals in the system have been executed, the internal
scheduler will automatically fire the first timers in the list and increase system by
the timer left value.

• Real time timers
In that mode, once all signals in the system have been executed, a timer thread is
started that generates a timer tick every second. When the timer tick is received,
the system time value is increased by one. When the time left value of the first
timer reaches 0 (zero), the timer is fired. That implicitly means the delay
expressed when starting a timer is set in seconds in that specific mode.

When the cursor is over an owner in the timer list, a tool tip indicates the architecture
path down to the timer receiver.

3.4.7.4 Watch

There are several ways to add a variable in the Watch window:
Page 198 PragmaDev Studio V6.0

User Manual
• From the shell
Type the following command in the shell:
watch add <variable name>

• From the SDL editor
Select an expression in the SDL editor and go to the “Debug / Add watch” menu
to add the expression in the Watch window.

An existing watch can also be removed from the list of watched variables by either:

• Selecting it in the tree and press the ‘Del’ or ‘Backspace’ key;

• Running in the simulator shell the command:
watch del <variable name>
Note that for this command to work, the variable must be in the current scope.

The Watch window also allows to modify the value of variables. To do so:

• If the variable has a single value, double click on it, change it, then press
<Return> to update it.

• If the variable has several values - which is true for SDL arrays, sequences and
bags -, buttons will appear when the mouse pointer is over the variable or one of
its elements:
• For containers, a button will appear allowing to add an element to it:

• For elements, a button will appear allowing to remove it from its container:

• If the variable value is optional such as for an optional field in a struct, a button
will appear allowing to toggle the variable presence:
PragmaDev Studio V6.0 Page 199

User Manual
Adding an element to a container, removing an element from its container and toggling a
variable presence can also be done via the contextual menu:

3.4.7.5 Local variables

When stepping through the code the Model Simulator automatically displays the local
variables of the current process:

Local variables example

Some key variables are always present:

• OFFSPRING
SDL keyword indicating the pid of the last process created dynamically within
the current process; 0 if none have been created.

• SELF
Page 200 PragmaDev Studio V6.0

User Manual
SDL keyword indicating the current process pid.

• PARENT
SDL keyword indicating the pid of the process that created the current process; 0
if the process was created statically at startup.

• SENDER
SDL keyword indicating the pid of the sender of the last received message.

• &state
Internal variable representing the current state of the process.

The Local variables window also allows to modify the value of variables in the same way
as for the watched variables. See “Watch” on page 198.

3.4.7.6 Refresh options

The information displayed in the Model Simulator windows are divided in 2 categories:

• System info
• Process information
• Timer information
• Semaphore information

• Variables
• Local variables
• Watch variables

Retrieving any information from the target is time consuming. In order to optimize the
response time it is possible to configure which category of information is refreshed.

The configuration is done in the “Options / Refresh options...” menu:

Default Refresh options

• Single step means the use of one of the following step button: ,
In the default options, only the Variables category is refreshed since there is no
reason the System information category has changed in the meantime.

• SDL step means the use of the step button,
When stepping from an SDL event to another, only the System information cate-
gory is interesting to update.

• Break means the system has hit a breakpoint.
PragmaDev Studio V6.0 Page 201

User Manual
In that case it is recommended to update all the information.

Anyway, at any time it is possible to refresh all information:

3.4.8 Shell
The PragmaDev Studio shell allows to enter all commands listed above and is used as a
textual trace.

The available commands are grouped in categories. To list all the available categories
type:
help

It will list the following categories:
Type help followed by a category to list available commands

 shell
 execution
 interaction
 variables
 trace
 customization

Type help followed by a category name to list the corresponding commands.

To list all the available commands, type:
h

It will list the following commands:
Command - Explanation

h - lists all commands
history - list the last entered valid commands
clear - clears the shell
echo <string> - echos a string in the shell
include <file name>
resume - resumes the scenario
repeat <repeat count> <shell command> [|; <shell command>]*
<comment>
! <any host command>
refresh - refreshes all data in the window
run - runs the SDL system
stop - stops the SDL system
step - step in the code
stepin - step in function calls
stepout - step out a function call
keySdlStep - run until the next key SDL event
sdlTransition - run until the end of the SDL transition
runUntilTimer - run all transitions until timers
resetSystem - resets the running system
list - list breakpoints
watch add [<pid>:]<variable name>[<field separator><field name>]*
watch del [<pid>:]<variable name>[<field separator><field name>]*
break <break condition> [<ignoreCount> <volatile>]
delete <breakPoint number>
db <any debugger command>
set time <new time value>
send2name <sender name> <receiver name> <signal number or name> [<parameters>]
send2pid <sender pid> <receiver pid> <signal number or name> [<parameters>]
sendVia <sender pid> <channel or gate name> <signal number or name> [<parameters>]
send <sender pid> <signal number or name> [<parameters>]
systemQueueSetNextReceiverName <receiver name>
systemQueueSetNextReceiverId <receiver id>
Page 202 PragmaDev Studio V6.0

User Manual
interruptCall <procedure name>
extractCoverage <file name>
connect <port number>
connectxml <port number>
disconnect
varFromType <variable name> <variable type>
varFromValue <variable name> = <initial value>
varFieldSet <variable name>[.<field name>]* = <field value>
dataTypes <on | off>
print <variable name>
sdlVarSet [<process id>:]<variable name>=<value>
sdlVarGet [<process id>:]<variable name>=<value>
backTrace - display last events traced when activated in profile
setupMscTrace <time information> <message parameters> [<agents>]
startMscTrace
stopMscTrace
saveMscTrace <file name>
setEnvInterfaceFilter 1|0
buttonWindowCreate <button window name>
buttonWindowAdd <button window name> <button name> = <shell command> [|; <shell command>]*
buttonWindowDel <button window name> <button name>
buttonWindowLabelAdd <button window name> <label name>
buttonWindowLabelDel <button window name> <label name>

In any of the shell commands the following can be used:
|$(<os environment variable>) to acces an operating system environment variable
|${<interactive label>} pops up an interactive window to get variable value, /s, /b and others can
be used
|$[<shell variable name>] will be replaced by the shell variable value
|$<<process name>:<instance number>> will be replaced by the pid of the instance of the process
& <any command> will prevent the above pre-processing
<partial command>\ and continue the command on the next line of the shell

The last valid commands can be recalled with the upper arrow.

Some of these commands are the equivalent to buttons in the button bar. Some are spe-
cific to the shell and will be further explained below.

3.4.8.1 shell commands

To list all the available commands in this category, type:
help shell

It will list the following commands:
Command - Explanation

h - lists all commands
history - list the last entered valid commands
clear - clears the shell
echo <string> - echos a string in the shell
include <file name>
 run a scenario of commands out of a file
resume - resumes the scenario
repeat <repeat count> <shell command> [|; <shell command>]*
 repeat a set of shell commands
<comment>
 does nothing
! <any host command>
 runs any host command

In any of the shell commands the following can be used:
|$(<os environment variable>) to access an operating system environment variable
|${<interactive label>} pops up an interactive window to get variable value, /s, /b and others can
be used
|$[<shell variable name>] will be replaced by the shell variable value
|$<<process name>:<instance number>> will be replaced by the pid of the instance of the process
PragmaDev Studio V6.0 Page 203

User Manual
& <any command> will prevent the above pre-processing
<partial command>\ and continue the command on the next line of the shell

• Running scenarios
A set of commands can be saved to a script file with the red circle button in the
tool bar. The include command or the play button allows to run a script file. The
script file is stopped when a breakpoint is hit or when the stop button is pressed.
Type the resume command to resume the scenario.

• Process instances pid
It is possible to get a process instance pid with the |$< <process name> >
syntax.
Example:
In the following configuration:

echo |$<pong:0>
echos the pid of the first instance of pong:
2
Note:
This feature does not work if the “Options / Free run” is activated.

• Environment variables
Operating system environment variables can be accessed with the |$(<varia-
ble name>) syntax.
Example:
echo |$(RTDS_HOME)
echos:
C:\RTDS

3.4.8.2 execution commands

To list all the available commands in this category, type:
help execution

It will list the following commands:
Command - Explanation

refresh - refreshes all data in the window
run - runs the SDL system
stop - stops the SDL system
step - step in the code
stepin - step in function calls
stepout - step out a function call
keySdlStep - run until the next key SDL event
sdlTransition - run until the end of the SDL transition
runUntilTimer - run all transitions until timers
resetSystem - resets the running system
list - list breakpoints
watch add [<pid>:]<variable name>[<field separator><field name>]*
 adds a variable to watch:
 <pid> is the process id in which the variable is. Only available in Z.100 simulation.
 <variable name> is the name of the variable
Page 204 PragmaDev Studio V6.0

User Manual
 <field separator> is '!' in SDL Z.100 or '.' in SDL-RT
 <field name> is the name of the variable field or sub-field
watch del [<pid>:]<variable name>[<field separator><field name>]*
 remove a variable to watch
 <pid> is the process id in which the variable is. Only available in Z.100 simulation.
 <variable name> is the name of the variable
 <field separator> is '!' in SDL Z.100 or '.' in SDL-RT
 <field name> is the name of the variable field or sub-field
break <break condition> [<ignoreCount> <volatile>]
break condition is a function name or '*'break-address or file-name':'line-number or
 diagram-file-name':'symbol-id':'line-number
 ignoreCount is a number
 volatile is a boolean: 'true' or 'false'
delete <breakPoint number>
db <any debugger command>
 the command is directly sent to the debugger with no verification

• db
This command is not effective in SDL Z.100 simulation.

3.4.8.3 interaction commands

To list all the available commands in this category, type:
help interaction

It will list the following commands:
Command - Explanation

set time <new time value>
 new time value can be absolute time or '+'delta
send2name <sender name> <receiver name> <signal number or name> [<parameters>]
send2pid <sender pid> <receiver pid> <signal number or name> [<parameters>]
sendVia <sender pid> <channel or gate name> <signal number or name> [<parameters>]
send <sender pid> <signal number or name> [<parameters>]
 environment name is 'RTDS_Env' and environment pid is '-1'
 parameters are |{field1|=value|,field2|=value|,...|}
systemQueueSetNextReceiverName <receiver name>
systemQueueSetNextReceiverId <receiver id>
interruptCall <procedure name>
 calls the procedure with the given name immediatly. The procedure must be
 known in the current context. Usually used in conjunction with a breakpoint
 to simulate an interrupt handler called in the middle of a transition.
extractCoverage <file name>
connect <port number>
 to connect to an external tool on a socket using the shell format
connectxml <port number>
 to connect to an external tool on a socket using the xml-rpc format
disconnect
 to disconnect from the external tool

• set time
This command sets a new system time value if the debugger allows it. Please
check the PragmaDev Studio Reference Manual for more information.

• connect
This command opens a socket in server mode to connect an external tool to the
PragmaDev Studio shell. The parameter is the port number on the host IP
address. This command should be done before starting the client.

• disconnect
Disconnect the socket from the external tool.
PragmaDev Studio V6.0 Page 205

User Manual
• System queue manipulation
It is possible to re-organize the system queue order from the shell. The system-
QueueSetNextReceiverName will put up front in the system the next message
for the defined receiver name, and systemQueueSetNextReceiverId will put
up front in the system queue the next message for the defined receiver pid.

• interruptCall
Calls a procedure in the current execution context immediately. This command
can be used in conjunction with a breakpoint to simulate the call of an interrupt
handler in the middle of a transition: the breakpoint should set where the call
should occur, and the command issued after the execution has stopped. The pro-
cedure must be visible in the current context. The semantics of the call will
respect the SDL semantics: if the procedure modifies a variable in its parent, the
variable will actually be modified.
This command is only available in the Model Simulator.

• extractCoverage
Extracts the model coverage for the current debug session so far and stores it in
the specified file. If the file name is relative, it will be taken from the project
directory. Please note that if this command is used in a debug session run via the
rtdsSimulate command line utility, the project will be saved in the end and the
model coverage results stored in it.

3.4.8.4 variables commands

To list all the available commands in this category, type:
help variables

It will list the following commands:
Command - Explanation

varFromType <variable name> <variable type>
 creates a variable of the given type to be used in the shell
varFromValue <variable name> = <initial value>
 creates a variable with the given initial value to be used in the shell
varFieldSet <variable name>[.<field name>]* = <field value>
 sets a single variable field to a given value
dataTypes <on | off>
 prints the type of the variable
print <variable name>
 prints the variable value
sdlVarSet [<process id>:]<variable name>=<value>
sdlVarGet [<process id>:]<variable name>=<value>

• shell variables
It is possible to define variables in the shell and to use them in send2xxx com-
mands using the |$(<variable name>) syntax.
• varFromType

This command allows to declare a variable based on a type defined in the SDL
system. Only the types used as parameters in messages are available. The mes-
sage parameters need to be defined in a super-structure in order to be compli-
ant with the executor.
Page 206 PragmaDev Studio V6.0

User Manual
Example:

Shell commands to define a variable based on the type:
>varFromType a t_SubStruct
>print a
|{subField1|=0.0|,subField2|=0|}
>varFieldSet a.subField1=3.14
>varFieldSet a.subField2=1
>print a
|{subField1|=3.14|,subField2|=1|}
>varFromType b t_Struct
>varFieldSet b.field1=666
>varFieldSet b.field2=Hello world
>varFieldSet b.field3.subField1=6.55957
>varFieldSet b.field3.subField2=0
>print b
|{field1|=666|,field2|=Hello world|,field3|=|{subField1|=6.55957|,subField2|=0|}|}
>send2name pPing normal mDummy |{param1|=|$(a)|,param2|=|$(b)|}
send2name pPing NORMAL_SIGNAL mDummy
|{param1|=|{subField1|=1.23|,subField2|=0|}|,param2|=|{field1|=666|,field2|=Hello
world|,field3|=|{subField1|=6.55957|,subField2|=0|}|}|}
>Signal: mDummy sent by: RTDS_Env(-1) at: 0 ticks
>{param1={subField1=1.23,subField2=0},param2={field1=666,field2=Hello
world,field3={subField1=6.55957,subField2=0}}}
>

• varFromValue
This command allows to declare an untyped variable based on its value. Shell
commands to define a variable based on its values:
>varFromValue c=|{subField1|=1.23|,subField2|=0|}
>varFromType b t_Struct
>varFieldSet b.field1=666
>varFieldSet b.field2=Hello world
>varFieldSet b.field3.subField1=6.55957
>varFieldSet b.field3.subField2=0
>print b
|{field1|=666|,field2|=Hello world|,field3|=|{subField1|=6.55957|,subField2|=0|}|}
>send2name pPing normal mDummy |{param1|=|$(c)|,param2|=|$(b)|}
send2name pPing NORMAL_SIGNAL mDummy
|{param1|=|{subField1|=3.14|,subField2|=1|}|,param2|=|{field1|=666|,field2|=Hello
world|,field3|=|{subField1|=6.55957|,subField2|=0|}|}|}
>Signal: mDummy sent by: RTDS_Env(-1) at: 0 ticks
>{param1={subField1=3.14,subField2=1},param2={field1=666,field2=Hello
world,field3={subField1=6.55957,subField2=0}}}
>send2name pPing normal mDummy |{param1|=|$(c)|,param2|=|$(b)|}
PragmaDev Studio V6.0 Page 207

User Manual
send2name pPing NORMAL_SIGNAL mDummy
|{param1|=|{subField1|=1.23|,subField2|=0|}|,param2|=|{field1|=666|,field2|=Hello
world|,field3|=|{subField1|=6.55957|,subField2|=0|}|}|}
>Signal: mDummy sent by: RTDS_Env(-1) at: 0 ticks
>{param1={subField1=1.23,subField2=0},param2={field1=666,field2=Hello
world,field3={subField1=6.55957,subField2=0}}}
>

• varFieldSet
This command sets a field of the variable. This can only be used on simple
type fields.

• print
This command prints a variable value.

• dataTypes
This command is a verbose mode that displays the type when printing data.

• Accessing variables
• Shell variables

Shell variables can be accessed with the |$[<variable name>] syntax.
Example:
varFromType myVar mySubStructType
print myVar
|{b|= |,a|=0|}
echo |${myVar}
echos:
|{b|= |,a|=0|}

• Interactive variables
It is possible to ask the user for a value with the |${<input label>} syntax.
Options for the input label are: For strings, the only option is its length
(default: 20). For booleans, options are the value when checked and the value
when unchecked, separated by a comma. For example, a field with type “b[-
r,]” will be replaced in the command by “-r” if the user checks the correspond-
ing checkbox, and by the empty string otherwise. The defaults are “1” for
checked and “0” for unchecked.
Example:
echo |${Check to activate: /b}
pops up the following window:

echos 1 if checked or 0 if unchecked.

3.4.8.5 trace commands

To list all the available commands in this category, type:
help trace

It will list the following commands:
Command - Explanation

backTrace - display last events traced when activated in profile
setupMscTrace <time information> <message parameters> [<agents>]
Page 208 PragmaDev Studio V6.0

User Manual
 sets up the MSC trace where:
 <time information> is 0 or 1
 <message parameters> is 0 or 1
 <agents> is the list of agent names to trace separated by spaces
startMscTrace
stopMscTrace
saveMscTrace <file name>
setEnvInterfaceFilter <filter status>
 <filter status> is 1 or 0, when active only messages with the environment will be traced

• MSC trace
The MSC trace can be configured, started, stopped, and saved from the shell.
Example:
setupMscTrace 0 1 pPing
Will only trace pPing instance with no time information but with parameters.

• Filtering the interface between the environment and the system
The setEnvInterfaceFilter command allows to filter out SDL events that are
not related to the interface of the system at a very low level in the Model Simula-
tor. This feature should be used to increase simulation speed and when internal
information is not needed.

3.4.8.6 customization commands

To list all the available commands in this category, type:
help customization

It will list the following commands:
Command - Explanation

buttonWindowCreate <button window name>
 creates a window to contain user defined buttons
buttonWindowAdd <button window name> <button name> = <shell command> [|; <shell command>]*
 adds a button to previously created button window
 <button window name> is the name of the button window
 <button name> is the text to be displayed on the button
 <shell command> is the command associated with the button
buttonWindowDel <button window name> <button name>
 removes a button from a button window
 <button window name> is the name of the button window
 <button name> is the text of the button to be removed
buttonWindowLabelAdd <button window name> <label name>
 adds a label to previously created button window
 <button window name> is the name of the button window
 <label name> is the text to be displayed on the label
buttonWindowLabelDel <button window name> <label name>
 removes a label from a button window
 <button window name> is the name of the button window
 <label name> is the text of the label to be removed

• Button windows
It is possible to create user-defined buttons and to associate shell commands.
Here is an example of a button window:
>buttonWindowCreate myWindow
>buttonWindowLabelAdd myWindow Misc
>buttonWindowAdd myWindow myButton = help
>buttonWindowLabelAdd myWindow Execution
>buttonWindowAdd myWindow stop = send2name pPing normal mStop
PragmaDev Studio V6.0 Page 209

User Manual
>buttonWindowAdd myWindow start = send2name pPing normal mStart |{param1|=12345|}

So clicking on myButton will actually execute the help command in the shell.
It is also possible to remove labels or buttons:
>buttonWindowDel myWindow stop

It is possible to create several button windows.
To stop one of the window, just close the window.

3.4.9 Status bar
The status bar is divided in two parts:

• The Model Simulator internal state
The Model Simulator can have the following internal states:

State Meaning

STOPPED The system is stopped

STOPPING The system is trying to stop. No commands
are allowed in that intermediate state.

RUNNING The system is running. The traces might be
active or not (“Options / Free run”). A stop is

possible in that state.

STEPPING C code classical stepping. Note a classical step
might take a lot of time. A stop is possible in

that state.

KEY_SDL_STEPPING Step to the next SDL key event. Note an SDL
step might take some time. A stop is possible

in that state.

Table 2: Model Simulator internal states
Page 210 PragmaDev Studio V6.0

User Manual
• The active thread
The active thread is displayed in the right part of the status bar when known.

3.4.10 Breakpoints

3.4.10.1 Setting breakpoints

Breakpoints are set in the SDL editor. Select an SDL symbol and click on quick but-
ton or via the “Debug / Set breakpoint” menu to set a simple breakpoint.

Breakpoints can also be set via the “break” command with the following syntax:
break diagram-file-name:symbol-identifier:line-number-in-symbol

Since symbol identifiers are not directly visible in the diagram editor, the best way to get
the command is to set the breakpoint interactively, which will record the corresponding
command in the shell history. Note that symbol identifiers never change, so it is safe to
put such a command in a scenario file that will be executed several times.

3.4.10.2 Listing breakpoints

The breakpoints that have been set can be listed:

• In the PragmaDev Studio shell with the list command.

• In the breakpoint list window by clicking on the button in the toolbar. This
window looks like follows:

SDL_TRANSITION Step until the end of the SDL transition. Note
an SDL step might take some time. A stop is

possible in that state.

ERROR An error has occurred and the Model Simula-
tor is stuck. Restart the Model Simulator.

State Meaning

Table 2: Model Simulator internal states
PragmaDev Studio V6.0 Page 211

User Manual
For each breakpoint is given:
• its type: symbol or file,
• the file name for the diagram or source file where it is set,
• the internal identifier for the symbol where it is set if applicable,
• and the line number in the source file or symbol text where it is set.
From this window, selecting a breakpoint and clicking on “Open” or double-
clicking on a breakpoint line will display the symbol or file at the position of the
breakpoint, and selecting a breakpoint and clicking “Delete” will delete the
breakpoint.

3.4.10.3 Deleting breakpoints

Breakpoints can be deleted from:

• The shell with the delete command:
delete <breakpoint number>
where the breakpoint number is the number listed from the list command.

• The breakpoint list window, as explained in “Listing breakpoints” on page 211.

• The text editor: select a line where a breakpoint is set and press the button
in the debug toolbar.

• The diagram editor: put the text cursor in a symbol at a line where a breakpoint

is set and press the button in the debug toolbar.

3.4.10.4 Call stack

When a breakpoint is hit or whenever the execution stops in the middle of some code, the

call stack can be displayed via the same button as the brekapoint list (), and selecting
the “Call stack” tab:

This can be particularly useful when a system contains a lot of procedures calling each
other. Double-clicking on any item in the call stack will open the corresponding diagram
and show the symbol where the execution has stopped.
Page 212 PragmaDev Studio V6.0

User Manual
3.4.11 Sending SDL messages to the running system
The Model Simulator’s Send an SDL message to the running system button
opens the Send an SDL message to system window. It will list the possible
receivers, and the available messages in the system:

The send an SDL message to system Window

An equivalent command can be found in the shell:
send2pid <sender pid> <receiver pid> <signal number or name> [<parameters>]

where signal type can be normal or timer, or:
send2name <sender name> <receiver name> <signal number or name> [<parameters>]
sendVia <sender pid> <channel or gate name> <signal number or name> [<parameters>]
send <sender pid> <signal number or name> [<parameters>]

Verifications are made on the sender pid and receiver pid only.

Structured parameters are updated and displayed at the right of the window when select-
ing a signal. The equivalent format for the shell command depends on whether the mes-
sage is structured or not. Structured parameters are fully described in PragmaDev Studio
Reference Manual. In short, a message is structured if and only if it is declared with sev-
eral parameters or with one parameter that is a pointer to a struct or a union.

• For a non-structured message, the text for the parameter must be a sequence of
bytes written in hexadecimal format, exactly as they will appear in the target pro-
gram memory.

• For a structured message, the text for the parameter must be written as follows:
• The values for base types are written as in C: for example 12 or 871 are valid

values for an int, X is a valid value for a char, and so on…
• The values for structs or choices are coded as follows:

|{field1|=value|,field2|=value|,...|}
For example, for a struct defined as:
MyStruct STRUCT { i integer; s charstring; };
a valid format is:
|{i|=4|,s|=|:abcd|}
In the struct created on the target, the field i will be set to 4 and the field s will
be set to "abcd".
PragmaDev Studio V6.0 Page 213

User Manual
Please note that what is significant in the formatted text is not the field names,
but the field order; so in the example above, you can’t write:
|{s|=|:abcd|,i|=4|}/* INVALID! */
As a consequence, the field names are in fact optional, so you can write:
|{|=4|,|=|:abcd|}
Please also note that if no value is specified for a field, the field is left as is.
This can be used to set the value for fields in a choice. For example, for:
CHOICE MyChoice { i integer; c character; };
a valid format is:
|{i|=|,p|=’a’|}
The field i won’t be set and the field p will be set to ’a’.

• Escape sequences
Use a || to introduce a | in the message parameters,
Use a |. to introduce a carriage return in the message parameters.

3.4.12 Model coverage
The Model Simulator’s Get model coverage button gets the model coverage anal-
ysis results for the running system so far. This feature is available only if the Acti-
vate model coverage analysis is checked in the simulation options (see “Main

simulator options” on page 187).

For more details on model coverage results, see “Code coverage results” on page 161.

3.4.13 Provided external procedures
A number of built-in procedures are available in Model Simulator. To have access to
these procedures, the library must be imported in the model by “using” a built-in pack-
age:
use PragmaLib;

3.4.13.1 Formatted output

The following procedures are available for formatted output:
• PragmaDev_b4sprintf(<arg>) -> <sprintf arg>

• <arg>: boolean.
• <sprintf arg>: PragmaDev_arg4sprintf. Built-in wrapper type for <arg>.
This procedure is declared as:
PROCEDURE PragmaDev_b4sprintf(boolean_arg BOOLEAN) ->
PragmaDev_arg4sprintf EXTERNAL;

• PragmaDev_i4sprintf(<arg>) -> <sprintf arg>
• <arg>: integer.
• <sprintf arg>: PragmaDev_arg4sprintf. Built-in wrapper type for <arg>.
This procedure is declared as:
PROCEDURE PragmaDev_i4sprintf(integer_arg INTEGER) ->
PragmaDev_arg4sprintf EXTERNAL;

• PragmaDev_f4sprintf(<arg>) -> <sprintf arg>
• <arg>: real.
• <sprintf arg>: PragmaDev_arg4sprintf. Built-in wrapper type for <arg>.
Page 214 PragmaDev Studio V6.0

User Manual
This procedure is declared as:
PROCEDURE PragmaDev_f4sprintf(real_arg REAL) ->
PragmaDev_arg4sprintf EXTERNAL;

• PragmaDev_s4sprintf(<arg>) -> <sprintf arg>
• <arg>: charstring.
• <sprintf arg>: PragmaDev_arg4sprintf. Built-in wrapper type for <arg>.
This procedure is declared as:
PROCEDURE PragmaDev_s4sprintf(charstring_arg CHARSTRING) ->
PragmaDev_arg4sprintf EXTERNAL;

• PragmaDev_sprintf(<format>, <args>) -> <formatted string>
• <format>: charstring. Based on C sprintf format specifiers (%d, %f, %s, ...).
• <args>: PragmaDev_arg4sprintf. Built-in wrapper type for boolean, integer,

real, and charstring. This should be a concatenation of the procedures
described above (PragmaDev_<specifier>4sprintf where <specifier> is either
b, i, f, or s).

• <formatted string>: charstring.
This procedure is declared as:
PROCEDURE PragmaDev_sprintf(format CHARSTRING, args
PragmaDev_arg4sprintf) -> CHARSTRING EXTERNAL;
Usage example:
CHARSTRING output := PragmaDev_sprintf('This is %s %d',
PragmaDev_s4sprintf('number') // PragmaDev_i4sprintf(42));

3.4.13.2 File manipulation

The following procedures are available for file manipulation:
• PragmaDev_FileOpen(<file name>, <open mode>) -> <file id.>

• <file id.>: integer.
• <file name>: charstring. Path is relative to the project.
• <open mode>: charstring. Based on C fopen file manipulation modes (‘w’, ‘r’,

‘a’, ‘r+’,’a+’...)
This procedure is declared as:
PROCEDURE PragmaDev_FileOpen(file_name CHARSTRING, file_mode
CHARSTRING) -> INTEGER EXTERNAL;

• PragmaDev_FileClose(<file id.>) -> <success>
• <success>: boolean.
• <file id.>: integer. Value given by the PragmaDev_FileOpen.
This procedure is declared as:
PROCEDURE PragmaDev_FileClose(file_id INTEGER) -> BOOLEAN EXTER-
NAL;

• PragmaDev_FileReadLine(<file id.>) -> <read line>
• <read line>: charstring. The line read in the file. It will always include at least

the ending new line character. If the returned string is empty, it means the
end of the file has been reached.

• <file id.>: integer. Value given by the PragmaDev_FileOpen.
This procedure is declared as:
PROCEDURE PragmaDev_FileReadLine(file_id INTEGER) -> CHARSTRING
EXTERNAL;
PragmaDev Studio V6.0 Page 215

User Manual
• PragmaDev_FileWriteLine(<line>, <file id.>) -> <success>
• <success>: boolean.
• <line>: charstring. Line to write in the file.
• <file id.>: integer. Value given by the PragmaDev_FileOpen.
This procedure is declared as:
PROCEDURE PragmaDev_FileWriteLine(string_to_write CHARSTRING,
file_id INTEGER) -> BOOLEAN EXTERNAL;

3.4.13.3 Radar graph

The following procedures are available to generate radar graphs. Several graphs can be
generated at the same time. The resulting window will organize them in tabs. The scale
on the branches is automatically adjusted.

• PragmaDev_RadarGraphCreate(<graph name>, <branch labels>) ->
<graph id.>
• <graph id.>: integer.
• <graph name>: charsting. The name will be displayed in the window tab.
• <branch labels>: charstring. Semi-column separated list of branch names.
This procedure is declared as:
PROCEDURE PragmaDev_RadarGraphCreate(graph_name CHARSTRING,
branch_labels CHARSTRING) -> INTEGER EXTERNAL;

• PragmaDev_RadarGraphAddLine(<graph id.>, <line label>, <line
values>) -> <status>
• <status>: boolean.
• <graph id.>: integer. Value given by the PragmaDev_RadarGraphCreate.
• <line label>: charstring. Label of the line in the graph.
• <line values>: charstring. Semicolon separated list of values for each branch.
This procedure is declared as:
Page 216 PragmaDev Studio V6.0

User Manual
PROCEDURE PragmaDev_RadarGraphAddLine(graph_id INTEGER,
line_label CHARSTRING, line_branch_values CHARSTRING) -> BOOLEAN
EXTERNAL;

Radar graph example

3.4.13.4 Querying FMI2 variables

The following procedures are available for querying FMU variable values in FMI2 co-
simulation:

• PragmaDev_fmi2GetBoolean(<variable name>) -> <variable value>
• <variable name>: charstring.
• <variable value>: boolean.
This procedure is declared as:
PROCEDURE PragmaDev_fmi2GetBoolean(variable_name CHARSTRING) ->
BOOLEAN EXTERNAL;

• PragmaDev_fmi2GetInteger(<variable name>) -> <variable value>
• <variable name>: charstring.
• <variable value>: integer.
This procedure is declared as:
PROCEDURE PragmaDev_fmi2GetInteger(variable_name CHARSTRING) ->
INTEGER EXTERNAL;

• PragmaDev_fmi2GetReal(<variable name>) -> <variable value>
• <variable name>: charstring.
• <variable value>: real.
This procedure is declared as:
PragmaDev Studio V6.0 Page 217

User Manual
PROCEDURE PragmaDev_fmi2GetReal(variable_name CHARSTRING) ->
REAL EXTERNAL;

• PragmaDev_fmi2GetString(<variable name>) -> <variable value>
• <variable name>: charstring.
• <variable value>: charstring.
This procedure is declared as:
PROCEDURE PragmaDev_fmi2GetString(variable_name CHARSTRING) ->
CHARSTRING EXTERNAL;

3.4.14 User defined external operators and procedures
An operator or an external procedure can be implemented outside the SDL system. To do
so the “Generation / Options...” must define an XML-RPC server and an optional module
name as explained in “Main simulator options” on page 187.

An operator call in the Model Simulator will result in a call to:
[<module name>.]<operator name>

on the server.

An external procedure call in the Model Simulator will result in a call to:
[<module name>.]<procedure name>:external_proc

on the server.

Please note the <procedure name> capitalization must be the one used when calling the
procedure in the SDL system.

The types used for the parameters and return value of the operator or procedures are
transformed into their XML-RPC equivalent and used the following way:

• For an operator, the implementation is called with the same parameters as the
operator itself, and returns the same return value.

• For external procedures, the implementation is called with the same parameters
as the procedures. However, some parameters may be passed as IN/OUT, allow-
ing their value to be modified by the implementation.
To do that, the return value for the implementation of the procedure does not
only contain its actual return value, but also the values of all its IN/OUT parame-
ters. The return value for the implementation is therefore a XML-RPC struct,
with one field for each IN/OUT parameter, having the same name as the
declared procedure parameter, and if needed, an additional special field named
“return value” containing the actual return value for the procedure. This field
name has been chosen to make sure it won’t conflict with any procedure parame-
ter name while still being readable.
Page 218 PragmaDev Studio V6.0

User Manual
The rules to represent SDL data types in XML-RPC are summarized in the following
table:

An example is available in our distribution.

SDL data type XML-RPC representation

Boolean <boolean>

Integer <int>

Natural <int>

Real <double>

Character <string> with length 1

CharString <string>

BitString Not available.

OctetString Not available.

PID <int>

Duration <int>

Time <int>

STRUCT <struct> with the same fields as the SDL STRUCT in the
same order

CHOICE <array> of 1 or 2 elements: the first is a <string> con-
taining the value for the SDL ‘present’ field in the CHOICE.

The second is the value for the selected field if it’s valid.

LITERALS <string> containing the literal name

Array(
IndexSort,
ElementSort

)

<array> of <struct> containing each a field named
‘index’ containing the value for the index as a <string>,

and a field named ‘element’ containing the element at this
index. The type for this field is the XML-RPC representa-

tion of ElementSort.
The array may also contain an additional single <struct>
with a single field called ‘default’, its type also being the

XML-RPC representation of ElementSort. This
<struct> gives the default value for the SDL Array ele-
ments that do not have an explicit value. It is typically

used when the array is initialized via:
array := (. … .)

String(ElementSort) Not available.

Bag(ElementSort) Not available.

Table 3: XML-RPC representation of SDL data types
PragmaDev Studio V6.0 Page 219

User Manual
3.4.15 Connecting an external tool

3.4.15.1 Normal mode

It is possible to connect an external tool to the Model Simulator through a socket. To
allow connections to the Model Simulator the connect command should be entered in
the shell:
connect <port number>

The IP address used is the IP address of the host where the Model Simulator is running.
Only the port number can be configured.

The Model Simulator is seen as a server so the connect command should be executed
before starting the client.

Once the connection is made the client has basically a direct access to the shell com-
mands: whatever is sent goes to the PragmaDev Studio shell and whatever the shell
replies goes to the socket. Therefore the syntax is the one used in the shell. Note the
external tool connected will also receive any information that is printed out in the shell.

To close the socket use the disconnect command in the PragmaDev Studio shell.

Here is a sample code in Python (http://www.python.org) that connects to port 50010:

First start the server in the PragmaDev Studio shell:
connect 50010

Then go to a shell or DOS window and type:
python
>> from socket import *
>> s=socket(AF_INET, SOCK_STREAM)
>> s.connect((gethostname(), 50010))
>> s.send('help\n')
>> print s.recv(500)

It will print out the 500 first characters of the Model Simulator help and display it in the
shell.

3.4.15.2 XML mode

If a more structured way to communicate with the simulator is needed, it is also possible
to connect an external tool in XML mode with the command:
connectxml <port number>

The connection works exactly the same way, but the commands sent to the simulator as
well as the answers received from it are encapsulated in XML tags. The disconnection
commnd is the same as in normal mode (disconnect).

For a more precise description on the format of the commands and answers, please refer
to the corresponding section in the Reference Manual.

3.4.16 Command line simulation
The Simulator can be started from a shell or a DOS console and run an execution script
automatically with the simulate sub-command of the PragmaDev Studio command line
Page 220 PragmaDev Studio V6.0

http://www.python.org

User Manual
interface tool pragmastudiocommand. Check the Reference Manual for more informa-
tion.

3.4.17 Raspberry Pi GPIO
When running on a Raspberry Pi the Model Simulator can directly interact with the
GPIO of the Raspberry board. For that matter, outgoing messsages to the environment
must be named GPIO_OUT_XX where XX is the GPIO number, and incoming mess-
sages from the environment must be named GPIO_IN_YY where YY is the GPIO num-
ber. Please note the GPIO numbering goes from 1 to 27 and a GPIO can not be outgoing
and incoming at the same time.

The GPIO_OUT_XX outgoing signal comes with a parameter that is a LITERALS which
possible values are: high or low. The GPIO_IN_YY incoming signals comes with a
parameter that is a LITERALS which possible values are: raising or falling.

The declaration in the system must be of that form:
SIGNAL GPIO_OUT_XX(PragmaDev_led_state);
SIGNAL GPIO_IN_YY(PragmaDev_in_direction);

NEWTYPE PragmaDev_led_state
 LITERALS high, low;
ENDNEWTYPE;

NEWTYPE PragmaDev_in_direction
 LITERALS raising, falling;
ENDNEWTYPE;
PragmaDev Studio V6.0 Page 221

User Manual
In the example provided in the distribution, the system lights up a LED connected to
GPIO 18 when pressing a button connected to GPIO 25:

On the channel connected to the environment, declaring an outgoing message called
GPIO_OUT_18 sets GPIO 18 as an output on the board automatically. And declaring an
incoming message called GPIO_IN_25 sets the GPIO 25 as an input automatically.
Page 222 PragmaDev Studio V6.0

User Manual
The start transition of the state machine initially turns off the LED. Then when the but-
ton is pressed the LED is lit up and when the button is released it is turned off.
PragmaDev Studio V6.0 Page 223

User Manual
3.5 - Importing a PR/CIF file
PR (Phrasal Representation) and CIF (Common Interchange Format) files are ITU-T
standards to exchange SDL models from one tool to another. PragmaDev Studio allows
to import a file in SDL PR/CIF format to a PragmaDev Studio SDL project file. This is
done via the "Import SDL-PR/CIF file…" item in the "Project" menu. The import config-
uration is made via a wizard. The panels in this wizard are described in the following
paragraphs.

To export a model as a PR file please refer to “Exporting the project as an SDL/PR file”
on page 464.

3.5.1 Source & destination panel
The first panel in the PR/CIF import wizard is the following:

The "PR/CIF file to import", "Target directory" and "Target project name" should be set
to the name of the file to import, the destination directory for all created files and the
name to given to the project file respectively. If the "Ignore all CIF comments" option is
not checked, PragmaDev Studio will expect to find valid CIF comments in the imported
file and will use them to set the positions and sizes for all symbols. If the comments are
not present or wrong, the import may fail. If the comments are not present, or wrong, or
if they should be ignored for any reason, the option must be checked. PragmaDev Studio
will then place and size the symbols automatically.
Page 224 PragmaDev Studio V6.0

User Manual
3.5.2 Basic options panel
The next panel are the basic import options:

The options in this panel are:

• Make parser case insensitive for keywords: by default, only keywords all in
uppercase or all in lowercase are considered. Checking this option allows to
import a file with keywords in any case.

• Verbose output: By default, only error or warnings messages are displayed. This
option allows to also display messages about the conversion progress.

• Allow link crossing in converted diagrams: This option allows links to cross
other links in all converted diagrams, including systems and blocks.

• Force text for most symbols on a single line: By default, the text for symbols is
taken as it is in the imported file. This option allows to put these texts on a single
line, except for "naturally" multi-line symbols such as declarations or task
blocks.

• Split on commas: Used with the previous one, this option will insert a newline
after each comma in the symbol text.

• Max. number of lines before creating symbol shortcut text: Automatically cre-
ates a shortcut text for a symbol when the number of text lines is above the given
threshold. If this option is blank, no shortcut text will ever be created.

• Allow double-quoted strings: Some SDL tools allow strings to start and end with
double-quotes instead of single quotes as specified in the standard. Check this
option if the tool used to create the files to import allowed this.
PragmaDev Studio V6.0 Page 225

User Manual
• Zoom factor: Only available when considering CIF comments. All positions and
sizes in these comments will be multiplied by this factor.

• Left-shift "in" connector symbols: Only available when considering CIF com-
ments. This option controls how "in" connector symbols (labels) are placed in the
bounding box specified in the CIF comments for the symbol:
• With the option unchecked, the symbol will be placed as follows:

• With the option checked, the symbol will be placed as follows:

This option should be checked when importing files from Geode / ObjectGeode.

• Create one partition for each state: Only available when CIF comments are
ignored. This option will automatically create a new partition for each STATE
encountered in the imported PR file.

The next two panels are only displayed if the "Show advanced options" checkbox is
checked in the basic options panel. Otherwise, the wizard goes directly to the summary
panel (cf. “Summary panel” on page 229).

CIF comment bounding box

Connector symbol

CIF comment bounding box

Connector symbol
Page 226 PragmaDev Studio V6.0

User Manual
3.5.3 Advanced options panels
The first advanced options panel is the following:

The options are:

• Force auto-sizing for symbols in architecture diagrams: Will automatically
adapt the symbol dimensions to their text for all symbols in architecture dia-
grams.

• Force auto-sizing for symbols in behavioural diagrams: Same as the previous
option, but for behavioural diagrams (processes, procedures, services and mac-
ros).

• Additional characters allowed in identifiers: By default, PragmaDev Studio only
allows letters, digits, underscores and dots in identifiers. This field can be used to
add characters that will be considered as valid in identifiers. Please note that
specifying characters meaningful in the SDL syntax may have unpredictable
results. Using special characters such as @ or % should however not cause any
problem.

• Remove all names marked invisible: Only available when CIF comments are
considered. With this option checked, all names marked as invisible in the CIF
comments in the imported file will not be used in the created diagrams.

• Geode includes & external references: Specify how Geode "CIF includes" and
"COMMENT ’#ref …’" will be handled in the imported project:
• If this option is set to "Resolve or keep", the included or referenced file will be

imported if it exists, or the reference on it will be kept, either as text or as a
symbol PR code suffix (cf. “Symbol and link properties” on page 62).
PragmaDev Studio V6.0 Page 227

User Manual
• If this option is set to "Resolve or discard", the included or referenced file will
be imported if it exists, or the reference will be discarded. So the name of the
referenced file will not appear anywhere in the converted diagrams.

• If this option is set to "Always keep", the included or referenced files will
never be imported and the reference will be kept as text or a symbol PR code
suffix.

• Create SDL-RT project: In case there is C code in the input file.

The second advanced options panel is:

The option "Imported file contains" allows to import PR/CIF files containing only a part
of a diagram. If this option is set to a diagram type, the imported file will be considered as
containing only a part of a diagram of this type. The imported project will then include a
diagram with this type marked as a diagram extract. If this diagram is exported back to a
PR file, no heading or end marker will be created in the file.

The "Save partitions" options allows to control if partitions created in the converted dia-
grams will be saved in the diagram file or in an external file. If they are saved in an exter-
nal file, the computed name for the partition file may include either the partition name
alone or the diagram name and the partition name.
Page 228 PragmaDev Studio V6.0

User Manual
3.5.4 Summary panel
The last panel in the PR/CIF import wizard is the summary panel:

This is a summary of all options chosen in the previous panels. Pressing the "Go!" button
in the panel will actually start the import.

3.5.5 PR/CIF import progress and result
Once the import has started, a dialog will appear displaying all messages returned by the
conversion, including warning and error messages if any and progress messages if the
"Verbose" option was checked. All warnings and errors will also be saved in the con-
verted project and displayed each time the project is loaded. Double-clicking on a mes-
sage will automatically open the concerned diagram, allowing to check the conversion
result or to correct the problem if any.
PragmaDev Studio V6.0 Page 229

User Manual
4 - PragmaDev Developer

4.1 - SDL-RT project
PragmaDev Developer helps software designers to write maintainable and self docu-
mented code. The technology used for development describes the architecture and con-
tains a graphical view of the main paths of execution down to the code itself.

PragmaDev Developer is based on SDL-RT technology which combine SDL and C/C++
code in one consistent model. For information on the language itself, please refer to the
languages reference documents. PragmaDev projects are generic. In order to work with
PragmaDev Developer an SDL-RT system must be created. For that matter start a new
project, right click on the project and select addc hild element. Select active architecture
and system in the window:

4.2 - Data and SDL-RT types declarations

4.2.1 C types declarations
C types declaration can be made in several ways:

• in an external C header file that appears in the Project manager. The corre-
sponding include will have to be done at block or process level in a text block,

• in an SDL-RT text block; C code can be typed in directly. The C code covers dif-
ferent aspects depending on the SDL-RT level it is found:
• Block level

The C code contained at block level will be generated as a C header that will be
included in the underlying SDL-RT architecture (blocks, process, and proce-
Page 230 PragmaDev Studio V6.0

http://www.sdl-rt.org
https://www.itu.int/rec/T-REC-Z.100/en
https://www.itu.int/rec/T-REC-Z.100/en
https://www.itu.int/rec/T-REC-Z.100/en

User Manual
dures). It can contain C types and C global variables declaration but not the
global variables themselves. The global variables must be declared in separate
C files included in the Project manager.

• Process level
The C code contained in text blocks in an SDL-RT process will be inserted at
the process function declaration level. It therefore contains local variables to
the process.

• Procedure level
The C code contained in text blocks in an SDL-RT procedure will be inserted
at the procedure function declaration level. It therefore contains local vari-
ables to the procedure.

4.2.2 SDL-RT messages and message lists declaration
SDL-RT messages and message lists are declared either in a dashed text box in a dia-
gram, or in a SDL-RT declarations file (.rdm) in packages. The declaration statements
are:
MESSAGE <message name> [(<parameter type> {, <parameter type> }*)] ;
MESSAGE_LIST <list name> = <message name> { , <message name> }* ;

The parameter types in a MESSAGE declaration must be valid C types. Message lists may
be nested by using (<list name>) in the list elements declaration.

Example:
MESSAGE msg1, msg2(int), msg3(char*, struct MyType*, double);
MESSAGE_LIST myList = msg1, msg2, msg3;
MESSAGE_LIST mySuperList = (subList1), (subList2), addlMsg;

4.2.3 SDL-RT timer declaration
SDL-RT timers do not need any declaration. The code generator will browse the whole
system and extract the used timers automatically.

4.2.4 Semaphore declaration
Semaphores need to be declared with the semaphore declaration symbol. The syntax in
this symbol is:
<semaphore type> <semaphore name> (<option 1> [,<option 2>] [,<option
3>])

<semaphore type> can be:

• BINARY
<option 1> is:
• PRIO
• FIFO
<option 2> is:
• INITIAL_EMPTY
• INITIAL_FULL

• MUTEX
PragmaDev Studio V6.0 Page 231

User Manual
<option 1> is:
• PRIO

Queue pended tasks on the basis of their priority
• FIFO

Queue pended tasks on a first-in-first-out basis
<option 2> is:
• DELETE_SAFE

Protect a task that owns the semaphore from unexpected deletion
<option 3> is:
• INVERSION_SAFE

Protect the system from priority inversion

• COUNTING
<option 1> is:
• PRIO
• FIFO
<option 2> is:
• <value for initial count (int)>

Example:
MUTEX mySemaphore(FIFO, DELETE_SAFE)

This example creates a mutual exclusion semaphore called mySemaphore with tasks
pending on a first-in-first-out basis with protection from unexpected deletion of the own-
ing task. <option 3> is omitted so the system is not protected against priority inversion.

4.2.5 Process declaration
A process is declared graphically in an SDL-RT block diagram. The code generator will
then generate the C function corresponding to the behavior description made in SDL-RT.

The syntax is the following:
<process name> [(<initial number of instances, maximum number of
instances>)] [:<process type>] [PRIO <priority>]

to create <initial number of instances> instance of <process type> named
<process name> with priority <priority> at startup.

The default priority is defined by RTDS_DEFAULT_PROCESS_PRIORITY in
RTDS_OS_basic.h. The default initial number of instance is 1. The maximum number of
instances is just for documentation, no verification will be made at run time.

Examples:
myProcess
anotherProcess:aTypeOfProcess PRIO 80
aThirdProcess(0,10)

The last example is usually when the process is created by another process. They usually
do not exist at startup.
Page 232 PragmaDev Studio V6.0

User Manual
4.2.6 Procedure declaration
A procedure is declared graphically with the procedure declaration symbol. The syntax is
the syntax used to define a C function:
<return type> <function name> ({<parameter type> <parameter name>}*);

Example:
int myFunction (short myParameter);

4.2.7 Class description
A class is described graphically with a class symbol in a class diagram. The syntax used is
the UML syntax:

• The class header identifying the class itself is formatted like follows:
[<< <stereotype> >>] [<package name>::]<class name> [{<proper-
ties>}]
The two recognized stereotypes are <<interface>> and <<system>> (for active
classes; see below). The properties may be specified, but are ignored.

• The attributes are described via a set of lines having the following format:
[<visibility>] <name> [: <type>] [= <default value>][{proper-
ties}]
The visibility may be ’+’ for public, ’#’ for protected and ’-’ for private. All basic
C/C++ types are recognized. The default value and properties are ignored.

• The operations are described via a set of lines having the following format:
[<visibility>] <name>({<param>}*) [: <return type>] [{proper-
ties}]
where <param> has the format:
[<direction>] <name> [: <type>] [= <default value>]
The visibility is coded the same way than for attributes. Recognized types for
parameters or return type are all C/C++ basic types, plus all classes known in the
project. The direction for parameters may be "in" for input only parameters,
"out" for output-only parameters, or "inout" for two-way parameters. The oper-
ation properties are ignored.
Note: parameters declared as "out" and "inout" are both passed as references to
the method (<type>&).

Class constructor(s) and destructor are identified via the special names <<create>> and
<<delete>> respectively. As in C++, there may be several constructors with different
parameters, but only one destructor. There must be no return type for any constructor or
destructor.

Systems, blocks, processes, block classes and process classes may also be referenced in
class diagrams. In this case, they are represented as active classes, as explained in SDL-
RT specification. These active classes may not have attributes, which are meaningless in
this case. They may however have operations, representing incoming and outgoing sig-
nals for the object. These operations are indicated by special visibilities ’>’ for incoming
signals and ’<’ for outgoing ones. These pseudo-operations may only accept one in
parameter which is the data associated to the signal. For block and process classes, the
properties are used to indicate via which gate goes the signal ({via:<gate name>}).
PragmaDev Studio V6.0 Page 233

User Manual
Example:

4.3 - SDL-RT symbols syntax

4.3.1 Task block
The task block contains standard ANSI C code as it would be written in a text file.

Example:

4.3.2 Next state
The syntax in the next state SDL-RT graphical symbol is:

<new SDL-RT state>

Of course, the new SDL-RT state needs to be defined in the diagram.

It also can be “-”, meaning the state is not changed. This can be particularly useful in
transitions attached to a “*” state symbol.

4.3.3 Continuous signals
The continuous signal can contain any standard C expression that returns a C true/false
expression. In the generated code the expression is put in an if statement as is. Since an
SDL-RT state can contain several continuous signal a priority level needs to be defined
with the PRIO keyword. Lower values correspond to higher priorities. The syntax is:
<C condition expression>
PRIO <priority level>
Page 234 PragmaDev Studio V6.0

User Manual
Example:
(a > 5)
PRIO 3

4.3.4 Message input
The message input symbol represent the type of message that is
expected in an SDL-RT state. It always follows an SDL-RT state
symbol and if received the symbols following the input are exe-
cuted.

An input has a name and comes with optional parameters. To receive the parameters it is
necessary to declare a variable for each expected parameter. The syntax in the message
input symbol is the following:
<message name> [(<parameter name> {, <parameter name>}*)]
<parameter name> are variables that need to be declared.

Example:

Even though it is not recommended, if a message is declared
without any parameter it is possible to transmit undefined
parameters with a length and a pointer on the parameter data.
In that case it is necessary to declare 2 variables that will be
the parameter length and the pointer on the parameters.

The syntax in the message input symbol is the following:
<message name> [(<length of data>, <pointer on data>)]

<data length> is a variable that needs to be declared.
<pointer on data> needs to be declared.

myStruct, myInt, and myLength
will be assigned to the value of
the received message parameters.
PragmaDev Studio V6.0 Page 235

User Manual
Examples:

4.3.5 Message output

4.3.5.1 General aspects

The syntax in the message output symbol can be written in 3 ways
depending on whether the queue Id of the receiver is known or not, and
if its name is constant or variable. A message can be sent to a queue Id, a
process name or via a channel or gate. When communicating with the
environment, a special syntax is provided.

Messages can have parameters. The type of the parameters are defined in the message
declaration.

<message name>[(<parameter value> {,<parameter value>}*] TO_XXX
<receiver>

<parameter value> is the value of the parameter with the type declared in the message
declaration. The parameters can be transmitted as values or references. When the
parameters are direct values, the data is first copied and then sent out. When the param-
eters are references, the receiver and the sender end up with the same reference on the
data. Is it then very important to define which process owns the data in order to avoid
data corruption. It is usual to consider the sender does not own the data any more once it
has been sent, and it is the receiver’s responsability to free the associated memory if
needed.
Page 236 PragmaDev Studio V6.0

User Manual
Examples:

Even though it is not recommended, it is also possible to use a generic parameter assign-
ment when there is no parameter type declaration:

<message name> [(<length of data>,<pointer on data>)] TO_ID <receiver
queue id>

<receiver queue id> is of type RTDS_QueueId

The generated code will copy the data of size <length of data> pointed by <pointer
on data>.

Examples:

4.3.5.2 Queue Id

<message name>[(<parameter value> {,<parameter value>}*] TO_ID
<receiver queue id>

• <parameter value> is the value of the parameter with the type declared in the
message declaration,
PragmaDev Studio V6.0 Page 237

User Manual
• <receiver queue id> is of type RTDS_QueueId.
It can take the value given by the SDL-RT keywords:
PARENT The queue id of the parent process.
SELF The queue id of the current process.
OFFSPRING The queue id of the last created process if any or NULL if none.
SENDER The queue id of the sender of the last received message.

Examples:

4.3.5.3 Process name

<message name> [(<parameter value> {,<parameter value>}*] TO_NAME
<receiver name>

<receiver name> is the name of a process if unique or it can be ENV when simulating
and the message is sent out of the SDL-RT system.

Examplees:

Note: If several instances have the same process name (several instances of the same
process for example), the TO_NAME will send the message to the first created process with
the corresponding name. Therefore this method should no be used when the process
name is not unique within the system.
Page 238 PragmaDev Studio V6.0

User Manual
4.3.5.4 Via a channel or gate

<message name> [(<parameter value> {,<parameter value>}*] VIA <channel
or gate name>

<channel or gate name> is the name channel or gate connected to the current process
or process class.

Examples:

Note: The actual receiver is resolved statically. So there must be no ambiguity in the
channels allowing the signal to pass. Also note that a VIA is resolved to a process name,
so the note in paragraph 4.3.5.3 applies.

4.3.5.5 Environment

<message name> [(<parameter value> {,<parameter value>}*] TO_ENV <C
macro name>

<C macro name> is the name of the macro that will be called when this SDL-RT output
symbol is hit. If no macro is declared the message will be sent to the environment pro-
cess; that obviously only works when simulating but not for the final code.

Examples:

Note: When sending data pointed by <pointer on data>, the corresponding memory
should be allocated by the sender and should be freed by the receiving process. This is
because this memory area is not copied to the receiver; only the pointer value is transmit-
ted. So after being sent the sender should not use it any more.

In this second example the gen-
erated code will be:
MESSAGE_TO_HDLC(Con-
Req,myDataLength,myData)
PragmaDev Studio V6.0 Page 239

User Manual
4.3.6 Saved message

The syntax to save an SDL-RT message in the save graphical symbol is:
<message name>

4.3.7 Semaphore take

To take a semaphore, the syntax in the ‘semaphore take SDL-RT graphical symbol’ is:
<status> = <semaphore name> (<timeout option>)

where <timeout option> is:

• FOREVER
Hangs on the semaphore forever if not available.

• NO_WAIT
Does not hang on the semaphore at all if not available.

• <number of ticks to wait for>
Hangs on the semaphore the specified number of ticks if not available.

and <status> is of type RTDS_SemaphoreStatus and can take the following values:

• RTDS_OK
If the semaphore has been successfully taken

• RTDS_ERROR
If the semaphore was not found or if the take attempt timed out.

4.3.8 Semaphore give

To give a semaphore, the syntax in the ‘semaphore give SDL-RT graphical symbol’ is:
<semaphore name>

4.3.9 Timer start

To start a timer the syntax in the ‘start timer SDL-RT graphical symbol’ is :
<timer name> (<time value in tick counts>)
Page 240 PragmaDev Studio V6.0

User Manual
<time value in tick counts> is usually an ‘int’ but is RTOS and target dependant.

4.3.10 Timer stop

To cancel a timer the syntax in the ‘cancel timer SDL-RT graphical symbol’ is : <timer
name>

4.3.11 Process

To create a process the syntax in the ‘create process SDL-RT graphical symbol’ is:
<process name>[:<process type>] [PRIO <priority>]

to create one instance of <process type> named <process name> with priority <pri-
ority>.

The default priority will be 150.

Examples:

4.3.11.1 Procedure call

The procedure call symbol is used to call an SDL-RT procedure (see “Procedure declara-
tion” on page 233). Since it is possible to call any C function in an SDL-RT task block it is
important to note SDL-RT procedures are different because they know the calling pro-
cess context, e.g. SDL-RT keywords such as SENDER, OFFSPRING, PARENT are the ones of
the calling process.

The syntax in the procedure call SDL-RT graphical symbol is the standard C syntax:
[<return variable> =] <procedure name>({<parameters>}*);
PragmaDev Studio V6.0 Page 241

User Manual
Examples:

Note: A procedure defined in SDL-RT can not be called directly from a C statement. It
has to be called from the procedure call graphical symbol. This is due to the fact that the
procedure needs to know the process context so the generated code adds a parameter to
the procedure definition and call.

4.3.12 Object initialization

The object initialization symbol is used when a class is attached to a process or process
class via a composition link. This composition is made in a class diagram like follows:

In this case, one or several instances of <class> are part of the process <process>,
depending on the composition’s cardinality. These instances are known in the process via
a variable named <role name>.

The object initialization symbol may be used like follows:

• If the maximum number of instances is 1, the object initialization symbol must
be used to initialize the object in the start transition for the process. No
[<index>] must follow the object name in the symbol.

• If the maximum number of instances is more than one, it is possible but not
mandatory to use the object initialization symbol to initialize one of the objects
in the list of associated instances. In this case, an [<index>] must be specified.

Examples:

Note: In the generated code, using a task block containing:
<object> = <class>(<parameters...>);

is exactly the same than using the object initialization symbol, except for the added
semantics checking in the case of compositions with a maximum cardinality of 1.
Page 242 PragmaDev Studio V6.0

User Manual
4.3.13 Connectors
Connectors are a way to make the execution continue at another spot in the diagram. A
connector out is also called a JOIN, and a connector in a LABEL:

Connectors are used to:

• split a transition into several pieces so that the diagram stays legible,

• to gather different branches to a same point.

A connector-out symbol has a name that relates to a connector-in. The flow of execution
goes from the connector out to the connector in symbol.

A connector contains a name that has to be unique in the process. The syntax is:
<connector name>

Examples:

4.3.14 Decision
The expression to evaluate in the symbol can contain:

• any standard C expression that returns a C true/false expression,

• an expression that will be evaluated against the values in the decision branches.

The values of the branches have keyword expressions such as:

• >, <, >=, <=, !=, ==

• true, false, else

The else branch contains the default branch if no other branch made it.

Connector out Connector in
PragmaDev Studio V6.0 Page 243

User Manual
Examples:

4.3.15 SDL-RT keywords

4.3.15.1 Global keywords

The following SDL-RT keywords are defined and can be used in all symbols:

PARENT The queue id of the parent process.

SELF The queue id of the current process.

OFFSPRING The queue id of the last created process if any or NULL if none.

SENDER The queue id of the sender of the last received message.

4.3.15.2 Local keywords

The following keywords are dedicated to specific symbols :

keywords concerned symbols

PRIO Task definition
Task creation

Continuous signal

TO_NAME
TO_ID
ENV

Message output

FOREVER
NO_WAIT

semaphore manipulation

BINARY
MUTEX

COUNTING
PRIO
FIFO

INITIAL_EMPTY
INITIAL_FULL
DELETE_SAFE

INVERSION_SAFE

semaphore declaration

>, <, >=, <=, !=, ==
true, false, else

decision branches

Table 4: Keywords in symbols
Page 244 PragmaDev Studio V6.0

User Manual
USE

SDL_MESSAGE_LIST

text symbol

keywords concerned symbols

Table 4: Keywords in symbols
PragmaDev Studio V6.0 Page 245

User Manual
4.4 - Code generation
The code generation for an agent is run from the project manager by selecting the agent,
then choosing “If needed...” or “Force...” in the “Generation / Generate code” menu.

Clicking on the button or selecting the “Generate code if needed...” or “Force code
generation...” in the “Generation / Build” menu generates the code, but also runs the
whole build process if enabled in the generation options (see “Profiles” on page 248).

4.4.1 Concerned elements
The elements concerned by the code generation are the following:

• All elements in the agent sub-tree, including SDL-RT diagrams and C/C++
source files;

• All agent classes used in any diagram of the agent sub-tree, with the sub-tree for
the agent class;

• All C/C++ source files that do not appear as children of SDL-RT diagrams;

• All classes linked by any association to any involved agent or one of its parents,
and all associated classes recursively.
Page 246 PragmaDev Studio V6.0

User Manual
For example, if the project tree is:

If we generate the code for the block MyBlock1, the included elements are in the dia-
grams marked in red:

• The block MyBlock1;

• The processes MyProcess1a and MyProcess1b since they are in the block’s sub-
tree;

• The process class MyProcessClass1, since the block contains an instance of the
class;

• The procedure MySdlProcedure since it’s in the sub-tree for the process class;

• The C source files SourceFile1.c and SourceFile2.c since they’re not chil-
dren of any SDL-RT diagrams;

• The class MyClass1, since it is linked to MyProcessClass1 in diagram ClassDi-
agram;
PragmaDev Studio V6.0 Page 247

User Manual
• The class MySystemClass, since it is linked to MySystem in diagram System-
ClassDiagram and MySystem is a parent of MyBlock1.

The process class MyProcessClass2 is not included since no instance of this class
appears in MyBlock1 or any of its descendants. The class MyClass2 is not included since
it is only linked to the process class MyProcessClass2, which is not involved in the code
generation.

4.4.2 Profiles

4.4.2.1 Description

The options concerning the code generation and compilation are managed via a set of
profiles stored with the project. These profiles are displayed via the item “Options...” in
the “Generation” menu of the project manager.

Code generation profiles

The left part of the dialog displays the names of the existing profiles. It also allows to add,
delete or rename profiles via the “+”, “-” and “Rename…” buttons respectively. Adding a
Page 248 PragmaDev Studio V6.0

User Manual
profile also allows to copy the selected one in the list. Selecting a profile name in the list
displays the options set for this profile in the right part.

The “Option wizard…” button on the top of the dialog allows to quickly create a typical
working profile depending on the platform, RTOS, and debugger. It is described in para-
graph “Option wizard” on page 254.

The buttons “Import…” and “Export…” at the bottom right of the dialog allow to export a
generation profile in a file, and then to import it back in another project.

The following paragraphs describe the options in the dialog tabs. Please note some of
these options are only meaningful for C code generation from SDL systems, which is only
available in PragmaDev Studio, and not in PragmaDev Developer. Please refer to section
“SDL C code generation” on page 403 for more details.

4.4.2.1.1 Code generation options

This tab is displayed above (paragraph “Description” on page 248). The options are:

• General options group:
• Destination directory is the directory where all files will be generated.
• Code templates dir. is the directory containing the files used to generate the

code.
• First signal num. is the lowest number to use for signal numerical values. This

option is useful if your system includes processes defined outside PragmaDev
Studio that use signal numerical values of their own. Setting this option to a
value higher than any existing signal numerical value will ensure that Prag-
maDev Studio never generates an already used one.

• Data allocation can be static or dynamic. This option has impact for String
and Bag types only. In static mode, the types are generated as array of static
size. This size if defined in the RTDS_Set.h file with the macro
RTDS_MAX_RECORD_OF set to 256 by default. In dynamic mode, the size of
string and bag are dynamically handled, memory is reallocated for each new
element add the the bag or the string.

• Generate all ASN.1 declarations in only one file. By default, each ASN.1 file
present in a project will be generated as a unique header file. If this option is
checked, all ASN.1 declarations will be generated in only one header file. This
is to avoid loop dependencies issue which are supported in ASN.1.

• SDL-RT / SDL specific options group:
• Language is the programming language used for the export. It can be C or

C++.
• If the Gen. code coverage info. check box is checked, the code to extract code

coverage will be generated in addition to the normal code. See paragraph
“Model coverage” on page 336.

• The Operators implemented in C option is only meaningful if the generation
language is C++ and the project language is SDL. It indicates that the func-
tions implementing the SDL operators are C functions and that their declara-
tion should be generated in an extern "C" block.

• If the Case-sensitive option is checked, the code generation will be made in
case-sensitive mode. This option is only meaningful if the project language is
PragmaDev Studio V6.0 Page 249

User Manual
SDL. The default is to use for each identifier the case for the first time it is seen
in the diagrams.

• The Declaration header file prefix is added to the name of all generated decla-
ration files.

• The Generated constants prefix is added to all identifiers generated for SDL
synonyms or literals. It has no effect in SDL-RT.

• If the Prefix enum values names w. type name option is checked, the identifi-
ers generated for SDL literals will be prefixed with the type name (in addition
to the prefix above). This allows to have several types defining a literal with
the same name. This option has no effect in SDL-RT.

• The Generated operator functions prefix will be added to all declarations for
the functions implementing the SDL operators. It has no effect in SDL-RT.

• If the Generate environment process option is checked, a process simulating
the environment will always be generated, even if none is present in the sys-
tem.

• The Communicate with env. via macros option is only meaningful for a SDL-
RT system. If it is checked, message output with the TO_ENV keyword followed
by a macro name will always call the macro and not actually send a message. If
the option is unchecked, an actual message sending is done, which requires an
existing environment process. In this case, it is safer to check the previous
option so that an environment process is always generated. If both options are
unchecked and no explicit environment process exists in the SDL-RT system,
code generation will fail.

• The Generate ASN.1 codecs for env. messages option is only meaningful for
SDL systems. If it is checked, communication with the environment is
assumed to be done via ASN.1 encoded data, and PragmaDev Studio will auto-
matically generate the encoders and decoders for the incoming and outgoing
messages for the system, as well as the code needed to send an ASN.1 encoded
message from the system to the environment, and from the environment to
the system. Refer to “ASN.1 codecs for environment messages” on page 403
for more details. If both this option and Generate environment process are
unchecked, and the SDL system doesn’t include an explicit environment pro-
cess, code generation will fail.

• Checking the Partial code generation checkbox allows to generate code allow-
ing easier integration with an external scheduler. In this case, two files must
be provided:
• One listing all the names of the PragmaDev Studio processes that will be

included in the final system, one name per line;
• One listing all the names of the messages that can be sent or received by all

PragmaDev Studio processes in the final system, one name per line.
These files are necessary to ensure the correct generation of files defining glo-
bal information (e.g RTDS_gen.h).
If the Copy RTOS adaptation files to gen. dir. option is checked, all files in the
profile directory used in the build will be copied to the generation directory,
and the build process will use these files and not those in the PragmaDev Stu-
dio installation directory. This allows to have a completely standalone gener-
ated code, which doesn’t need a PragmaDev Studio installation to be run.
Page 250 PragmaDev Studio V6.0

User Manual
Partial code generation is described in detail in paragraph “Integration in
external scheduler” on page 307.

• TTCN specific options group:
These options are specific to TTCN C++ code generation (see “C++ code genera-
tion” on page 351).

4.4.2.1.2 Build options

The tab for build options looks like follows:

The options are:

• If the Generate makefile check box is checked, a makefile will be generated. The
following options set the commands and options that will be included in the
makefile. The only mandatory command is the compiler. If the preprocessor is
not set, there will be no explicit preprocessing phase; if the linker is not set, the
compiler command will be used for linking.

• Include external makefile
Some profiles such as Tornado, OSE, and CMX require a pre-defined external
makefile. To include a user defined external makefile, the pre-defined include
should be done in the new external makefile.
PragmaDev Studio V6.0 Page 251

User Manual
For profiles using GNU make (Cygwin, Gnu and Tornado), the external makefile
can access environment variables via the regular makefile macro syntax (e.g.,
${RTDS_HOME}). Other flavors of make may also offer this possibility.

• If the Do build check box is set, the actual compilation will also be run by the
code generation operation. The command run for the compilation itself is split-
ted in 3 parts:
• The executable name with the options, e.g "make", or "make -f MyMakefile";
• The target name, usually empty or "RTDS_ALL";
• The additional arguments that should be passed after the target, e.g., makefile

macro definitions ("MACRO_NAME=value").
In addition to the compilation command, you may also enter two commands that
will be run before and after the compilation respectively. In these command, the
final executable name can be accessed with the following environment variables
• RTDS_TARGET_NAME executable name with extension,
• RTDS_TARGET_BASE_NAME executable name without extension.
Please note the syntax to access environment variables depending on the host
platform:
• DOS: %RTDS_TARGET_NAME%
• Unix: $RTDS_TARGET_NAME

4.4.2.1.3 Debug and trace options

The tab for debug and trace options looks like follows:
Page 252 PragmaDev Studio V6.0

User Manual
The Debug group defines the debug environment to use.

• If set to None, the profile is considered to be for generating the final code, mean-
ing it will:
• use the options in the common section of the DefaultOptions.ini file in the

Code templates directory (Cf. Reference Manual),
• not start any debugger.

• If set to MSC Tracer, the profile is also for generating the final code, but the gen-
erated executable will be able to trace all its actions using PragmaDev MSC
Tracer.

• If set to Standalone Prototyping GUI Runner, the profile is also for generating
the final code, but the generated executable will be able to connect to a prototyp-
ing GUI running within PragmaDev Developer or PragmaDev Studio.

• If set to Debugger, the profile is a debug profile, meaning it will:
• use the options in the common and debug section of the DefaultOptions.ini

file in the Code templates directory (Cf. Reference Manual),
• start the C debugger and the corresponding SDL-RT debugger interface. The

command for the debugger is set in the corresponding field. The field Startup
commands contains commands to be sent to the debugger once it is started.

• If set to Deployment simulator, the profile is a deployment simulation profile,
meaning it will:
• use the options in the common section of the DefaultOptions.ini file in the

Code templates directory (Cf. Reference Manual),
• start the deployment simulator using the command in the corresponding field.

The options in the Socket connection to target group configure the host to target com-
munication. They are used by the target program to send trace information:

• to PragmaDev Studio graphical debugger during a debug session;

• to PragmaDev MSC Tracer if its support has been activated;

• to the prototyping GUI running in PragmaDev Developer or PragmaDev Studio if
the generation is for the standalone prototyping GUI runner.

The value for the Host IP address option can be This host, meaning the machine where
PragmaDev Studio is currently running, Target host, meaning the machine where the
target will run, or Forced host to specify a user-defined IP address.
PragmaDev Studio V6.0 Page 253

User Manual
4.4.2.2 Option wizard

Almost all of the options described in paragraph “Description” on page 248 may be auto-
matically set by using the “Option wizard…” button at the top of the generation profile
dialog. Pressing this button will display the following dialog:

The dialog allows to modify the currently displayed profile to work with a standard envi-
ronment provided with PragmaDev Studio, identified by the platform it runs on, the
RTOS and the debugger used if needed. If the updated profile already has any field set,
it’s better to choose the Append to existing ones option.

Validating the dialog will then automatically set the following fields:

• Code templates directory,

• Preprocessor, compiler, linker commands and options,

• For some RTOSs, Additional files to link and/or Include external makefile,

• Compilation command,

• For some RTOSs, Before build command and/or After build command,

• Debug environment, plus Debugger command if environment is not None.

The check-boxes Generate makefile and Do build are also automatically checked.
Page 254 PragmaDev Studio V6.0

User Manual
4.4.2.3 VxWorks profile

PragmaDev Studio includes a code template directory to generate VxWorks applications
and the SDL-RT debugger is interfaced with Tornado providing a consistent environ-
ment.

The profile characteristics are:

• Timer values are set in number of system ticks,

• The SDL-RT process priorities are the ones of VxWorks. The default value is 150.

To generate VxWorks application, it is recommended to use Wind River special make
utility and define the CPU. The corresponding makefile will be automatically generated
and compiled with the right options. Classical CPU definitions are:

• SIMNT
When generating applications to be executed on VxSim on Windows

• SIMSPARCSOLARIS
When generating applications to be executed on VxSim on Solaris

• PENTIUM
When generating applications to be executed on a Pentium target

• PPC860
When generating applications to be executed on a PowerPC 860 target

• ...

The compiler command, the linker command, and the compiler options should be set to
use the ones from Wind River:

• compiler command: $(CC)

• compiler options: $(CFLAGS)

• linker command: $(LD_PARTIAL)

The Tornado debugger command is different for each target. Classical debugger com-
mands are:

• gdbsimnt
When debugging on Windows host with VxSim

• gdbsimso
When debugging on Solaris host with VxSim

• gdbi86
When debugging on Pentium based targets whatever the communication link is
(serial or ethernet)

• gdbppc
When debugging on PowerPC based targets whatever the communication link is
(serial or ethernet)

• ...

Note the generated makefile requires to include a Wind River specific part:
include C:\RTDS\share\ccg\vxworks\make\WindMake.inc
PragmaDev Studio V6.0 Page 255

User Manual
to be interpreted and expanded by Wind River make utility.

On Windows:
Page 256 PragmaDev Studio V6.0

User Manual
Typical generation profile to debug with VxSim on Windows
PragmaDev Studio V6.0 Page 257

User Manual
On Solaris:
Page 258 PragmaDev Studio V6.0

User Manual
Typical generation profile to debug with VxSim on Solaris
PragmaDev Studio V6.0 Page 259

User Manual
4.4.2.4 CMX RTX profile

PragmaDev Studio includes a code template directory to generate CMX applications and
the SDL-RT debugger is interfaced with Tasking Cross View Pro providing a consistent
environment. In the current release the Tasking debugging profile requires the applica-
tion to run on CMX RTOS and that integration is only available on Windows.

The profile characteristics are:

• Timer values are set in number of system ticks,

• CMX supports only counting semaphores with a FIFO queueing mechanism.
SDL-RT mutex and binary semaphores have been mapped to counting sema-
phore,

• The SDL-RT process priorities are the ones of CMX. The default value is 150.

• When an SDL-RT task is deleted, its stack is not claimed. This is because the
CMX K_Task_Delete does not free the stack space. Therefore systems creating
and deleting a lot of tasks will run out of stack after a while. If dynamic creation
and deletion is necessary the user should the CMX integration files the following
way:
• add a stack address field in the RTDS_GlobalProcessInfo structure in

RTDS_OS.h file,
• manually allocate memory for stack and store it in the

RTDS_globalProcessInfo chained list,
• use the K_Task_Create_Stack function instead of the K_Task_Create, in

function RTDS_ProcessCreate in RTOS_OS.c file,
• free the memory allocated for the stack after the K_Task_Delete in function

RTDS_ProcessKill in RTDS_OS.c file.
Please read CMX manual chapters on stacks and on K_Task_Create_Stack
function for implementation details.

Tasking profile for CMX has the following characteristics:

• CMX RTOS needs to be compiled with the application because SDL-RT debugger
will look for some CMX symbols. In order to do so:
• Include external makefile can be used to compile CMX kernel
• Additional files to link can be used to link with CMX libraries

• a utility is needed to generate the final code such as the ieee166. To do so the
After compil. command can be used but watch the file names:
• the target file name after the makefile is done is referenced by

%RTDS_TARGET_NAME%,
• the target file name without extension is referenced by

%RTDS_TARGET_BASE_NAME%,
• the SDL-RT debugger will try to load the <SDL-RT system name>.abs first

and <SDL-RT system name>.exe if it did not work.
Page 260 PragmaDev Studio V6.0

User Manual
Last but not least the debugger command uses a configuration file so that the debugger is
properly set up straight away. Check Tasking manuals for more information.
PragmaDev Studio V6.0 Page 261

User Manual
Typical generation profile to debug with Tasking a CMX application

Please note the Cygwin make is used in the generation profile above.
Page 262 PragmaDev Studio V6.0

User Manual
4.4.2.5 ThreadX profile

PragmaDev Studio includes a code template directory to generate ThreadX applications.

The profile characteristics are:

• Timer values are set in number of system ticks,

• ThreadX supports counting semaphores and mutex with FIFO queueing mecha-
nism. SDL-RT counting and binary semaphores have been mapped to counting
semaphore,

• The SDL-RT process priorities are the ones of ThreadX. Valid numerical priori-
ties range between 0 and 31, where a value of 0 indicates the highest thread pri-
ority and a value of 31 represents the lowest thread priority. The default value is
15.
PragmaDev Studio V6.0 Page 263

User Manual
Here is an example profile to compile with Green Hills compiler:
Page 264 PragmaDev Studio V6.0

User Manual
Typical generation profile to compile a ThreadX application with Multi 2000 for MIPS
PragmaDev Studio V6.0 Page 265

User Manual
4.4.2.6 Posix profile

The profile characteristics are:

• Process creation
SDL Task priority depend of the OS or RTOS you are using.
• On Solaris the priority parameter should be between 0 and 59 .
• On Linux the priority parameter should be between 0 and 99. Note the prior-

ity will only work if user has superuser privilege.
Default SDL-RT priority is 20 for Solaris and 50 for Linux and for both platforms
higher values correspond to higher priorities.

• Timers
The time value is set in milliseconds.

• Semaphores
• FIFO and PRIO parameters are ignored. Semaphore waiting queues are always

FIFO based.
• When using mutex semaphores DELETE_SAFE and INVERSION_SAFE have no

effect.
• When taking a semaphore the only options available are NO_WAIT and FOR-

EVER and any other number of milliseconds will be understood as FOREVER.
Page 266 PragmaDev Studio V6.0

User Manual
Here is an example of generation options for Posix under Linux:
PragmaDev Studio V6.0 Page 267

User Manual
The code template directory is: ${RTDS_HOME}/share/ccg/posix

On Linux, the compiler option -pthread is required. The linker options depend on the
target platform:

• Solaris
-lpthread -lrt

• Linux
-pthread

Note: When debugging on Solaris with gdb the linker options are:
-lpthread -lrt -lsocket -lnsl
Page 268 PragmaDev Studio V6.0

User Manual
4.4.2.7 Posix profile for macOS

This profile is a specific version of the Posix profile (see page 266) for macOS. It mostly
has the same characteristics, except for the following:

• The default compiler is clang and not gcc (which is an alias to clang on recent
versions of macOS);

• The default debugger is lldb, and not gdb which is not available by default on
macOS anymore.

Here is an example of generation options for Posix on macOS:
PragmaDev Studio V6.0 Page 269

User Manual
The code template directory is: ${RTDS_HOME}/share/ccg/posix_mac
Page 270 PragmaDev Studio V6.0

User Manual
4.4.2.8 Windows profile

The profile characteristics are:

• Process creation
The priority parameter should be one of the following numerical values defined
in winbase.h:
• THREAD_PRIORITY_TIME_CRITICAL = 15
• THREAD_PRIORITY_HIGHEST = 2
• THREAD_PRIORITY_ABOVE_NORMAL = 1
• THREAD_PRIORITY_NORMAL = 0
• THREAD_PRIORITY_BELOW_NORMAL = -1
• THREAD_PRIORITY_LOWEST = -2
• THREAD_PRIORITY_IDLE = -1
Default SDL-RT priority is 0 (zero)

SDL-RT process definition and creation example with Windows priority

In the current release it is not possible to use the macro itself. The numerical
value should be used instead.

• Timers
The time value is set in milliseconds.

• Semaphores
• FIFO and PRIO parameters are ignored. Semaphore waiting queues are

always FIFO based.
• When using mutex semaphores DELETE_SAFE and INVERSION_SAFE have

no effect.
PragmaDev Studio V6.0 Page 271

User Manual
Here is an example of Generation options for Windows with MinGW compiler, make
utility and debugger:
Page 272 PragmaDev Studio V6.0

User Manual
The code template directory is: ${RTDS_HOME}/share/ccg/windows

Note: The debugger command should be gdb -nw and the console should be removed for
MinGW version of gdb: set new-console no.
PragmaDev Studio V6.0 Page 273

User Manual
4.4.2.9 uITRON 3.0 profile

This profile has been developed and tested under Linux with the uITRON interface for
eCos, the XRAY debugger and the ARM emulator: Armulator.

The profile characteristics are:

• Process creation
uITRON 3.0 specification allows task priorities between 1 and 8. The smaller the
value, the higher the priority. Default SDL-RT task priority is 4.

• Timer
SDL-RT timers are mapped on uITRON alarm mechanism. The SDL-RT time out
value is used as is in the alarm parameter.

• Message
SDL-RT messages are mapped uITRON mailbox mechanism.

• Semaphores
• All three types of semaphore are based on uITRON counting semaphore.
• When using mutex semaphores, DELETE_SAFE and INVERSION_SAFE have no

effect.
Page 274 PragmaDev Studio V6.0

User Manual
Here is an example of Generation options for uITRON as implemented in eCos:
PragmaDev Studio V6.0 Page 275

User Manual
The code template directory is:
${RTDS_HOME}/share/ccg/uitron3_0

The linker options depend on the RTOS and should add the uITRON library path. For
example when using eCos’s uITRON interface you should add:
-L [uITRON_Library_Path] -Ttarget.ld -nostdlib
Page 276 PragmaDev Studio V6.0

User Manual
4.4.2.10 uITRON 4.0 profile

This profile has been tested under Windows with the uITRON interface for NUCLEUS
and MinGW GDB debugger.

The profile characteristics are:

• Process creation
uITRON 4.0 specification allows task priorities between 1 and 16. Nucleus
uITRON API allows to use 1 to 255 task priorities. Default SDL-RT task priority
is 4.

• Timer
SDL-RT timers are mapped on uITRON alarm mechanism. The SDL-RT time out
value is used as is in the alarm parameter.

• Message
SDL-RT messages are mapped uITRON mailbox mechanism.

• Semaphores
• Only binary and counting semaphores are supported
• These two types of semaphore are based on uITRON counting semaphore.
• When using mutex semaphores, an error is raised
PragmaDev Studio V6.0 Page 277

User Manual
Here is an example of Generation options for uITRON as implemented in NUCLEUS:
Page 278 PragmaDev Studio V6.0

User Manual
The code template directory is:
${RTDS_HOME}/share/ccg/uitron4_0

The linker options depend on the RTOS and should add the uITRON 4.0 library path. for
example when using NUCLEUS’s uITRON 4.0 interface you should add:
-L"NUCLEUS_uiPLUS_path" -lsim -lplus -lvt -lwinmm -luiplus
PragmaDev Studio V6.0 Page 279

User Manual
In order to debug a uITRON4 application with SimTest kernel simulator, some manual
operations are required:

• Start the EDGE communication manager:
%SIMTEST_ROOT%\bin\cm.exe start -c

• Start the MPN server:
%SIMTEST_ROOT%\..\nucleus\simulation\mpn\bin\mpnserver.exe
Page 280 PragmaDev Studio V6.0

User Manual
• Start PragmaDev Studio debugger, when the debugger tries to connect to the
executable:

• Then type ’S’ in the MPN server window:

Then the debugger can connect to the target and you can debug normally.
PragmaDev Studio V6.0 Page 281

User Manual
4.4.2.11 OSE Delta 4.5.2 profile

PragmaDev Studio includes a code template directory to generate OSE applications and
the SDL-RT debugger is interfaced with gdb providing a consistent environment.

The profile characteristics are:

• Build process
The OSE build process is based on dmake utility and makefile.mk and user-
conf.mk makefiles. When using OSE code generation, PragmaDev Studio gener-
ates pragmadev.mk makefile in the code generation directory. The makefile.mk
and userconf.mk should be put somewhere else because they are not generated
file and makefile.mk must include the generated pragmadev.mk file, e.g.:
include .$/pragmadev.mk
The make command should set the target to RTDS_ALL. For example under win-
dows:
dmake -f ../makefile.mk RTDS_ALL RTDS_HOME=%RTDS_HOME%
or under Unix:
dmake -f ../makefile.mk RTDS_ALL RTDS_HOME=$RTDS_HOME

• SDL-RT system start
The pragmadev.mk generated file includes
${RTDS_HOME}\share\ccg\ose\make\OseMake.inc
that tells OSE kernel to statically start RTDS_Start process:
PRI_PROC(RTDS_Start, RTDS_Start, 1024, 15, DEFAULT, 0, NULL)
That means SDL-RT static process are not defined as static to OSE kernel. The
startup procedure takes care of creating the processes and synchronizing them.

• Timers handling
SDL-RT timers are based on OSE Time-Out Server (TOSV). TOSV should there-
fore be included in userconf.mk file:
INCLUDE_OSE_TOSV *= yes

• Priorities
SDL-RT process priorities are the ones of OSE. The default value is 15.

• Memory management
The generated code memory allocation RTDS_MALLOC and RTDS_FREE are based
on heap_alloc_shared and heap_free_shared OSE functions. This is because
it happens a process frees memory allocated by another process.

• Signal header and definitions
All generated OSE signals will have the following header:

typedef struct RTDS_MessageHeader
{
SIGSELECT sigNo;
long messageNumber;
long timerUniqueId;
RTDS_QueueId sender;
long dataLength;
unsigned char *pData;

struct RTDS_MessageHeader *next;
Page 282 PragmaDev Studio V6.0

User Manual
} RTDS_MessageHeader;

typedef union SIGNAL
{
SIGSELECT sigNo;
struct RTDS_MessageHeader messageHeader;
}SIGNAL;

An OSE signal file is generated that contains all SDL-RT signal definitions:
RTDS_gen.sig. All signals have the RTDS_MessageHeader data content. Below
is an example of a generated signal file:

#include "ose.h"
#include "RTDS_OS.h"

#define ping (1) /* !-SIGNO(struct RTDS_MessageHeader)-! */
#define tWait (2) /* !-SIGNO(struct RTDS_MessageHeader)-! */
#define pong (3) /* !-SIGNO(struct RTDS_MessageHeader)-! */
#define begin (4) /* !-SIGNO(struct RTDS_MessageHeader)-! */
#define myStart (5) /* !-SIGNO(struct RTDS_MessageHeader)-! */
#define myStop (6) /* !-SIGNO(struct RTDS_MessageHeader)-! */
PragmaDev Studio V6.0 Page 283

User Manual
Below is an OSE generation profile example with debug based on gdb:
Page 284 PragmaDev Studio V6.0

User Manual
Typical generation profile to debug an OSE application with gdb
PragmaDev Studio V6.0 Page 285

User Manual
4.4.2.12 OSE Epsilon profile

PragmaDev Studio includes a code template directory to generate OSE Epsilon applica-
tions.

The profile characteristics are:

• Build process
OSE Epsilon is a static RTOS. That means the RTOS is compiled with the appli-
cation and no dynamic task creation is possible. To do so OSE Epsilon needs to
know at compile time the list of task in the system.
During code generation, PragmaDev Studio produces RTDS_gen.inf that con-
tains the list of tasks, semaphores, and signals used in the system. A shell script
based on awk extracts the necessary information out of the file and generates the
OSE Epsilon .con file needed to configure the kernel. The templates provided in
the distribution should run with Tasking C166 cross compiler. The OSE Epsilon
file is built based on os166.con.pre, the result of the awk script and
os166.con.post. These templates can be adapted to any processor or cross
compiler.

• SDL-RT system start
As a result of the .con file, OSE Epsilon will start all task by itself at startup.
RTDS_Start task is started with the highest priority in order to initialize the exe-
cution environment: create semaphores, message unique id pool, and back trace
circular buffer.
All other task will create their own context variable and wait a very short delay to
let the other tasks do the same.

• Timers handling
SDL-RT timers are based on OSE Time-Out Server (TOSV). TOSV should there-
fore be included in the .con file:
%TI_PROC tosv,C,256,256,1

• Memory management
The generated code memory allocation RTDS_MALLOC and RTDS_FREE are based
on malloc and free functions.
Page 286 PragmaDev Studio V6.0

User Manual
The example profile given below is based on Tasking C166 cross compiler:
PragmaDev Studio V6.0 Page 287

User Manual
Typical generation profile to debug an OSE Epsilon application with Tasking
Page 288 PragmaDev Studio V6.0

User Manual
4.4.2.13 Nucleus profile

PragmaDev Studio includes a code template directory to generate Nucleus applications
and the SDL-RT debugger is interfaced with a special version of gdb provided by the
EDGE environment tool and the SIMTEST tool. In the current release the gdb debugging
profile is only supported on Windows.

The profile characteristics are:

• Build process
The Nucleus build process is based on mingw32-make utility. Note the Nucleus
build process relies on the SIMTEST_ROOT environment variable which is defined
by the simtest installer.

• SDL-RT system start
The file ${RTDS_HOME}\share\ccg\nucleus\RTDS_OS.c defines the function
Application_Initialize that creates the RTDS_Start task that initialize
PragmaDev Studio environment and objects creation.

• Priorities
SDL-RT process priorities are the ones of Nucleus. The default value is 125.

• Memory management
The generated code memory allocation RTDS_MALLOC and RTDS_FREE are based
on NU_Allocate_Memory and NU_Deallocate_Memory Nucleus functions. The
memory management is done by using a unique memory pool.
PragmaDev Studio V6.0 Page 289

User Manual
Below is an Nucleus generation profile example with debug based on gdb:
Page 290 PragmaDev Studio V6.0

User Manual
Typical generation profile to debug a Nucleus application with gdb

In order to debug a Nucleus application with SimTest kernel simulator, some manual
operations are required:

• Start the EDGE communication manager:
%SIMTEST_ROOT%\bin\cm.exe start -c
PragmaDev Studio V6.0 Page 291

User Manual
• Start the MPN server:
%SIMTEST_ROOT%\..\nucleus\simulation\mpn\bin\mpnserver.exe

• Start PragmaDev Studio debugger, when the debugger tries to connect to the
executable:

• Then type ’S’ in the MPN server window:

Then the debugger can connect to the target and you can debug normally.
Page 292 PragmaDev Studio V6.0

User Manual
4.4.2.14 FreeRTOS profile

PragmaDev Studio includes a code template directory to generate FreeRTOS applica-
tions. This integration has been done with the FreeRTOS simulator on Windows and is
using the MinGW gdb coming with PragmaDev Studio as a debugger integration. This
integration was done on FreeRTOS V10.3.1 and Windows 7 Professional Service Pack 1.

The profile characteristics are:

• Build process
The build process created by the wizard assumes the FreeRTOS directories are in
C:\FreeRTOS\FreeRTOSV10.3.1. If not the case the include paths in the com-
piler options need to be adjusted in the generation profile.

• FreeRTOS Windows Simulator
To ease the integration development, we used the FreeRTOS Windows Simula-
tor. In order to have an efficient integration, communication through socket has
been implemented between the FreeRTOS Simulator and the PragmaDev Studio
Debugger. The socket communication is implemented in a FreeRTOS task called
RTDS_Socket that is created before any other task. We tried to gather all theses
specific FreeRTOS Simulator aspects in the RTDS_TCP_Client.c file. The
RTDS_FREERTOS_WINDOWS_SIMULATOR define surrounds these specific part in
other files as well.

• FreeRTOS on target
To build for a specific target:
• Remove -DRTDS_FREERTOS_WINDOWS_SIMULATOR from the generation

options,
• Remove RTDS_TCP_Client.o $(RTDS_HOME)/share/3rdparty/MinGW/

lib/libws2_32.a from the $(RTDS_HOME)/share/ccg/freertos/make/
FreeRtosMake.inc file.

• Debugging issues
Please note that if the command “info threads” is sent to gdb, the integration will
crash with a segmentation fault when the system continues execution.

• Priorities
The priority values are unclear in FreeRTOS. With the FreeRTOS Windows Sim-
ulator it looks like only 7 levels are available so the default priority
RTDS_DEFAULT_PROCESS_PRIORITY has been set to 3.

• Semaphores
The initial value of a semaphore with FreeRTOS is always available. In the case
of a binary semaphore, a take is executed after creation if the semaphore initial
state is empty.

• Memory management
The integration is using pvPortMalloc and vPortFree for memory allocation.
PragmaDev Studio V6.0 Page 293

User Manual
Below is an FreeRTOS generation profile example with debug based on gdb:
Page 294 PragmaDev Studio V6.0

User Manual
Typical generation profile to debug a FreeRTOS application with gdb
PragmaDev Studio V6.0 Page 295

User Manual
4.4.3 UML options
There are specific options used when generating the C++ code for classes described in
UML class diagrams. These options are set via the “UML options…” in the “Generation”
menu:

The available options are:

• The directory where the files for the UML classes must be generated;

• Wether parameters and return values in operations should be forced as pointers
when their type is a user-defined class;

• Options for UML-only projects:
• The main class for the application. This class will be automatically instanti-

ated when the application starts. The equivalent of the C/C++ main function
should be written in this class’s constructor.

• The profile used for generating the makefile and doing the build for the
project.

For projects mixing SDL and UML, the generation directory for the passive classes
should be different from the generation directory set in the profile for the following rea-
sons:

• The generation directory set in the profile will contain the generated source files
for all processes and blocks in the system. These files are just a result of the code
generation: the real source code for the system is in the diagrams. So all files in
this directory may be safely deleted;

• On the contrary, the class diagrams only describe the interface of the classes. The
actual code implementing the operations are in the C++ source file. So this file
must not be deleted, or actual code will be lost.

For this reason, PragmaDev Studio uses a different policy for the two generation directo-
ries:

• In the generation directory set in the profile, if any generated source file needs
updating because of changes in the corresponding diagram, it is always overwrit-
ten;

• In the UML generation directory, if a change was made in any diagram describ-
ing a class, the header file for the class is overwritten, but not the C++ file for the
class, as it may contain actual code for the operations.
Page 296 PragmaDev Studio V6.0

User Manual
However, added operations in the diagram will be added to the C++ source file,
and warnings will be issued for each operation found in the file that is not in the-
diagrams. But nothing will ever be removed from the C++ source file.

4.4.4 Generated C++ code

4.4.4.1 Attributes and operations

For any class involved in a code generation process, the following attributes and opera-
tions are generated in the class header file:

• For an attribute described as “name : type” (no multiplicity), an attribute with this
name and type is generated.
Example:

• For an attribute described as “name[mult] : type” with a finite multiplicity (no ’*’),
an attribute with this name and the type “type[max]” is generated, with max being
the maximum multiplicity found in mult.
Example:

• For an attribute described as “name[mult] : type” with an infinite multiplicity (’*’
somewhere in mult), an attribute with this name and the type RTDS_List<type>
is generated (see notes below on page 299).
Example:

Maximum multiplicity for attribute a is 5
=> array of 5 ints
PragmaDev Studio V6.0 Page 297

User Manual
• For a navigable association to class Class with a cardinality of 1 or 0..1 and a role
name role, an attribute named role with type Class* is generated.
Example:

• For a navigable association to class Class with a multiple finite cardinality (not 1,
not 0..1 and no ’*’ in cardinality) and a role name role, an attribute named role
with type Class*[max] is generated, where max is the maximum cardinality for the
association.
Example:

• For a navigable association to class Class with an infinite cardinality (’*’ some-
where in cardinality) and a role name role, an attribute named role with type
RTDS_List<Class> is generated (see notes below on page 299).
Example:

Maximum cardinality
for association is 4 =>
array of 4 instances
Page 298 PragmaDev Studio V6.0

User Manual
• For an operation named <<create>>, the corresponding C++ constructor is gen-
erated with the same parameters and no return type.
Example:

• For an operation named <<delete>>, the corresponding C++ destructor is gen-
erated with no return type. This operation must not have any parameters.
Example:

• For any other operation, the corresponding method is generated. A parameter
declared as “out name : type” or “inout name : type” is generated with type
type&. If a parameter type is an instance of a known class, it is recognized and the
corresponding declaration is included in the class header file. The same applies
for the operation’s return type.
Example:

If no C++ file for the class exists when the code generation is run, a basic C++ file con-
taining a skeleton for the implementation of all known methods will also be generated.

Notes:

• RTDS_List is a template class to manage lists of pointers. It is delivered with
PragmaDev Studio and located in directory $RTDS_HOME/share/ccg/cpptem-
plates. The parameter for the template is the type for the elements (e.g.,
RTDS_List<int> is a list of pointers to integers).
Its public methods are:
• append to add a new element at the end of the list. The only argument is a

pointer to the element to add;
PragmaDev Studio V6.0 Page 299

User Manual
• del to remove an element from the list. The argument is the index of the ele-
ment to delete;

• length returns the length of the list as an integer;
• the operator [] is also redefined to give access to any element in the list by its

index. The element can be accessed for reading (eltPtr = list[index];)
and writing (list[index] = eltPtr;).

• No attribute should be declared with a type being a class defined in a diagram. If
it is, the class won’t be recognized and the class will be undeclared when it is
used. To define such an attribute, it is mandatory to use an association.

• For attributes generated for associations, if the role name is not set or invalid, a
modified version of the association’s name will be used.

4.4.4.2 Declared variables

For any class involved in an association with a block or a process, the corresponding
instances will be known to all elements in the block or process sub-tree.

For example:

The following variables are known:

• A variable named a with type ClassA* is known in all blocks and processes, since
it’s attached to the system itself;

• A variable named b with type RTDS_List<ClassB> is known in Block1 and all
its descendants, i.e. Process1a and Process1b;

• A variable named c with type ClassC*[4] is known in Block2 and all its descen-
dants, i.e. Process2;

• A variable named d with type ClassD* is known only in Process1b.

This is achieved by generating the following files:
Page 300 PragmaDev Studio V6.0

User Manual
• For all associations attached to a system or block, a C file is generated for the sys-
tem or block. It contains the declaration of all the variables as global. An extern
declaration is generated in the system or block’s header file, which is included in
all descendants.
In the example, variables a, b and c are declared as global, with their extern
declarations inserted in System.h, Block1.h and Block2.h respectively.

• For all associations attached to a process, no additional file is generated. The
variable is automatically declared as local in the function generated for the pro-
cess.
In the example, the variable d is declared as local to the function generated for
process Process1b in Process1b.c.

4.4.4.3 Access to generated code

After a code generation, all generated code is made available in the project:

• The code for all processes and blocks is inserted in a package named “RTDS gen-
erated code”;

• The code for all classes is inserted in a package named “RTDS class sources”. The
structure of this package is mapped to the package structure for classes. For
example:

In “RTDS class sources”:
• MyClass.h, MyClass.cpp, MyOtherClass.h and MyOtherClass.cpp are in

sub-package pkg1 because classes MyClass and MyOtherClass are in package
pkg1 in the diagrams.

• MyThirdClass.h and MyThirdClass.cpp are in sub-package pkg2 because
class MyThirdClass is in package pkg2 in the diagrams.
PragmaDev Studio V6.0 Page 301

User Manual
4.4.5 Built in scheduler
The code generation described in “Code generation” on page 246 maps by default each
SDL or SDL-RT process instance to a task in the target RTOS. PragmaDev Studio also
offers the possibility to execute several process instances in a single RTOS task. This
allows for example to execute a whole block in a single task. If the whole system is exe-
cuted in a single task, this even allows to execute it on a bare target without any RTOS.
This feature is available for both SDL and SDL-RT projects.

When several processes are executed in a single task, no actual parallelism is involved:
the instances are scheduled within the task, and transitions will be executed one at a
time.

To turn process instance scheduling on, the following steps are required:

• Define which process instances will be scheduled and which ones will have their
own RTOS task. This is done via a UML deployment diagram.

• Define a code generation profile that allows scheduling.

• Make sure the system is compatible with the scheduled mode. This mainly
involves taking care about how semaphores are used in SDL-RT systems.

• For wholly scheduled systems without any RTOS, make sure messages coming
from the environment and time will be handled correctly. This involves writing
some external code.

Generating scheduled code also allows integration in an external scheduler.

The following paragraphs describe these points in detail.

4.4.5.1 Deployment diagram for scheduling policy

To indicate which processes will have their instances scheduled and which will map to
their own task, a UML deployment diagram has to be defined. In this diagram, agents
will be represented as components, and the component properties will indicate if the
agent is scheduled or threaded. The code generation should then be run on this diagram
to actually turn scheduling on in the generated code.

For example, for the following system:
Page 302 PragmaDev Studio V6.0

User Manual
the components in the deployment diagram may be:

This means that all process instances within blocks bCentral will be scheduled together,
as well as all process instances within bLocal. As the whole system is “threaded”, a RTOS
task will be created for each block bCentral and bLocal.

The default policy for agents is actually “threaded”, so the diagram above is in fact equiv-
alent to this one:

Of course, if an agent is scheduled, all the agents it contains will be “scheduled” too, so
the following deployment diagram is illegal:

To schedule the whole system, allowing it to be executed without any RTOS, only the fol-
lowing component is necessary:

Forbidden
PragmaDev Studio V6.0 Page 303

User Manual
4.4.5.2 Profiles for scheduling

To be able to use all features with scheduling, the best way is to set the language to C++
in the code generation profile, in the “Code gen.” tab, options “Language”:

Generating C code is also possible, but some features such as process classes will not be
available.

There are also limitations when generating from SDL-RT diagrams:

• Some constructs cannot be used in variable initializations. This is due to the fact
that declarations are simply copied from the declaration symbol to either the
attributes part of a C++ class when generating C++, or within a typedef for a
struct type when generating C. Therefore, plain variable definitions such as
“int i;” will work, but even specifying a default value as in “int i = 0;” won’t,
as it isn’t a valid attribute or field definition.

• When generating C code, a function is generated for each transition in a process.
The context management is done by copying the fields of a struct for a given
process instance to local variables in the transition function, and to copy back the
local variables to the struct in the end. This allows to keep the generated code
exactly as it is written in the diagram.
However, this forbids to keep any reference on a local variable for the process.
For example, keeping the address of a process variable in another one will not
work: when the address is assigned, it would take the address of the local vari-
able in the transition function and point to a wrong location.
Page 304 PragmaDev Studio V6.0

User Manual
If the whole system is scheduled, a specific target can be used to generate code for a bare
target without any RTOS. This can be chosen via the “Option wizard...” in the code gener-
ation options dialog:

Setting the RTOS to “No RTOS (C++)” or “No RTOS (C)” will use a specific integration in
<PragmaDev Studio installation dir.>/share/ccg/rtosless or <PragmaDev
Studio installation dir.>/share/ccg/crtosless that does not require any ser-
vice from the OS. In some cases, dynamic memory allocation may be required - see para-
graph “Memory management” on page 305.

When a code generation is run on a deployment diagram specifying scheduled agents,
the files for the built-in scheduler will be automatically integrated in the generation and
will appear in the “RTDS RTOS adaptation” folder. These files are not generated but
included in the following directories:

• <PragmaDev Studio installation dir.>/share/ccg/cppscheduler for
files used in C++ code generation;

• <PragmaDev Studio installation dir.>/share/ccg/cscheduler for files
used in a C code generation (SDL projects only).

Generated code for scheduled processes will be very different from the generated code
for threaded ones: each transition will be generated in its own function or method, allow-
ing to call it from the scheduler itself. For more details, see PragmaDev Studio Reference
Manual.

4.4.5.3 Memory management

The built-in scheduler uses by default dynamic memory allocation, which is required for
features such as dynamic instance creation. However, the crtosless integration allows to
prevent dynamic memory allocation for all or part of the generated code. This is done via
a set of C preprocessor constants, giving the maximum number of descriptors that can be
allocated at the same time:

• RTDS_MAX_INSTANCES is for process instance context descriptors;

• RTDS_MAX_MESSAGES is for message descriptors;

• RTDS_MAX_TIMERS is for timer descriptors;

• RTDS_MAX_SEMAPHORES is for semaphore descriptors;
PragmaDev Studio V6.0 Page 305

User Manual
• RTDS_MAX_WAITING_INSTANCES is for descriptors for instances waiting on a
semaphores.

All these constants should be passed on the compiler command-line via the -D option or
its equivalent. Note that these constants are for descriptors for and not for the element
itself. For any given element, there might be other descriptors that need to be allocated
temporarily during the life of the system. So for example, if you know that you’ll only
have 4 process instances in your system, it’s safer to set RTDS_MAX_INSTANCES to 6 or
above.

If one of the constants RTDS_MAX_TIMERS or RTDS_MAX_SEMAPHORES is defined and set to
0, this will also disable completely all the functions handling timers or semaphores,
respectively. This means that if the system actually uses timers or semaphores, the gener-
ated code will not compile, since it will use functions that are not defined.

When one of these constants is defined and not 0, the given number of descriptors is allo-
cated in a static array, and “allocating” an element actually uses the first unused descrip-
tor in the array instead of using RTDS_MALLOC. So if all the RTDS_MAX_… constants are
defined, it is safe to undefine the RTDS_MALLOC macro as it will never be used. This can be
done in a copy of the crtosless profile if dynamic memory allocation is completely for-
bidden. Note however that the “allocation” from the static array behaves the same way as
RTDS_MALLOC: if the number of descriptors is exhausted, the allocation will return a NULL
pointer, which will make your system exit in error.

4.4.5.4 Semaphore handling

In the context of a scheduler, everything that might interrupt a transition in the middle of
its execution needs a special attention. In SDL, only procedure calls may interrupt the
execution of a transition if the called procedure contains state changes. This case is han-
dled in the generated code in a specific way (see PragmaDev Studio Reference Manual).

In SDL-RT, in addition to procedure calls, transition execution may also be interrupted
by semaphore takes. This case is much more difficult as several case may occur depend-
ing on the instance that takes the semaphore and the instance that already has already
taken it:

• If each instance has its own task, the case can be handled as in normal code gen-
eration, i.e., by using the semaphores provided by the RTOS;

• If the whole system is scheduled, it is possible to provide a specific implementa-
tion for semaphores that will handle the case (see PragmaDev Studio Reference
Manual);

• In all other cases, the problem is very difficult to solve. For example, if the
instance holding the semaphore is in a task, but the instance taking it is sched-
uled with other instances in another task, a semaphore provided by the RTOS
has to be used since there are two different tasks, but it will block not only the
instance trying to take it, but all other instances in its task. A mutex semaphore
may also be very difficult to handle if it can be taken by instances scheduled in
the same task or by instances in different tasks in the same system.

The solution chosen in is quite simple: except if the whole system is scheduled, Prag-
maDev Studio will always use semaphores provided by the underlying RTOS. This means
Page 306 PragmaDev Studio V6.0

User Manual
a system designed to work in threaded mode may not work if it’s switched to partially
scheduled mode if it handles semaphores. The architecture of the system and/or the way
semaphores are used may have to be changed to get the system to work.

4.4.5.5 External messages and time management

Whenever an RTOS is used, external messages and time management are usually not a
problem:

• External incoming messages are usually handled via interrupts, calling a routine
that will build the message and put it in a message queue. Then the system
resumes its normal execution.

• Timers are handled by system calls.

The case where the whole system is scheduled and no RTOS is used is more complicated
to handle: external messages can be handled via interrupts, but the instance expecting
them can’t be simply waiting on a message queue and woken up automatically when it
arrives. The instance will be scheduled and there must be a way to inform the scheduler
that a message has arrived. As for timers, since there is no RTOS, there is available sys-
tem call to handle time.

In this case, the handling of time is done via 2 specific functions, called
RTDS_incomingSdlEvent and RTDS_SystemTick:

• RTDS_incomingSdlEvent is called automatically by the scheduler whenever
there is no internal message to handle. It should be written by the user. Its
parameters are a pre-allocated message header structure for the received mes-
sage if any, and the time left until the next timer should fire. This function should
wait for an incoming message, at most for the time passed as parameter, and
then return to the caller. It returns a boolean which should be true if a message
has been received, or false if the reception timed-out.

• RTDS_SystemTick increases the system time by one tick and updates the list of
running timers to decrease the delay before they should time-out. This routine is
provided by PragmaDev Studio, but should be called by user-code, for example
on a cyclic interrupt used to handle time.

A default implementation for RTDS_incomingSdlEvent is provided by PragmaDev Stu-
dio if the macro RTDS_HANDLE_EXTERNAL_EVENTS is defined in the compilation options.
This default implementation just calls RTDS_SystemTick and returns false to indicate no
external message has arrived. This default implementation just ensures that systems will
work in the PragmaDev Studio Debugger without writing any additional code. It should
obviously not be used in real systems.

4.4.5.6 Integration in external scheduler

It is possible to generate code for a set of processes that will be used in an external sched-
uler, different from the PragmaDev Studio built-in one. To do this, a special code genera-
tion profile should be created with the option “Partial code generation” turned on (in the
“Code gen.” tab):
PragmaDev Studio V6.0 Page 307

User Manual
If this option is turned on, the generated code will basically contain only the source and
header files generated for the processes themselves, with only a few additional global
header files. No entry point and no makefile will be generated. Note that this feature is
only available when the target language is C. Partial code generation in C++ is not sup-
ported yet.

Since the code generator needs to know the existing processes and the existing messages
to generate some global constants and types correctly, two files must be specified when
partial code generation is on:

• The File containing all process names entry should reference a file containing
the names for all processes that will be integrated in the final build. The names
should be specified one per line and are case-sensitive. This information is used
to generate the structures holding the instances local variables.

• The File containing all message names entry should reference a file containing
the names of all incoming and outgoing messages for all processes. The names
should also be specified one per line and are also case-sensitive. This information
is used to generate the transport structures for messages and the macros han-
dling them.

Please note these two files must only include processes and messages handled in Prag-
maDev Studio. If another process or message is inserted here, the generated code may
use a type or constant that won’t be defined and may fail to compile.

More details about the generated code and how it can be integrated in an external sched-
uler is given in PragmaDev Studio Reference Manual. An example is also available in
PragmaDev Studio distribution, showing how results of different partial code genera-
tions can be integrated together. This example is located in <PragmaDev Studio
installation dir.>/examples/Studio/Advanced/PartialCodeGen.
Page 308 PragmaDev Studio V6.0

User Manual
4.5 - Good coding practise

4.5.1 Memory allocation
Memory allocation has to be handled very carefully in real time systems since it can gen-
erate memory leaks leading to system crashes that can be very difficult to debug. Consid-
ering PragmaDev Studio is hiding the basics of the finite state machines it is important to
point out what should be done in the code to have things work properly.

First of all when SDL messages are sent, received or saved, or when timers are set or
reset, the generated code will handle memory allocation and de-allocation automatically
so that the user does not have to deal with it. On the other hand, when user data is trans-
mitted in a message from a process to another one, it is very important to define which
process has the responsibility to free the corresponding memory. We strongly suggest the
sender process always allocates the necessary memory and the receiver process always
frees. It implies the sender process should not deal with the data any more after it has
been sent. A good way to do so is to set the corresponding pointer to NULL after it has
been sent out.

4.5.2 Shared memory
It is very common to use global variables or shared memory areas to exchange informa-
tion between tasks. It is also very dangerous because two tasks could access the same
information at the “same time” and read or write inconsistent information.

The same problem exists when using an instance of a class attached to a block or the
whole system: all tasks know this instance, and can access its attributes or call its meth-
ods, leading to the same concurrency problems than for a global variable.

To avoid such problems we suggest to use a semaphore. Whenever a task needs to write
or read a shared memory area, or to access an attribute or call a method on a shared
object, it takes the semaphore. When the task is done, it gives it back to the system allow-
ing another task to access the memory or the object. It is very important to do so even
when reading memory or attributes since the reading task could be interrupted by a writ-
ing task. In that case the information read would be inconsistent.

4.5.3 C macros and functions
As explained in this user’s manual the code generator is based on C macros and C func-
tions. Since these macros and functions are explained and delivered as source code it is
very tempting to use them directly in C or to modify their source code.

It is important to realize these macros and functions have been designed to work with the
generated code. They very often rely on the code generator to generate some complemen-
tary code to create a consistent behavior. They have also been deeply tested to guarantee
safe code generation.

Before using these directly or trying to modify them it is important to deeply study and
understand the delivered files to measure the impact of any modification. It is also very
important to test any modification.
PragmaDev Studio V6.0 Page 309

User Manual
Furthermore the use of these macros and functions will make the design less legible
where it is one of the key features of the tool.
Page 310 PragmaDev Studio V6.0

User Manual
4.6 - Model Debugger
The Model Debugger relies on classical C debuggers or cross debuggers to allow graphi-
cal debugging and SDL-RT oriented information.

Currently supported debuggers are:

• Tornado

• gdb

• MinGW

• Tasking Cross View Pro C166/ST10

• XRAY

• Multi 2000

4.6.1 Debugger architecture
The Model Debugger allows you to execute your SDL-RT system and the associated C
code. To do so PragmaDev Studio generates the code necessary to execute the SDL-RT
processes on host or target and interfaces with a debugger or a cross debugger.

The Model Debugger has all the expected features allowing you to:

• Graphically trace the internal behavior of the system

• Graphically step in the SDL or C source code

SDL-RT generated C
code

external
C code

compilerC code
generator

RTOSC debuggerModel
Debugger

+

SDL-RT
editor

MSC tracer

Text editor

PragmaDev Studio tools
Third party tools
Source code
Binary code

binary
code

Target or host

- pipe,
- COM/DCOM,
- socket.

- IP,
- serial,
- JTAG,
- ...

socket when available
PragmaDev Studio V6.0 Page 311

User Manual
• Visualize all key internals of your system such as:
• Tasks,
• Semaphores,
• Timers,
• Local variables in the current frame,
• Global variables.

• Send SDL messages to your system,

• Modify SDL state,

• Modify variables value.

4.6.2 Launching the Model Debugger
Before starting the Model Debugger the generation profile should be verified. Graphical
debugging has a specific profile since it will:

• automatically define some compiler options such as -g and -DRTDS_SIMULATOR
that are defined in the DefaultOptions.ini file in the $(RTDS_HOME)/share/
ccg/<RTOS> directory,

• launch the debugger automatically.

A generation profile is considered a debug profile as soon as Debugger is selected in the
“Debug” section in the “Debug / trace” tab.

Generation profiles are edited from “Generation / Options...” menu. A typical debugging
profile would look like this:
Page 312 PragmaDev Studio V6.0

User Manual
Once the code generation profile is selected the tool will:

• Check syntax and semantic of the SDL-RT system,

• Generate the C code,

• Compile and link the C code,

• Start the selected debugger environment,

• Load the executable,

• Start the executable with a breakpoint on it so it will stop on RTDS_Start func-
tion.

The Model Debugger is started from the “Generation / Execute” menu or from the
quick button.

If several debug profiles are available a pop-up window will ask to select the desired pro-
file:

When always using the same profile it is possible to set a default profile to launch so that
the selection window does not pop up.

Syntactic check, semantic check, code generation, and compilation are done. The
selected debugging environment is started with the Debugger command defined in the
generation profile.
PragmaDev Studio V6.0 Page 313

User Manual
The Model Debugger window is started automatically and you are ready to debug your
system!

The Model Debugger window

The Model Debugger can be restarted at any time with the reset button or shell
command. The underlying C debugger is restarted and the executable is reloaded
so that the environment is cleaned up.

4.6.3 Stepping levels
Since your source code is a composite of SDL and C and considering some code has also
be generated by the code generator, the debugger offers several ways to execute the code:

• Run with SDL key events trace information,
Menu “Options / Free run” de-activated. This is the default setup where
the Model Debugger traces all SDL key events and displays textual and /
or SDL and / or MSC traces.

• Run without SDL key events trace information,
Menu “Options / Free run” activated. The tracing mechanism uses a
breakpoint on RTDS_DummyTraceFunction in the generated C code.
When this option is activated the breakpoint is removed and the system

runs freely. Of course no trace information is available then.

• Stop execution,

Stops execution of the running system.
Page 314 PragmaDev Studio V6.0

User Manual
• C step mode

Step line by line in any C code,

Step-out a C function,

Step-in a C function.

• SDL-RT automatic stepping,
Steps automatically at C level until it reaches a generated C line corre-
sponding to an SDL-RT graphical source code symbol. Note it might
generate a lot of C steps and the expected result depends on the underly-

ing debugger and RTOS integration. For example with gdb and windows integra-
tion it will step in the same task and let the other tasks run. But with Tasking and
CMX it will step from one task to the other following the RTOS scheduling mech-
anism.

• Step until the next SDL key event such as:

• Message sending,
• Message received,
• Timer started,
• Timer cancelled,
• Timer went off,
• Semaphore take attempt,
• Semaphore take succeeded,
• Semaphore give,
• SDL state modification,
• SDL process created,
• SDL process deleted.
For your information these key events are traced via a breakpoint on an empty C
function called RTDS_DummyTraceFunction(). So do not be surprised if you end
up in this empty function; it is normal...

• Run until RTOS message queue is empty
This will run the system until one of the external message queue is empty.
When using the scheduler, its internal queue is read until it is empty
before the external queue is read. If the whole system is scheduled this

feature can be used as a run until timer.

4.6.4 MSC trace
The MSC Tracer allows you to graphically trace execution of the system with its SDL key
events. It is possible to configure the MSC trace to define at which level of details the
architecture of the system should be represented. The MSC trace can be made at system,
block, process or any combination of agents. Any agent selected will be represented by a
PragmaDev Studio V6.0 Page 315

User Manual
lifeline in the MSC diagram. Any messages exchanged inside the agent will not be seen on
the MSC. The default view is the most detailed one, with a lifeline for each process.

• Configure the MSC trace

The quick button opens the MSC trace configuration window:

The following options are available:
• Show system time information,
• Record and display message parameters,
• SDL-RT architecture elements to trace.

• Start the MSC trace

• The quick button starts the MSC Tracer. By default the trace is active.

• Stop the MSC trace

• The quick button stops the MSC Tracer.

• Trace the last SDL-RT events (backTrace)

• The quick button opens an MSC Tracer and displays the last SDL-RT
events. The number of events traced are configured in the generation options.

The tracer window itself is described in “Tracer window” on page 383.

4.6.5 Displayed information
The Model Debugger window is divided in 5 parts described below. Each time an SDL
key event is received all the information is updated.
Page 316 PragmaDev Studio V6.0

User Manual
If needed the displays can be refreshed at any time with the refresh button or
shell command.

The information to refresh can be setup in the “Options / Refresh options...” menu as
explained in “Refresh options” on page 321.

4.6.5.1 Processes

The Process information part list all processes defined in the SDL-RT system. It will not
list any other processes running on the RTOS. The displayed information is:

• Name
This field displays the name of the process as defined in the Process create SDL
symbol. Several tasks can have the same name. The SDL id should then be used
to distinguish them. When using the SDL output TO_NAME symbol it will search
for the value of that field on the target to find the receiver.

• Prio
This field displays the priority of the task as defined in SDL process create sym-
bol. The value is expressed in decimal. This value is not available on all integra-
tions.

• RTOS id
This field shows the Process Identifier of the task as defined by the RTOS. As sev-
eral processes can be run within the same RTOS task with the scheduler, please
note several processes can have the RTOS id.

• SDL id
This field is a unique identifier of the running process.

• Msg
This field shows the number of messages waiting in the task’s queue. It does not
include saved messages.

• SDL state
This field is the internal SDL state of the SDL process as defined in the SDL dia-
gram.

• System state
This field is the task state from the RTOS point of view. Typically if a process is
hanging on its queue or a semaphore it is in the PEND state. If the task is running
it is in the READY state. This information is not available on all integrations.

When the system is running the active process line is printed in red. Double-clicking on
any process name in the list will open the corresponding diagram in an editor.

The Process information window also allows to modify the SDL-RT state of a process. To
do so right click on the SDL state column of the process line. A pop up menu will list all
PragmaDev Studio V6.0 Page 317

User Manual
the available SDL state that have been defined in the system. Select one and the SDL
state is modified.

SDL-RT state modification example

4.6.5.2 Timers

The Timer info part displays all on-going timers started from the SDL-RT design. The
displayed fields are:

• Name
Name of the timer as defined in the SDL-RT design.

• Pid
Identifier of the task that started the timer.

• Time left
Time left before the timer goes off. The display is updated when an SDL key
event occur so the value displayed here is the time left when the last SDL key
event occurred.

With windows and posix integrations it is possible to simulate discrete time. To do so
RTDS_DISCRETE_TIME must be defined in the compiler options. In that configuration
time will never increase until the user fires a timer. To make a timer go off, right click on
the timer’s name.

Example: have codeTimer to go off
Page 318 PragmaDev Studio V6.0

User Manual
4.6.5.3 Semaphores

The semaphore tree lists all semaphore declared in the SDL-RT system and their
address. When expanded it shows the current state, type and options of the semaphore.
If processes are blocked on the semaphore they will all be listed after the information
line.

It is important to understand how the trace works with semaphore in order to under-
stand that what you see might not be what is really happening on the target. When taking
a semaphore the Model Debugger distinguishes two key events: an attempt to take the
semaphore and a successfully taken semaphore. If the second key event is not seen, the
semaphore tree is not updated but it might be because the semaphore is blocked on it.
The information will be displayed at the next SDL key event; not before. Let’s take an
example to make it clear: process P1 has taken semaphore S1 and process P2 makes an
attempt to take S1. The Model Debugger trace will display:

Semaphore: S1(0x4b3eeb8) take attempt by: P2 at: 0x73d ticks

P2 will get blocked on S1 and if there is no SDL key event happening the semaphore tree
will not be refreshed and display no blocked process on S1... In such a case you should
use the refresh button to update the tree.

4.6.5.4 Watch

There are several ways to add a variable in the Watch window:

• From the shell
Type the following command in the shell:
watch add <variable name>

• From the text editor when the Model Debugger window is open
Select an expression in the editor and go to the “Debug / Add watch” menu to
add the expression in the Watch window.

• From the SDL-RT editor
Select an expression in the SDL-RT editor and go to the “Debug / Add watch”
menu to add the expression in the Watch window.

Variables can be removed from the Watch window:

• from the shell with the following command:
watch del <variable name>
PragmaDev Studio V6.0 Page 319

User Manual
• from the Model Debugger Watch window with right mouse button as shown
below:

The Watch window also allows to modify the value of variables. To do so double click on
the value of the variable to be modified. Press <Return> and the value is updated.

4.6.5.5 Local variables

When stepping through the code the Model Debugger automatically displays the local
variables of the current stack frame. That gathers all local variables of the current C func-
tion including the arguments of the function. Nothing has to be done to update the Model
Debugger Local variable window.

Depending on the type of the variable the best display format is automatically selected
but it is possible to select a specific format to display a value. To do so, right click on the
variable and the following pop up menu will be displayed:

When stepping in the generated C code the current stack frame contains local variables
used by PragmaDev Studio to handle internal information. All these variables name start
with RTDS_ so that there is no confusion with any other variable. Since the Model Debug-
ger is designed to debug the SDL-RT system these variables are hidden from the Local
variables window. But it is possible to display them with the “Option / Show internals”
menu.
Page 320 PragmaDev Studio V6.0

User Manual
The Local variables window also allows to modify the value of variables. To do so double
click on the variable to edit the value. Press <Return> and the value is updated.

Setting a local variable value example

4.6.5.6 Refresh options

The information displayed in the Model Debugger windows are divided in 2 categories:

• System info
• Process information
• Timer information
• Semaphore information

• Variables
• Local variables
• Watch variables

Retrieving any information from the target is time consuming. In order to optimize the
response time it is possible to configure which category of information is refreshed.

The configuration is done in the “Options / Refresh options...” menu.

Default Refresh options

• C step means the use of one of the following step button: ,
In the default options, only the Variables category is refreshed since there is no
reason the System information category has changed in the meantime.

• SDL step means the use of step button,
PragmaDev Studio V6.0 Page 321

User Manual
When stepping from an SDL event to another, only the System information cate-
gory is interesting to update.

• Break means the system has hit a breakpoint.
In that case it is recommended to update all the information.

Anyway, at any time it is possible to refresh all information:

Note signals (SIGINT, SIGSEV...) will be reported in the Model Debugger but no refresh
action is done.

4.6.6 Shell
The PragmaDev Studio shell allows to enter all commands listed above and is used as a
textual trace.

The available commands are grouped in categories. To list all the available categories
type:
help

It will list the following categories:
Type help followed by a category to list available commands

 shell

 execution

 interaction

 variables

 trace

 customization

Type help followed by a category name to list the corresponding commands.

To list all the available commands, type:
h

It will list the following commands:
Command - Explanation

h - lists all commands

history - list the last entered valid commands

clear - clears the shell

echo <string> - echos a string in the shell

include <file name>

resume - resumes the scenario

repeat <repeat count> <shell command> [|; <shell command>]*

<comment>

! <any host command>

refresh - refreshes all data in the window

run - runs the SDL system
Page 322 PragmaDev Studio V6.0

User Manual
stop - stops the SDL system

step - step in the code

stepin - step in function calls

stepout - step out a function call

keySdlStep - run until the next key SDL event

sdlTransition - run until the end of the SDL transition

runUntilTimer - run all transitions until timers

runUntilQueueEmpty - run all transitions until RTOS queue is empty

resetSystem - resets the running system

list - list breakpoints

watch add [<pid>:]<variable name>[<field separator><field name>]*

watch del [<pid>:]<variable name>[<field separator><field name>]*

break <break condition> [<ignoreCount> <volatile>]

delete <breakPoint number>

db <any debugger command>

set time <new time value>

send2name <sender name> <receiver name> <signal number or name> [<parameters>]

send2pid <sender pid> <receiver pid> <signal number or name> [<parameters>]

sendVia <sender pid> <channel or gate name> <signal number or name> [<parameters>]

send <sender pid> <signal number or name> [<parameters>]

systemQueueSetNextReceiverName <receiver name>

systemQueueSetNextReceiverId <receiver id>

extractCoverage <file name>

connect <port number>

connectxml <port number>

disconnect

varFromType <variable name> <variable type>

varFromValue <variable name> = <initial value>

varFieldSet <variable name>[.<field name>]* = <field value>

dataTypes <on | off>

print <variable name>

sdlVarSet [-x] [<process id>:]<sdl variable name>=<value>

sdlVarGet [-x] [<process id>:]<sdl variable name>

backTrace - display last events traced when activated in profile

setupMscTrace <time information> <message parameters> [<agents>]

startMscTrace

stopMscTrace

saveMscTrace <file name>

setEnvInterfaceFilter 1|0

buttonWindowCreate <button window name>

buttonWindowAdd <button window name> <button name> = <shell command> [|; <shell command>]*

buttonWindowDel <button window name> <button name>
PragmaDev Studio V6.0 Page 323

User Manual
buttonWindowLabelAdd <button window name> <label name>

buttonWindowLabelDel <button window name> <label name>

startPrototypingGui

In any of the shell commands the following can be used:

|$(<os environment variable>) to acces an operating system environment variable

|${<interactive label>} pops up an interactive window to get variable value, /s, /b and others can be used

|$[<shell variable name>] will be replaced by the shell variable value

|$<<process name>:<instance number>> will be replaced by the pid of the instance of the process

& <any command> will prevent the above pre-processing

<partial command>\ and continue the command on the next line of the shell

The last valid commands can be recalled with the upper arrow.

Some of these commands are the equivalent to buttons in the button bar. Some are spe-
cific to the shell and will be further explained below.

4.6.6.1 shell commands

To list all the available commands in this category, type:
help shell

It will list the following commands:
Command - Explanation

h - lists all commands

history - list the last entered valid commands

clear - clears the shell

echo <string> - echos a string in the shell

include <file name>

 run a scenario of commands out of a file

resume - resumes the scenario

repeat <repeat count> <shell command> [|; <shell command>]*

 repeat a set of shell commands

<comment>

 does nothing

! <any host command>

 runs any host command

In any of the shell commands the following can be used:

|$(<os environment variable>) to acces an operating system environment variable

|${<interactive label>} pops up an interactive window to get variable value, /s, /b and others can be used

|$[<shell variable name>] will be replaced by the shell variable value

|$<<process name>:<instance number>> will be replaced by the pid of the instance of the process

& <any command> will prevent the above pre-processing

<partial command>\ and continue the command on the next line of the shell

• Running scenarios
Page 324 PragmaDev Studio V6.0

User Manual
A set of commands can be saved to a script file with the red circle button in the
tool bar. The include command or the play button allows to run a script file. The
script file is stopped when a breakpoint is hit or when the stop button is pressed.
Type the resume command to resume the scenario.

• Process instances pid
It is possible to get a process instance pid with the |$< <process name> >
syntax.
Example:
In the following configuration:

echo |$<pCentral:0>
prints the pid (SDL id) of the first instance of pCentral:
0xc919d8
Note:
This feature does not work if the “Options / Free run” is activated.

• Environment variables
Operating system environment variables can be accessed with the |$(<varia-
ble name>) syntax.
Example:
echo |$(RTDS_HOME)
prints:
C:\RTDS

4.6.6.2 execution commands

To list all the available commands in this category, type:
help execution

It will list the following commands:
Command - Explanation

refresh - refreshes all data in the window

run - runs the SDL system

stop - stops the SDL system

step - step in the code
PragmaDev Studio V6.0 Page 325

User Manual
stepin - step in function calls

stepout - step out a function call

keySdlStep - run until the next key SDL event

sdlTransition - run until the end of the SDL transition

runUntilTimer - run all transitions until timers

runUntilQueueEmpty - run all transitions until RTOS queue is empty

resetSystem - resets the running system

list - list breakpoints

startPrototypingGui

watch add [<pid>:]<variable name>[<field separator><field name>]*

 adds a variable to watch:

 <pid> is the process id in which the variable is. Only available in Z.100 simulation.

 <variable name> is the name of the variable

 <field separator> is '!' in SDL Z.100 or '.' in SDL-RT

 <field name> is the name of the variable field or sub-field

watch del [<pid>:]<variable name>[<field separator><field name>]*

 remove a variable to watch

 <pid> is the process id in which the variable is. Only available in Z.100 simulation.

 <variable name> is the name of the variable

 <field separator> is '!' in SDL Z.100 or '.' in SDL-RT

 <field name> is the name of the variable field or sub-field

break <break condition> [<ignoreCount> <volatile>]

 break condition is a function name or '*'break-address or file-name':'line-number or

 diagram-file-name':'symbol-id':'line-number

 ignoreCount is a number

 volatile is a boolean: 'true' or 'false'

delete <breakPoint number>

db <any debugger command>

 the command is directly sent to the debugger with no verification

• db
The shell offers a way to directly type debugger commands. You just have to type
"db " before the actual command and it will be directly passed to the debugger
without any verification except for one command that is "set annotate" in the
Gnu and Tornado integration. This is because with these debuggers, the Model
Debugger is running with annotate level 2 and would not be able to synchronize
anymore with gdb if you change it. The consequence for you is that the format of
the answer is different from what you are used to but you will get the informa-
tion. Check gdb reference manual for more information.

4.6.6.3 interaction commands

To list all the available commands in this category, type:
help interaction
Page 326 PragmaDev Studio V6.0

User Manual
It will list the following commands:
Command - Explanation

set time <new time value>

 new time value can be absolute time or '+'delta

send2name <sender name> <receiver name> <signal number or name> [<parameters>]

send2pid <sender pid> <receiver pid> <signal number or name> [<parameters>]

sendVia <sender pid> <channel or gate name> <signal number or name> [<parameters>]

send <sender pid> <signal number or name> [<parameters>]

 environment name is 'RTDS_Env' and environment pid is '-1'

 parameters are |{field1|=value|,field2|=value|,...|}

systemQueueSetNextReceiverName <receiver name>

systemQueueSetNextReceiverId <receiver id>

extractCoverage <file name>

connect <port number>

 to connect to an external tool on a socket using the shell format

connectxml <port number>

 to connect to an external tool on a socket using the xml-rpc format

disconnect

 to disconnect from the external tool

startPrototypingGui

• set time
This command sets a new system time value if the debugger allows it. Please
check the reference manual for more information.

• connect
This command opens a socket in server mode to connect an external tool to the
PragmaDev Studio shell. The parameter is the port number on the host IP
address. This command should be done before starting the client.

• disconnect
Disconnect the socket from the external tool.

• System queue manipulation
It is possible to re-organize the system queue order from the shell. The system-
QueueSetNextReceiverName will put up front in the system the next message
for the defined receiver name, and systemQueueSetNextReceiverId will put
up front in the system queue the next message for the defined receiver pid.

• extractCoverage
Extracts the model coverage for the current debug session so far and stores it in
the specified file. If the file name is relative, it will be taken from the project
directory. Please note that if this command is used in a debug session run via the
rtdsSimulate command line utility, the project will be saved in the end and the
model coverage results stored in it.
PragmaDev Studio V6.0 Page 327

User Manual
4.6.6.4 variables commands

To list all the available commands in this category, type:
help variables

It will list the following commands:
Command - Explanation

varFromType <variable name> <variable type>

 creates a variable of the given type to be used in the shell

varFromValue <variable name> = <initial value>

 creates a variable with the given initial value to be used in the shell

varFieldSet <variable name>[.<field name<]* = <field value>

 sets a single variable field to a given value

dataTypes <on | off>

 prints the type of the variable

print <variable name>

 prints the variable value

sdlVarSet [<process id>:]<variable name>=<value>

sdlVarGet [<process id>:]<variable name>=<value>

• shell variables
It is possible to define variables in the shell and to use them in send2xxx com-
mands using the |$(<variable name>) syntax.
• varFromType

This command allows to declare a variable based on a type defined in the SDL-
RT system. Only the types used as parameters in messages are available. The
message parameters need to be defined in a super-structure in order to be
compliant with the generated code (except if there is a unique pointer type
parameter).
Example:

Shell commands to define a variable based on the type:
>varFromType myVar mySubStructType
>print myVar
|{b|= |,a|=0|}
>varFieldSet myVar.b=z
>varFieldSet myVar.a=666
>print myVar
|{b|=z|,a|=666|}
Page 328 PragmaDev Studio V6.0

User Manual
>send2name pPing normal mDummy |{|$(myVar)|}
send2name pPing NORMAL_SIGNAL mDummy |{|{b|=z|,a|=666|}|}
>

• varFromValue
This command allows to declare a variable with no type based on its value.
Shell commands to define a variable based on its values:
>varFromValue myVar=|{b|= |,a|=0|}
>print myVar
|{b|= |,a|=0|}
>varFieldSet myVar.b=z
>varFieldSet myVar.a=666
>send2name pPing normal mDummy |{|$(myVar)|}
send2name pPing NORMAL_SIGNAL mDummy |{|{b|=z|,a|=666|}|}
>

• varFieldSet
This command sets a field of the variable. This can only be used on simple
type fields.

• print
This command prints a shell variable value.

• dataTypes
This command is a verbose mode that displays the type when printing data.

• Accessing variables
• Shell variables

Shell variables can be accessed with the |$[<variable name>] syntax.
Example:
varFromType myVar mySubStructType
print myVar
|{b|= |,a|=0|}
echo |${myVar}
echos:
|{b|= |,a|=0|}

• Interactive variables
It is possible to ask the user for a value with the |${<input label>} syntax.
Options for the input label are: For strings, the only option is its length
(default: 20). For booleans, options are the value when checked and the value
when unchecked, separated by a comma. For example, a field with type “b[-
r,]” will be replaced in the command by “-r” if the user checks the correspond-
ing checkbox, and by the empty string otherwise. The defaults are “1” for
checked and “0” for unchecked.
Example:
echo |${Check to activate: /b}
pops up the following window:

prints 1 if checked or 0 if unchecked.
PragmaDev Studio V6.0 Page 329

User Manual
4.6.6.5 trace commands

To list all the available commands in this category, type:
help trace

It will list the following commands:
Command - Explanation

backTrace - display last events traced when activated in profile

setupMscTrace <time information> <message parameters> [<agents>]

 sets up the MSC trace where:

 <time information> is 0 or 1

 <message parameters> is 0 or 1

 <agents> is the list of agent names to trace separated by spaces

startMscTrace

stopMscTrace

saveMscTrace <file name>

setEnvInterfaceFilter <filter status>

 <filter status> is 1 or 0, when active only messages with the environment will be traced

• MSC trace
The MSC trace can be configured, started, stopped, and saved from the shell.
Example:
setupMscTrace 0 1 pPing
Will only trace pPing instance with no time information but with parameters.

• Filtering the interface between the environment and the system
The setEnvInterfaceFilter command is not available in SDL-RT.

4.6.6.6 customization commands

To list all the available commands in this category, type:
help customization

It will list the following commands:
Command - Explanation

buttonWindowCreate <button window name>

 creates a window to contain user defined buttons

buttonWindowAdd <button window name> <button name> = <shell command> [|; <shell command>]*

 adds a button to previously created button window

 <button window name> is the name of the button window

 <button name> is the text to be displayed on the button

 <shell command> is the command associated with the button
Page 330 PragmaDev Studio V6.0

User Manual
buttonWindowDel <button window name> <button name>

 removes a button from a button window

 <button window name> is the name of the button window

 <button name> is the text of the button to be removed

buttonWindowLabelAdd <button window name> <label name>

 adds a label to previously created button window

 <button window name> is the name of the button window

 <label name> is the text to be displayed on the label

buttonWindowLabelDel <button window name> <label name>

 removes a label from a button window

 <button window name> is the name of the button window

 <label name> is the text of the label to be removed

• Button windows
It is possible to create user-defined buttons and to associate shell commands.
Here is an example of a button window:
>buttonWindowCreate myWindow
>buttonWindowLabelAdd myWindow Misc
>buttonWindowAdd myWindow myButton = help
>buttonWindowLabelAdd myWindow Execution
>buttonWindowAdd myWindow stop = send2name pPing normal mStop
>buttonWindowAdd myWindow start = send2name pPing normal mStart
|{param1|=12345|}

So clicking on myButton will actually execute the help command in the shell.
It is also possible to remove labels or buttons:
>buttonWindowDel myWindow stop

It is possible to create several button windows.
To stop one of the windows, just close the window.
PragmaDev Studio V6.0 Page 331

User Manual
4.6.7 Status bar
The status bar is divided in two parts:

• The Model Debugger internal state
The Model Debugger can have the following internal states:

• The active thread
The active thread is displayed in the right part of the status bar when known.

4.6.8 Breakpoints

4.6.8.1 Setting breakpoints

There are three ways to set breakpoints:

• In the PragmaDev Studio shell
break <break condition> [<ignoreCount> <volatile>]
• break condition can be

• a function name
• a break address starting with ’*’
• a specific line in a file with the following form: file_name:line_number
• a specific line in a symbol in a diagram with the following form:

diagram_file_name:symbol_identifier:line_number
• ignoreCount is a number meaning how many times the breakpoint should be

ignored. For example: to stop when the break condition is hit the 5th time
ignoreCount should be set to 4. The default value is 0.

• volatile is a boolean that can take value “true” or “false”. When true the
breakpoint is deleted when hit.

State Meaning

STOPPED The system is stopped

STOPPING The system is trying to stop. No commands
are allowed in that intermediate state.

RUNNING The system is running. The traces might be
active or not (Options / Free run). A stop is

possible in that state.

STEPPING C code classical stepping. Note a classical step
might take a lot of time. A stop is possible in

that state.

KEY_SDL_STEPPING Step to the next SDL key event. Note an SDL
step might take a lot of time. A stop is possible

in that state.

ERROR An error has occurred and the Model Debug-
ger is stuck. Restart the Model Debugger.

Table 5: Model Debugger internal states
Page 332 PragmaDev Studio V6.0

User Manual
Note that setting a breakpoint interactively will record the “break” command in
the shell history. This can be especially useful for breakpoints set on symbol,
where the symbol identifier is not directly visible in the diagram.

• In the text editor, select a line in a source file and go to “Debug / Set breakpoint”

menu to set a simple breakpoint, or click on the button in the debug toolbar.

• In the SDL-RT diagram editor, select an SDL-RT symbol and go to “Debug / Set

breakpoint” menu to set a simple breakpoint, or click on the button in the
debug toolbar.

4.6.8.2 Listing breakpoints

The breakpoints set can be listed:

• In the PragmaDev Studio shell with the list command.

• In the breakpoint list window by clicking on the button in the toolbar. This
window looks like follows:

For each breakpoint is given:
• its type: symbol or file,
• the file name for the diagram or source file where it is set,
• the internal identifier for the symbol where it is set if applicable,
• and the line number in the source file or symbol text where it is set.
From this window, selecting a breakpoint and clicking on “Open” or double-
clicking on a breakpoint line will display the symbol or file at the position of the
breakpoint, and selecting a breakpoint and clicking “Delete” will delete the
breakpoint.

It is important to note this listing will only show breakpoints that have been set with
PragmaDev Studio tools. For example, if a breakpoint has been directly set with gdb, it
will not appear.

4.6.8.3 Deleting breakpoints

Breakpoints can be deleted from:

• The shell with the delete command:
PragmaDev Studio V6.0 Page 333

User Manual
delete <breakpoint number>
where the breakpoint number is the number listed from the list command.

• The breakpoint list window, as explained in “Listing breakpoints” on page 333.

• The text editor: select a line where a breakpoint is set and press the button
in the debug toolbar.

• The diagram editor: put the text cursor in a symbol at a line where a breakpoint

is set and press the button in the debug toolbar.

4.6.9 Sending SDL messages to the running system

4.6.9.1 Send SDL message window
The Model Debugger’s Send an SDL message to the running system button
opens the Send an SDL message to system window. It will list the possible
receivers, and the available messages in the system:

The SDL message send Window

Please note that it is not possible to set a real pointer value with this interface. All point-
ers are considered NULL or to be allocated dynamically on the target. The authorized
pointer values are:

• 0 for null pointers,

• ’ ’ for pointers to be allocated on the target.

To specify real pointer values please us the shell command described below.

4.6.9.2 Send SDL message shell commands
The equivalent commands in the shell are:
send2name <sender name> <receiver name> <signal number or name> [<parameters>]
send2pid <sender pid> <receiver pid> <signal number or name> [<parameters>]

Verifications are made on the sender pid and receiver pid only.
Page 334 PragmaDev Studio V6.0

User Manual
The format for the <parameters> argument depends on whether the message is struc-
tured or not. Structured parameters are fully described in PragmaDev Studio Reference
Manual. In short, a message is structured if and only if it is declared with several param-
eters or with one parameter that is a pointer to a struct or a union.

• For a non-structured message, the text for the parameter must be a sequence of
bytes written in hexadecimal format, exactly as they will appear in the target pro-
gram memory.

• For a structured message, the text for the parameter must be written as follows:
• The values for base types are written as in C: for example 12 or 871 are valid

values for an int, X is a valid value for a char, and so on…
• The values for pointers are written in hexadecimal, optionally prefixed by 0x,

and followed by |: and the pointed value. If the value for the pointer is not
specified, a new block will be automatically allocated on the target. For exam-
ple, for an int*:
• 804A51FE|:67 will set the pointer to the hexadecimal value 0x804A51FE

and put 67 in the pointed value;
• |:123 will allocate a new int* on the target and put the value 123 in it;
• 0x0 will set the pointer to NULL.
There is a special case for char* pointers: the value can be a full string instead
of just a single char. Please note all ’|’ characters must be doubled in this
string.

• The values for structs or unions are coded as follows:
|{field1|=value|,field2|=value|,...|}
For example, for a struct defined as:
struct MyStruct { int i; char *s; };
a valid format is:
|{i|=4|,s|=|:abcd|}
In the struct created on the target, the field i will be set to 4 and the field s will
be automatically allocated with length 5 and the string will be set to "abcd".
Please note that what is significant in the formatted text is not the field names,
but the field order; so in the example above, you can’t write:
|{s|=|:abcd|,i|=4|}/* INVALID! */
As a consequence, the field names are in fact optional, so you can write:
|{|=4|,|=|:abcd|}
Please also note that if no value is specified for a field, the field is left as is.
This can be used to set the value for fields in a union. For example, for:
union MyUnion { int i; void *p; };
a valid format is:
|{i|=|,p|=0x0|}
The field i won’t be set and the field p will be set to NULL.

• Escape sequences
Use a || to introduce a | in the message parameters,
Use a |. to introduce a carriage return in the message parameters.

Please note the transport structures automatically generated by PragmaDev Studio must
be taken into account. So for a message declared via "MESSAGE msg(int, char*);", an
example text for the parameters is:
|{param1|=12|,param2|=|:my string|}
PragmaDev Studio V6.0 Page 335

User Manual
Please refer to the Reference Manual for details on transport structures for messages.

4.6.9.3 Prototyping GUI

This is the easiest way to interact with the system. The interface editor is described in

“Prototyping GUI” on page 151. The interface is started with the quick button.

4.6.9.4 Button windows

Interaction commands can easily be assigned to graphical buttons as described in “inter-
action commands” on page 326.

4.6.10 Testing
If no process called RTDS_Env is defined in the SDL-RT system, one is generated auto-
matically by the code generator to represent the environment. When handling complex
messages with the environment it is not handy to define the messages manually. The eas-
iest way is to define a test process or block called RTDS_Env that will be the testing sce-
nario. Sending messages from the Model Debugger is a good way to trigger specific test
scenarios.

4.6.11 Model coverage
The debugger’s Get model coverage button gets the model coverage analysis
results for the running system so far. This feature is available only if the Gen.
model coverage info. is checked in the generation options (see “Profiles” on

page 248).

For more details on model coverage results, see “Code coverage results” on page 161.

4.6.12 Connecting an external tool
An external tool can be connected to the debugger exactly the same way as for the SDL
simulator, as described in “Connecting an external tool” on page 220. Both modes are
available: the normal mode will allow to send debugger shell commands and receive the
answers via a socket connection, and the XML mode can be used for a more structured
dialog.

4.6.13 Debugger tree view
An alternate view of the SDL-RT system information is available displayed as a Tree. It is
possible to switch from one to the other during a debug session through the “Windows /
Page 336 PragmaDev Studio V6.0

User Manual
Change to tree debugger window” menu. This view is interesting because it is more com-
pact than the classical one.

It is the possible to expand or collapse part of the information as well as drag and drop to
re-order the tree. The “Windows / Change to classical debugger window” menu item
returns to the classic display of the Model Debugger.

4.6.14 Command line debug
The Model Debugger can be started from a shell or a DOS console and run an execution
script automatically with the rtdsSimulate command. Check the Reference manual for
more information.
PragmaDev Studio V6.0 Page 337

User Manual
5 - PragmaDev Tester

PragmaDev Tester helps testers to write validation and integration tests with an abstract
dedicated language. A substantial number of test cases with this technology are pub-
lished by international standardization bodies to ensure conformance to their specifica-
tions.

PragmaDev Tester is based on TTCN-3 technology. For information on the language
itself, please refer to the language reference documents.

5.1 - Levels of support
PragmaDev Studio supports TTCN-3 test suites in both the editors and the simulator:

• Source files in TTCN-3 core language can be included in a project.

• Full syntax coloring and checking is available for these files.

• Inter-module browsing capabilities are provided: for each element in a TTCN
module - type, constant, component, template, function, and so on -, its defini-
tion can be displayed, and it is possible to jump to its definition in its defining
module.

• TTCN-3 test suites can be simulated in the PragmaDev Simulator along with the
system they test.

5.2 - PragmaDev extensions
To provide support for the same concepts within TTCN and SDL, an extension has been
introduced to make TTCN modules aware of the notion of package, that is not present in
the language. This extension is typically usd when importing a set of definitions from an
ASN.1 module in TTCN: in SDL, these definitions are often put in a separate package; but
TTCN has no notion of package and no syntax to import a module in a given package.

PragmaDev Studio uses the standard TTCN extension mechanism to provide a syntax to
do so. For example, the following clause can be written in a TTCN module:
import from Types language "ASN.1:2002" all

with { extension "PragmaDev:parent_package=MyPackage" };

imports the ASN.1 module named Types from the package MyPackage.

This extension is supported in edition (code completion and navigation consider it when
looking for elements), simulation and C++ code generation.
Page 338 PragmaDev Studio V6.0

http://www.ttcn-3.org/

User Manual
5.3 - TTCN-3 core language file editor
TTCN-3 core language source files can be included in PragmaDev Studio projects and
edited with the included text editor:

Each TTCN-3 source file should contain a single module, which must have the same
name as the file itself. For example, a TTCN-3 file named
TTCN_TestsAndControl.ttcn3 must contain exactly one TTCN module, named
TTCN_TestsAndControl.

Since there is no notion of package in TTCN-3, all modules in a test suite should be put in
the same package to be able to import each other.
PragmaDev Studio V6.0 Page 339

User Manual
PragmaDev Studio supports full syntax check of the TTCN-3 files via the menu “File /
Check syntax semantics…” in the source file editor:

PragmaDev Studio also allows to display the definition of any element in a TTCN module
in the side panel: type, constant, variable, component, template, altstep, function, and so
on. To do so, just select the name of the element and select the “Show selected item defi-
nition” entry in the “Search” menu, or press F6. The definition is displayed in the zone on
the right side of the text:
Page 340 PragmaDev Studio V6.0

User Manual
The “Open” button under the displayed definition opens the defining module for the ele-
ment at the line where it is defined. It is also possible to do so by selecting the “Go to item
definition” entry in the “Search” menu, or by pressing Shift + F6.

Note that for altsteps, functions and testcases, only the header is displayed, not the full
definition. For all other elements, the full definition is displayed.

5.4 - TTCN-3 parameters editor
TTCN-3 allows to define values that have to be provided externally, for example to con-
trol the execution of the testcases in the test suite. These values are called module param-
eters and are declared using the keyword modulepar in the TTCN code.

Since the generated executable for TTCN (see “C++ code generation” on page 351)
includes a user interface that allows to run testcases individually, there are also cases
where the required information to run a testcase has to be provided from the outside: if a
testcase has a parameter, since there is no code calling that testcase which can provided
the value for the parameter, it has to be provided externally.

To define these values, PragmaDev Studio includes an editor for all TTCN-3 parameters,
for modules and testcases. These values are stored in a TTCN-3 parameters file, that can
be added anywhere in the project either via the “Element” / “Add child...” menu or the
“Add child element...” contextual menu. Parameter files are found in the “Testing/Vali-
dation” category:
PragmaDev Studio V6.0 Page 341

User Manual
Double-clicking a TTCN-3 parameters file in the project will open the editor:

The editor consists of three parts listing the Configurations, Modules/Testcases, and
Parameters. The configurations allow to assign several values to the parameters while
storing them into a single file. Each of the values will be identified by the configuration
name. Selecting a configuration will update the list of modules & testcases shown in the
middle part of the editor, and selecting a module or testcase will trigger the display of its
parameters. Only modules and test cases with parameters will be displayed.

To insert a new configuration use either the button or the “Configuration / Insert...”
menu:

A new configuration can be either created as a copy of an existing one or from the project.
To create a new configuration from project leave the “Copy configuration” choice to
empty. This will create the new configuration after checking the syntax/semantics of all
TTCN-3 files found in the project. This step is needed to ensure correctnes of all parame-

ters. Checking an existing configuration is possible via the button or the “Configura-
Page 342 PragmaDev Studio V6.0

User Manual
tion / Check...” menu. To remove a configuration use the button or the “Configuration
/ Remove” menu.

The value of a parameter can be edited by double-clicking it. Parameters of type boolean,
integer, float, and charstring are directly editable. For enumerated types a list will be
shown with possible values to choose from. Structured type parameters record and set
are supported if their fields are of editable type (boolean, integer, float, charstring,
enumerated) or structured type (record or set).

Once defined, these parameters can be used in the standalone executable generated from
the TTCN test suite. See “C++ code generation” on page 351 for details.

5.5 - TTCN-3 co-simulation
TTCN-3 test suites in SDL projects can be simulated along with the system they test. To
do so, the test itself must be selected and the simulator must be run as described in
“Launching the Model Simulator” on page 192. The system under test described in the
test will also be run automatically. The test suite will be seen as a process in the SDL sim-
ulator, and all features will be available, such as MSC tracing, breakpoints, local variables
display, etc.

There are a few conventions to follow in the test to connect it to the system, and also
some restrictions on the TTCN-3 features that can be simulated. These are detailed in the
next paragraphs.

5.5.1 Conventions
For TTCN-3 tests to be able to communicate with the system under test, some naming
conventions must be followed in the test itself:

• All test cases must run on a component which has a type with the same name as
the SUT. So if your system is named AccessControl, you must have a compo-
nent type named AccessControl in your test suite, and all test cases must run
on it.

• Ports defined in the TTCN-3 component must have the name of the channels
connected to the environment in the SUT. So if you have a single channel named
cEnv in your system connected to the environment, your component type defini-
tion must include a port definition with the name cEnv for the port. The name for
the port type is not significant and can be anything.

• Messages in the SDL system are represented by types in the TTCN-3 test suite.
The name for the TTCN-3 type must be the name for the message as declared in
the SDL system. For messages with parameters, the TTCN-3 type must be a
record, with as many fields as there are parameters in the message. The names
for the fields are not significant, but their order is: the first message parameter
will be the first field in the type, the second parameter the second field, and so
on… The type mapping between SDL and TTCN-3 is described in the reference
manual.
PragmaDev Studio V6.0 Page 343

User Manual
For example, if a message named close with a single Integer parameter is
declared as going out of the system via channel cEnv, the TTCN-3 test suite must
define the following type:
type record close

{
integer param1
}

and the type close must be declared as incoming in the port type for the port
cEnv.

Messages without parameters are a bit trickier to handle, as there is no empty
type in TTCN-3. The convention is then to create an enum type with the name of
the message, which has a single possible value with different name than the type.
For example, if a message refused with no parameter is declared as incoming
via channel cEnv in the SDL system, the TTCN-3 test suite can define the follow-
ing type:
type enum refused

{
e_refused
}

and the type refused must be declared as outgoing in the port type for the port
cEnv.

• TTCN-3 and SDL co-simulation also allows test suites to get operator calls from
the SDL system via the getcall/reply operations in test cases. The signatures
declared in the test suite must have the same name as the operators in the SDL
system, with the same parameters in the same order and with the same name
and type.
As SDL does not support in/out or out parameters in operators, they are also
not supported in signatures for simulation. All signatures must also be declared
as incoming in port types, since there is no way to make synchronous calls to the
SDL system. So the call/getreply operations are not supported in TTCN-3 test
suites for simulation.
Even if getcall/reply operations are made on ports in TTCN-3, the port is
actually ignored during simulation: all operator calls can be received on any port,
and a reply operation will always answer to the last received getcall operation.
This is due to the fact that operator calls have no connection with channels in the
SDL system, and are therefore not connected to the test in any way. So all opera-
tor calls will actually be sent to the test, which will receive it if there is any pend-
ing getcall operation.
Please note that there is no need to handle operator calls in the test suite: if no
procedure or mixed port type is defined in the test, the operator calls will be
handled the “normal” way (ask answer from user or XML-RPC call).

5.5.2 Restrictions
The following features in TTCN-3 test suites are supported for simulation:

• Modules are supported, but not module parameters (modulepar). The only lan-
guage supported for external modules (language clause) is ASN.1.
Page 344 PragmaDev Studio V6.0

User Manual
• Imports are supported, but restriction clauses are ignored: the import is
accepted but will import the full module (a warning is issued during the byte-
code generation). If present, the language clause has to specify ASN.1 as the lan-
guage, or the import will fail. The exact syntax for ASN.1 in the language clause is
“ASN.1:<year>”, where <year> is a 4-digit number. The specified year has no
effect.

• Groups are supported, but do nothing.

• The notation module-name.identifier for imported identifiers is not sup-
ported. There must be no ambiguity in imported names.

• Component types are supported, as well as all declarations within them.

• Port types with any type are supported. However, signatures in procedure or
mixed port types can only be declared as incoming. The keyword all for incom-
ing or outgoing messages or signatures is also not supported.

• All basic types are supported except anytype, address, default, and objid.
Subtypes of basic types with restrictions are also supported, as in:
type integer index_type (1 .. 16);
The special value infinity is only valid in constraints, not as variable value.
Precision for bitstring and hexstring types are not yet handled, so operations
on these strings won’t produce the expected result (concatenation, indexed
access, lengthof, shifting, …).

• All complex types are supported: record, record of, set, set of, union, enu-
merated and arrays. Optional fields in record or set types are supported, and
so is the special value omit and the predefined function ispresent. However,
the special values * and ? in templates are equivalent, and ifpresent is not sup-
ported.
Recursive types are not supported.
Type compatibility is strict, meaning that it is impossible to assign a value to
another one if both are not declared with the same type, or compatible subtypes
of the same type.

• Signatures are supported, but with no out or inout parameters. Non-blocking
signatures and exceptions are also not supported.

• Templates are supported, including modifies clause and template parameters.
Template operations match and valueof are also supported, as well as the spe-
cial type-name:{…} notation.
However, constraints in templates set via complex values are not supported. For
example:
type record Point { integer x, integer y };
type record Segment { Point p1, Point p2 };
const Point origin := { 0, 0 };
template Segment origin_segment := {p1 := origin, p2 := ?};
will generate an error, as constraint on p1 in origin_segment is specified via the
complex value origin.
Simple constraints on strings specified with pattern are not supported, but the
regexp predefined function is not.
PragmaDev Studio V6.0 Page 345

User Manual
Complex constraints of record of or set of types are not supported (subset,
superset, complement, …).
Passing templates as parameters to test cases or functions is also not supported.

• Constants are supported.

• Module control parts are supported.

• Test case invocation is supported, but specifying a time-out will not work.

• Test cases are supported, including test case parameters, runs on and system
clauses

• All verdict handling is supported, including automatic verdict setting to error
on runtime errors in test cases.

• Functions and altsteps are supported

• Variables are supported with no restriction.

• Timers are supported, as well as all operations on timers, except read.

• Port operations are supported, except stop, start, check, catch, call &
getreply. A port must always be specified for these operations; specifying any
port and all port instead of a port name is not supported.

• All statements in test cases, functions and control parts are supported: if,
while, do/while, for…

• Most predefined functions are supported, including all conversion functions.

• Logging is supported but not configurable: Today, it will always print a message
in the simulator shell.

• Alternatives are supported, including guard conditions on triggers, but [else]
alternatives are not. repeat statements within alt are supported.

• Concurrent testing is partially supported: Components can be created and
started and port connections can be established (map/unmap, connect/discon-
nect). Test verdicts will be handled correctly when there are several test compo-
nents. However:
• Both ports have to be specified for disconnection operations;
• The status for test components cannot be tested (running, done and killed

operations on components);
• Components cannot be stopped or killed from the outside (stop and kill

operations);
• Components created as alive are not supported;
• sender, from & to clauses in port operations are not supported.

• with clauses are ignored.

5.5.3 Simulation
As said above, running a test suite along with the system it tests is simply done from the
project manager by selecting the main test module and running the simulator on it. The
simulator window is the standard one and its behavior is exactly the same as the one
Page 346 PragmaDev Studio V6.0

User Manual
used for SDL simulation. The test suite will simply appear as a single entry in the list of
running instances:

To start the simulation, hit Run the system and the control part of the selected
TTCN module will be executed against the system under test.

Also, a specific window is started when a simulation is launched on a TTCN-3 module.

This window will show all available testcases in the module selected for the simulation
and all its imported modules. Also if the selected module has a control part it will be
shown.
PragmaDev Studio V6.0 Page 347

User Manual
Through this interface, the control part can be executed as with the simulator window,
but a specific testcase can also be executed. To execute a testcase, select the module in
which it is, then select the testcase and Run it.

Load context is used to load the context of a specific testcase. For example, if a testcase is
selected and its context loaded, it is then possible to make a step-by-step execution into
the simulator window.

After execution of any element, its verdict and date of execution are shown into this
interface. TTCNexecution.log file, in the project directory, will save all information of
the TTCN execution.

All features in the SDL simulator such as stepping, breakpoints, local variables display or
MSC tracing are then available for TTCN code:

As TTCN test cases do not have states, state change symbols in MSC traces are used to
display test case verdicts.

5.5.4 Provided external functions
A number of built-in functions are available in PragmaDev Simulator. To have access to
these functions the PragmaLib ttcn module must be imported:

import from PragmaLib all;
Page 348 PragmaDev Studio V6.0

User Manual
5.5.4.1 Formatted output

The following functions are available for formatted output:
• PragmaDev_b4sprintf(<arg>) : <sprintf arg>

• <arg>: boolean.
• <sprintf arg>: PragmaDev_arg4sprintf. Built-in wrapper type for <arg>.
This function is declared as:
external function PragmaDev_b4sprintf(boolean boolean_arg)
return PragmaDev_arg4sprintf;

• PragmaDev_i4sprintf(<arg>) : <sprintf arg>
• <arg>: integer.
• <sprintf arg>: PragmaDev_arg4sprintf. Built-in wrapper type for <arg>.
This function is declared as:
external function PragmaDev_i4sprintf(integer integer_arg)
return PragmaDev_arg4sprintf;

• PragmaDev_f4sprintf(<arg>) : <sprintf arg>
• <arg>: real.
• <sprintf arg>: PragmaDev_arg4sprintf. Built-in wrapper type for <arg>.
This function is declared as:
external function PragmaDev_f4sprintf(float float_arg) return
PragmaDev_arg4sprintf

• PragmaDev_s4sprintf(<arg>) : <sprintf arg>
• <arg>: charstring.
• <sprintf arg>: PragmaDev_arg4sprintf. Built-in wrapper type for <arg>.
This function is declared as:
external function PragmaDev_s4sprintf(charstring charstring_arg)
return PragmaDev_arg4sprintf;

• PragmaDev_sprintf(<format>, <args>) : <formatted string>
• <format>: charstring. Based on C sprintf format specifiers (%d, %f, %s, ...).
• <args>: PragmaDev_arg4sprintf. Built-in wrapper type for boolean, integer,

real, and charstring. This should be a concatenation of the functions described
above (PragmaDev_<specifier>4sprintf where <specifier> is either b, i, f, or
s).

• <formatted string>: charstring.
This function is declared as:
external function PragmaDev_sprintf(charstring format,
PragmaDev_arg4sprintf args) return charstring;
Usage example:
charstring output := PragmaDev_sprintf("This is %s %d",
PragmaDev_s4sprintf("number") & PragmaDev_i4sprintf(42));

5.5.4.2 File manipulation

The following functions are available for file manipulation:
• PragmaDev_FileOpen (<file name>, <open mode>) : <file id.>

• <file id.>: integer.
• <file name>: charstring. Path is relative to the project.
PragmaDev Studio V6.0 Page 349

User Manual
• <open mode>: charstring. Based on C fopen file manipulation modes (‘w’, ‘r’,
‘a’, ‘r+’,’a+’...)

This function is declared as:
external function PragmaDev_FileOpen(charstring file_name,
charstring file_mode) return integer;

• PragmaDev_FileClose(<file id.>) : <success>
• <success>: boolean.
• <file id.>: integer. Value given by the PragmaDev_FileOpen.
This function is declared as:
external function PragmaDev_FileClose(integer file_id) return
boolean;

• PragmaDev_FileReadLine(<file id.>) : <read line>
• <read line>: charstring. The line read in the file. Always includes at least the

ending newline character. If line is empty, it means the end of the file has been
reached.

• <file id.>: integer. Value given by the PragmaDev_FileOpen.
This function is declared as:
external function PragmaDev_FileReadLine(integer file_id) return
charstring;

• PragmaDev_FileWriteLine(<line to write>, <file id.>) : <success>
• <success>: boolean.
• <line to write>: charstring.
• <file id.>: integer. Value given by the PragmaDev_FileOpen.
This function is declared as:
external function PragmaDev_FileWriteLine(charstring
string_to_write, integer file_id) return boolean;

5.5.4.3 Radar graph

The following functions are available to generate radar graphs. Several graphs can be
generated at the same time. The resulting window will organize them in tabs. The scale
on the branches is automatically adjusted.

• PragmaDev_RadarGraphCreate(<graph name>, <branch labels>) :
<graph id.>
• <graph id.>: integer.
• <graph name>: charsting. The name will be displayed on the tab in the win-

dow.
• <branch labels>: charstring. Semi-column separated list of branch names.
This function is declared as:
external function PragmaDev_RadarGraphCreate(charstring
branch_labels) return integer;

• PragmaDev_RadarGraphAddLine(<graph id.>, <line label>, <line
values>) : <status>
• <status>: boolean.
• <graph id.>: integer. Value given by the PragmaDev_RadarGraphCreate.
• <line label>: charstring. Label of the line in the graph.
• <line values>: charstring. Semin-column separated list of values for each

branch.
Page 350 PragmaDev Studio V6.0

User Manual
This function is declared as:
external function PragmaDev_RadarGraphAddLine(integer graph_id,
charstring line_label, charstring line_branch_values) return
boolean;

Radar graph example

5.6 - C++ code generation
TTCN-3 modules can be generated as C++ code. It is possible to generate only the C++
code for TTCN-3 modules, or to generate the modules along with the corresponding
SDL/SDL-RT system.

To generate C++ code from a TTCN-3 file, select the TTCN-3 file to generate and then
choose either “If needed...” or “Force...” from the “Generation / Generate code” menu.
PragmaDev Studio V6.0 Page 351

User Manual
5.6.1 Stand alone
To generate TTCN-3 only, in the generation options select TTCN only in the Generate of
the TTCN specifics options:

There is then some adaptations to do to adapt the tests with the SUT:

• For the communication from the tests to the SUT, macro based on the name of
the TSI ports are used and need to be declared by user.

• For the communication from the SUT to the tests, messages have to be stored in
a global variable.

• In the generation option, the macro RTDS_TTCN_SUT_INIT specifies the start
function of the SUT.

For further details, see the PragmaDev Studio Reference Manual.

5.6.2 Combined with SDL
To generate SDL/SDL-RT system with the TTCN-3 file, select TTCN + SDL/SDL-RT in
TTCN specifics options. Adaptation between TTCN and the SUT is automatically done.

5.6.3 Combined with SDL-RT
To generate C++ code for TTCN and SDL-RT system, all types declaration have to be
done in a ASN.1 file. An import must be done in the TTCN-3 file, for example:

import from ASN1FileName language “ASN.1:2002” all;

All types declared in ASN.1 can be used with the same name in TTCN-3. The only excep-
tion is that each dash character (“-”) presents in ASN.1 has to be replaced by an under-
score (“_”) in TTCN-3 module.
Page 352 PragmaDev Studio V6.0

User Manual
5.6.4 Generate the main function
PragmaDev Studio allows to automatically generate a main function in
RTDS_TTCN_main.c. To do so, the option Generate main function must be checked in the
generation options.

The generated main function allows to run the test suite interactively, either the standard
way by running the control part, or testcase by testcase. If the generated executable is
launched from a console or terminal, the following choices will appear:

This first level of menu allows to select the parent module for the elements to execute.
Only modules containing testcases or a control part are shown. Once the module is
selected, a second level of choice appears:

Here, the executable elements are listed. If for example the testcase is run by typing 2,
then return, it will be executed and its verdict displayed:
PragmaDev Studio V6.0 Page 353

User Manual
Note that if a TTCN test suite requires a set of module parameters or testcases parame-
ters to work, the generated executable won’t run directly:

The required configuration file is the one containing the values for module & testcase
parameters, as described in “TTCN-3 parameters editor” on page 341. If such a file is
specified via the -f option, the executable runs and displays a first level of choices allow-
ing to select one of the parameter configurations stored in the file:

Once the configuration has been selected, the values for module & testcase parameters
are defined and the execution proceeds as described above.

For details on how the main function is actually generated, see the PragmaDev Studio
Reference Manual.

5.6.5 RTOS integration
Only generation for windows win32 and posix are supported.

5.6.6 Conventions
To generate code with the associated system, some conventions must be followed:

• The name of the type for the TSI component must be the same than the SDL sys-
tem.

• Ports defined in the TTCN-3 component must have the name of the channels
connected to the environment in the SUT.

• Messages in the SDL system are represented by types in the TTCN-3 test suite.
The name for the TTCN-3 type must be the name for the message as declared in
the SDL system.
Page 354 PragmaDev Studio V6.0

User Manual
5.6.7 Debug information
To easily debug testcases execution, it is possible to ask testcase to write relevant inform-
tion in a log file. To do so, the RTDS_TTCN_DEBUG_FILE macro must be defined in the
compilation options using the -D option, with the name of the file in which all debug
information will be write. For example :
-DRTDS_TTCN_DEBUG_FILE='"myDebugFile"'

will make the testcases write debug information in the file myDebugFile.

For more details on printed information in the file, please refer to section 15.8 of the
PragmaDev Studio Reference Manual.

5.6.8 External functions
The following external functions (described in “Provided external functions” on
page 348) are already available for code generation:

• PragmaDev_b4sprintf

• PragmaDev_i4sprintf

• PragmaDev_f4sprintf

• PragmaDev_s4sprintf

• PragmaDev_sprintf

• PragmaDev_FileOpen

• PragmaDev_FileClose

• PragmaDev_FileReadLine

• PragmaDev_FileWriteLine

The implementation of these functions can be found in:
$(RTDS_HOME)/share/lib/ExternalProcedures.h

$(RTDS_HOME)/lib/ExternalProcedures.c

If one of these functions is used in the model, the header file is automatically included in
the generated headers, and the source file is automatically included in the generated
makefile.

5.7 - TTCN-3 automatic generation
PragmaDev Studio allows to automatically generate TTCN-3 from an SDL/SDL-RT sys-
tem or from MSCs and/or HMSCs.

5.7.1 From an SDL/SDL-RT architecture
The data types defined in the SDL system and used at system level when communicating
with the environment can be automatically translated to TTCN-3 data types. In the case
of ASN.1 data types the same definition file will be used in SDL, SDL-RT, and TTCN-3.

Please note that in order to test an SDL-RT system with TTCN-3, the data types used for
external message parameters must be declared in ASN.1.
PragmaDev Studio V6.0 Page 355

User Manual
Go to the “Project / Generate TTCN...” menu and select Declarations from SDL systems
only:

One file will be generated:

• TTCN_Declarations.ttcn
• declaration of the necessary data types for message parameters,
• declaration of the record types for all SDL messages,
• declaration of ports (one for each SDL/SDL-RT channel connected to the

environment),
• declaration of TSI component type.

This file is overwritten for each TTCN-3 generation.

5.7.2 From MSCs and/or HMSCs
From MSCs or HMSCs, it is allowed to generate complete TTCN-3 testcases. A system
level SDL architecture defining the messages and their parameters is necessary.
Page 356 PragmaDev Studio V6.0

User Manual
Go to the “Project / Generate TTCN...” menu and select Declarations + testcases form
MSCs/HMSCs:

Select the MSCs/HMSCs you want to generate as TTCN-3 testcases. Inform in Environ-
ment lifeline name the name of the lifeline representing the environment into the MSCs.
It is also possible to generate TTCN-3 not just as a unique component running against
the system, but as different components. To do so, inform in PTCs name the name of the
lifeline in the MSC that must be generate as TTCN parallels components.
PragmaDev Studio V6.0 Page 357

User Manual
For example, for the current system:
Page 358 PragmaDev Studio V6.0

User Manual
with the current MSC:

It is possible to generate a TTCN-3 simple testcase by informing only the environment
lifeline named RTDS_Env. By doing so, a testcase simulating the RTDS_Env behavior will
be generated and will be able to communicate with the entire SDL system (entry point is
in our example channel cEnv).

But it is also possible to generate other components in our TTCN-3 testcases. For exam-
ple, if only local has to be tested, input local in PTCs name. By doing so, the generated
testcase will not only simulate RTDS_Env behavior, but also local behavior as a parallel
component.

In every case, four files will be generated:

• TTCN_Declarations.ttcn
As described above.

• TTCN_Templates.ttcn
Declaration of all needed templates for testcases execution.
PragmaDev Studio V6.0 Page 359

User Manual
• TTCN_TestsAndControl.ttcn
Test cases and control part.

• TTCN_CControlPart.ttcn
If several generations are done, this file will contain a control part executing all
generated testcases.

The remaining options of the dialog are:

• Options
• Replace everything in package/folder will delete all TTCN-3 files in destina-

tion package/folder and add new generated files.
• Add generated files to package/folder will only add new generated files with-

out affecting other files, except TTCN_Declarations.ttcn that will always
be re-generated, and TTCN_CControlPart.ttcn that will be consolidated.

• Receive option
• One altstep for each port will generate a single altstep for handling all non-

matching cases.
• One alternative branch for each receive will put each receive in its own alt

for handling all non-matching cases.

5.7.3 From a complete SDL system via model checking technology
It is possible to automatically generate TTCN out of an SDL system. For that purpose
PragmaDev Studio relies on third party model checking technologies. The basic process
is to:

• Export the SDL system to a pivot format (IF, Fiacre, xLIA);

• Define test objectives (coverage, property, observers);

• Call the third party tool;

• Analyze results to build up scenarios.

For more information please refer to “Checking a system against MSC scenarios” on
page 435.
Page 360 PragmaDev Studio V6.0

User Manual
6 - PragmaDev Tracer

PragmaDev Tracer is one of PragmaDev Studio modules. PragmaDev Tracer is free of
charge. Because it is a free tool, it is the only one that has no size restriction on its dia-
gram in the free version of PragmaDev Studio.

6.1 - Overview
PragmaDev Tracer allows to generate execution traces from actual applications running
on targets. Traces can be created either online, from the actual behavior being executed,
or offline, using a intermediate format obtained from the running application and ana-
lyzed afterwards by the tracer. The traces are displayed using the standard ITU-T MSC
representation, or the SDL-RT MSC representation (see the SDL-RT website http://
www.sdl-rt.org).

Online traces are created directly by the program running on the target which sends tex-
tual commands to the Tracer via a standard socket. Two modes are available:

• The graphical mode, allowing to display all the traces as they are created;

• The command-line mode, allowing to generate trace diagrams without visual
user feedback. This is the ideal mode to generate traces in batch operations.

Other features of PragmaDev Studio may be used in conjunction with the tracer itself to
get a full-featured tracing utility with conformance checking against specification or
property verification:

• Trace diagrams can be directly created for documentation purposes;

• Trace diagrams can be compared in a visual way;

• Specification MSC diagrams can be created, then can be compared to execution
traces for conformance checking;

• Property diagrams can be created using the Property Sequence Chart (PSC) for-
mat, which can be matched against execution traces;

• All diagrams can be easily documented, for example by exporting them fully or
partially to common image formats, allowing to insert them in a document.

The general graphical form of the diagrams supported by PragmaDev Tracer is the same
as the one supported in PragmaDev Studio’s MSC Editor, and is described in section
“MSC & PSC reference guide” on page 363.

The general usage of the Tracer is detailed in “Usage” on page 381, including how to
launch it, the options it accepts, a description of the tracer windows and the relevant
preferences. The available commands that can be sent through the socket are described
in section “Command reference” on page 387.

The tracing feature is described in “Tracer window” on page 383. The MSC and PSC edi-
tor is described in “MSC editor” on page 83, and the documentation features in “Docu-
mentation generation” on page 125. The available checks that can be performed - trace
PragmaDev Studio V6.0 Page 361

User Manual
against trace, specification against trace or property matches - are described in “Con-
formance checking: diagram diff & property match” on page 97.
Page 362 PragmaDev Studio V6.0

User Manual
6.2 - MSC & PSC reference guide

6.2.1 General diagram format
A MSC or PSC diagram represents the interaction going on between entities called
instances over time. Instances will typically be tasks, processes or objects. Instances are
represented by symbols called lifelines, that look like follows:

The lifeline always starts with a head that specifies the instance name.

All events happening on the instance are then displayed on a vertical line under the life-
line head. These events are described below in “Lifeline components” on page 366.

The lifeline terminates by a lifeline tail, that can take several forms depending on the sta-
tus of the instance at the end of the diagram.

Lifelines are distributed along the horizontal axis, and the vertical axis represents the
time, flowing from top to bottom. Events happening between lifelines are mostly repre-
sented by links, described in “Links” on page 363. Other symbols allow to further
describe the diagram or add semantics to specification MSCs or PSCs; they are described
in “Main symbols” on page 374.

6.2.2 Links

6.2.2.1 Message links

An asynchronous message sent by an instance and received by another is represented by
a line with an outlined arrow at its end:

Instance head

Instance tail

Events happening
on instance
PragmaDev Studio V6.0 Page 363

User Manual
An instance can also send a message to itself:

A message can also be received from an unknown source, or sent to an unknown target.
In this case, they are called a found message and a lost message respectively:

The syntax for the message link text is free, but PragmaDev Tracer expects a specific for-
mat for some features:

• Conformance checking by diagram comparison or property matches has an
option to consider message parameters or not, as explained in “Basic MSC diff:
trace vs. trace, spec. vs. spec., …” on page 363. In this case, the message link text
should have the format:
<message name> (<message parameters>)
The <message name> will be everything up to the first ‘(’ in the text, and the
parameters everything between this ‘(’ and the final ‘)’. If anything else than a
space appears after the last ‘)’, the syntax won’t be recognized and ignoring mes-
sage parameters will have no effect.

• The structured message parameters display also expects a specific format for the
whole message link text. See “Message parameter format” on page 391 for more
details.

6.2.2.2 PSC-specific normal, required and failed message syntax

In PSC diagrams, texts for message links are supposed to be prefixed with one of the fol-
lowing:

• ‘e:’ indicates the message is a regular one. This means that the message is part of
the precondition for the property: all messages prefixed with ‘e:’ must appear to
trigger a property match. If any of these messages do not appear in the checked
diagram, the preconditions for the property aren’t satisfied, and no matching is
attempted. Regular messages should appear first in the PSC diagram.

• ‘r:’ indicates a required message. This means that if all the regular messages
preceding this message are present in the checked diagram, this message must
be present for the property to match. If it doesn’t, the property is violated.
Page 364 PragmaDev Studio V6.0

User Manual
• ‘f:’ indicates a fail message. This means that if all the regular messages preced-
ing this message are present in the checked diagram, this message must not
appear for the property to match. If it does appear, the property is violated.

Here is an example of a required message in a property:

This means that if the client has sent a connect message to the server, then sends a
request message, the server must send back an answer message, or the property is vio-
lated.

Here is an example with a fail message:

This means that if the client has sent a connect message to the server, then sends a
request message, the server must not send back a not_connected message, or the
property is violated.

Note that in PragmaDev Studio, PSC wanted or unwanted constraints will also appear in
the message link text. For more details, see “PSC constraints: wanted and unwanted mes-
sages & chains” on page 371.

6.2.2.3 Operation call and return links

A synchronous call from an instance to another one is represented by a solid horizontal
line with a block arrow at its end. The return of the call is represented by a dashed hori-
zontal line, also with a block arrow at its end:
PragmaDev Studio V6.0 Page 365

User Manual
The syntax for these links is free, but PragmaDev Tracer will expect a specific syntax for
the operation call link for some features. These features and the expected syntax are the
same as for messages, as described in “Message links” on page 363.

6.2.2.4 Semaphore take, take results and give

A specific kind of lifeline can be used to represent a semaphore in PragmaDev Tracer
(see “Semaphore lifeline” on page 374). For these lifelines, the standard take and give
operations are available, and are displayed like normal operation calls. The results of the
take (success, time-out) is displayed as an operation return link:

6.2.2.5 Dynamic instance creation links

All lifelines are not necessarily present at the start of a MSC diagram, some of these can
be dynamically created later. A dynamic creation is always done by another instance, and
a dashed line with a block arrow to the head of the created instance is used to represent
this creation:

Note: in PragmaDev Tracer, this is the only way to have an instance starting elsewhere
than at the top of the diagram.

6.2.3 Lifeline components
Lifeline components are events impacting a single lifeline. They appear as symbols
attached to the lifeline.
Page 366 PragmaDev Studio V6.0

User Manual
6.2.3.1 Timer events

An instance can start timers, that will time-out in a given amount of time. A timer can
also be cancelled by the instance that created it. The symbols for timers are the following
ones:

6.2.3.2 Message save

A message received by an instance can be saved to be treated later, for example after a
state change. The message will be displayed as resent from the instance lifeline to itself
when it is actually treated. For example:

6.2.3.3 Stop symbol

A stop symbol indicates that an instance has killed itself. Note that in standard MSCs, an
instance can only kill itself, there is no notion of one instance killing another one. The
stop symbol is displayed as follows:

and is always the last symbol appearing on a lifeline.

Time-out for timer named T

Timer start - T is the timer name, d its duration

Cancelling of timer named T
PragmaDev Studio V6.0 Page 367

User Manual
6.2.3.4 Action symbol

Action symbols describe actions performed by the lifeline. In the current version of Prag-
maDev Tracer, this description is informal. For example:

6.2.3.5 Method and suspended segments

Segments are mostly used for instances describing objects that do not have parallel flows
of execution. In this case, an object calling an operation on another one will be inactive
(suspended) during the call while the other object actually executes the operation, or
method. The control will be given back to the caller object when the operation returns.
This can be shown in the MSC using method and suspended segments:

The instance object1 is executing something (method segment) when it calls opera-
tion on object2. Then object1 becomes inactive (suspended segment) while object2
executes the operation (method segment), and object1 becomes active again (method
segment) when the operation returns.
Page 368 PragmaDev Studio V6.0

User Manual
6.2.3.6 Semaphore unavailability

When a semaphore is taken by an instance and becomes unavailable, the same graphical
representation is used on the semaphore lifeline as the method segment on an object life-
line. For example:

When the take from A to S succeeds, the semaphore becomes unavailable. When B
attempts a take, it is put on hold until A gives the semaphore back. Then the take for B
succeeds and the semaphore becomes unavailable again.

6.2.3.7 Relative time constraints

A relative time constraint appearing in a specification MSC diagram or a PSC diagram
indicates that the sequence of events it encloses must happen within a given time. For
example:

This specifies there must be less than 10 ms between the time when Client sends the
request message and the time when it receives the answer message.

During conformance checking, relative time constraints are compared to absolute times
in the compared diagram (see “Conformance checking: diagram diff & property match”
on page 363 and “Absolute times” on page 380). Please note that units are not yet sup-
ported: relative time constraints can only contain a valid comparison operator (<, >, <=,
>=, …) followed by a real number.
PragmaDev Studio V6.0 Page 369

User Manual
6.2.3.8 Co-regions

A co-region on a lifeline specifies that all events happening on this lifeline can happen in
any order, and not only the order specified graphically. For example:

The coregion, indicated by the dotted line on the server lifeline, indicates that the timer
and the outputs of messages update and answer can happen in any order.

Note that co-regions are not supported in the conformance checking feature of Prag-
maDev Tracer (“Conformance checking: diagram diff & property match” on page 363).
The same semantics can usually be specified by using inline expressions; see “Inline
expressions” on page 376 for details.

6.2.3.9 PSC strict operator

Events specified on lifeline in PSC diagrams are supposed to be loosely ordered by
default. This means that if anything happens between two of these events, the property is
matched anyway. It is however possible to specify a strict ordering for a set of events,
meaning that these events must happen in this order without anything in between. This
is done with the strict operator, that looks like follows:

This means that a request message received by A must be immediately followed by the
output of an answer message, without anything in between (see “PSC-specific normal,
required and failed message syntax” on page 364 for the PSC-specific link text syntax).
Page 370 PragmaDev Studio V6.0

User Manual
6.2.3.10 PSC constraints: wanted and unwanted messages & chains

PSC diagrams allow to specify on a message a set of messages that must or must not
appear before or after it for the property to match. Unlike other messages, the messages
in these constraint appear in what PSC calls the intra-message format, i.e as a text for-
matted like: <sender instance name>.<message name>.<receiver instance
name>.

in the PSC specification, the constraint itself is represented by a symbol appearing under
one end of the message link:

• If it appears under the link start (message output on sender), it is a past con-
straint, meaning it must be satisfied before the message is sent for the property
to match;

• If it appears under the link end (message input on receiver), it is a future con-
straint, meaning it must be satisfied after the message has been received for the
property to match.

In PragmaDev Studio, the constraint is actually specified directly in the text of the link.
So a past constraint will appear in square brackets before the text for the message itself:
[constraint] message_name(parameters…)

and a future constraint will appear after the text for the message:
message_name(parameters…) [constraint]

Constraints can have several forms:

• An unwanted message constraint specifies a set of messages that should not
appear. If any of the specified messages appear, the constraint is not satisfied
and the property does not match. In PragmaDev Studio, this kind of constraint is
represented as follows:

The brackets isolate the constraint from the messgae itself, the “=\=>” is the
standard prefix for an unwanted constraint in PragmaDev Studio, and the mes-
sages that should not appear before the login_ok message are separated by a
“|”, meaning that if Client sends a login message to Server, Server must
answer by sending back a login_ok message, unless either the message
cancel_login has been sent from Client to Server before, or the message
logout has been sent by Client to Server before.
PragmaDev Studio V6.0 Page 371

User Manual
Note that is standard PSC, the representation would be something like:

• An unwanted chain constraint specifies a sequence of events that should not
appear. If all messages in the constraint appear in the order specified in the con-
straint, then the property does not match. This kind of constraint is represented
in PragmaDev Studio as follows:

The brackets and prefix are the same as in the unwanted message constraint
above, but the separator between the messages in the constarint is now a “,”,
denoting a sequence. The constraint also appears after the message text, so this
is a future constraint. So this means that if Client sends a login message to
Server, it is a property failure if it sends a logout message after it, unless it has
sent the request message and Server has sent back the answer message in-
between.
Note that in standard PSC, the representation would be something like:

• A wanted chain constraint specifies a sequence of events that must appear. If
any of the messages in the constraint does not appear, or the messages appear in
a different order than the one specified in the constraint, then the property does

b

b = {Client.cancel_login.Server, Client.logout.Server}

g

g = (Client.request.Server, Server.answer.Client)
Page 372 PragmaDev Studio V6.0

User Manual
not match. This kind of constraint is represented in PragmaDev Studio as fol-
lows:

The constraint appears before the message name, so it’s a past constraint. The
prefix “==>” is the standard one for all wanted constraints in PragmaDev Studio.
So this specifies that if Client sends a request message to Server, Server
must send back an answer message, and then another one if Client sends the
repeat message after the first answer.
Note that the standard PSC representation would be something like:

Note: PragmaDev Studio actually supports more general types of constraints called
wanted and unwanted alternative chain constraint. These merge the message and chain
constraints described above. The general syntax for these constraints is:
[<constraint type prefix> I1.m1.J1,I2.m2.J2,… | In.mn.Jn,… | Im.mm.Jm,…]

where <constraint type prefix> can be either ==> for a wanted constraint, or =\=>
for an unwanted constraint.

• If the constraint is unwanted, this specifies that neither the sequence I1.m1.J1,
I2.m2.J2, …, nor the sequence In.mn.Jn, …, nor the sequence Im.mm.Jm, …
should appear for the property to match.

• If the constraint is wanted, this specifies that either the sequence I1.m1.J1,
I2.m2.J2, …, or the sequence In.mn.Jn, …, or the sequence Im.mm.Jm, … must
appear for the property to match.

This allows to represent all the PSC constraint kinds:

• An unwanted message constraint {I1.m1.J1, I2.m2.J2} will be represented as:
[=\=> I1.m1.J1 | I2.m2.J2]

• An unwanted chain constraint (I1.m1.J1, I2.m2.J2) will be represented as:
[=\=> I1.m1.J1, I2.m2.J2]

g

g = (Client.repeat.Server)
PragmaDev Studio V6.0 Page 373

User Manual
• A wanted chain constraint (I1.m1.J1, I2.m2.J2) will be represented as:
[==> I1.m1.J1, I2.m2.J2]

6.2.4 Main symbols

6.2.4.1 Lifeline

A lifeline represents an interacting entity in a MSC or PSC diagram, as explained in “Gen-
eral diagram format” on page 363. PragmaDev Tracer allows the instance name appear-
ing in the lifeline head to have the following format:
<instance name>[:<class name>][(<instance identifier>)]

Lifelines can appear in all kinds of diagrams: SDL and SDL-RT MSC trace or specifica-
tion diagrams, as well as PSC diagrams.

6.2.4.2 Semaphore lifeline

Semaphore lifelines are a SDL-RT extension to the standardized MSC format allowing to
represent semaphores in the running system. They are displayed like a regular lifeline
with an added flag near the lifeline head:

6.2.4.3 Collapsed lifelines

Collapsed lifelines are a PragmaDev Tracer extension and result from a ‘collapse’ opera-
tion. This allows to represent a set of lifelines as a single lifeline, events happening
Page 374 PragmaDev Studio V6.0

User Manual
between the lifelines in the set being hidden. For example, after collapsing the instance B
and C in the following diagram:

the diagram appears as follows:

6.2.4.4 Condition or instance state symbols

A condition symbol represents a condition for all the lifeline it spans. It is typically used
to represent a state for a set of lifelines, the whole system, or for one specific lifeline.
PragmaDev Tracer uses this symbol to represent state changes for an instance received
via the ‘taskChangedState’ or ‘ps’ commands.
PragmaDev Studio V6.0 Page 375

User Manual
Here is an example of 2 condition symbols, the first one for the whole set of lifelines, and
the second one for only one lifeline:

6.2.4.5 MSC references

A MSC diagram can reference another one by using a MSC reference symbol. This can be
used to split a big MSC into smaller parts, or to reference the same sequence of events
several times in a MSC diagram. This kind of symbol is normally only found in specifica-
tion or PSC diagrams.

Here is an example of a MSC diagram referencing another one, called ‘Connection’:

Note that in the current version of PragmaDev Tracer, there is no way to actually attach
a MSC diagram to a MSC reference symbol. So this kind of symbol is mainly supported
for documentation purposes.

6.2.4.6 Inline expressions

An inline expression in a specification or PSC diagram is a way to specify specific seman-
tics for a group of events. The semantics depend on the kind of inline expression:
Page 376 PragmaDev Studio V6.0

User Manual
• An ‘opt’ inline expression specifies an optional set of events. For example:

specifies that the message m1 is sent from A to B, then B may send m2 to A,
which answers m3, then B sends m4 to A. So the sequences m1-m2-m3-m4, and
m1-m4 are both valid.

• An ‘alt’ inline expression specifies a set of alternative behaviors. For example:

specifies that when A sends m1 to B, B may answer by sending back m2, or m3.
So the sequences m1-m2 and m1-m3 are both valid.
An ‘alt’ inline expression must have at least two compartments in it, and can
have as many as needed.
PragmaDev Studio V6.0 Page 377

User Manual
• A ‘loop’ inline expression specifies a set of events that might be repeated several
times. For example:

specifies that after A has sent the message m1 to B, it may send any number of
messages m2, to which B will answer by the message m3, until A sends the mes-
sage m4 to B. So the sequences m1-m4, m1-m2-m3-m4, m1-m2-m3-m2-m3-m4,
and so on, are all valid.
Note that the MSC standard allows to indicate minimum and maximum number
of repeats in loop inline expressions. This feature is not yet available in Prag-
maDev Tracer.

• A ‘par’ inline expression specifies a set of event sequences that must all happen,
but in any order. For example:

specifies that the two sequences A sending m1 to B and B answering m2, and A
sending m3 to B and B answering m4 must both happen, but that the order is not
significant between the sequences. So the global sequences m1-m2-m3-m4 and
m3-m4-m1-m2 are both valid.
A ‘par’ inline expression must have at least 2 compartments, and can have as
many as needed.
Page 378 PragmaDev Studio V6.0

User Manual
• An ‘exc’ inline expression represents an exception. This means the sequence of
events in the inline expression is an error case and terminates the scenario. For
example:

specifies that when A sends m1 to B and B answers m2, there is an error and the
scenario should stop. So the sequence m1-m2 is valid, but is an error case, and
the sequence m1-m3-m4 is valid and is a normal execution.
Note that the MSC standard represents an ‘exc’ inline expression with a dotted
bottom line. PragmaDev Tracer uses a solid line in the current version.

• A ‘seq’ inline expression represents a weak sequence. This means that within
such an inline expression, the events on a specific lifeline must happen in the
given order, but the general ordering can be anything. For example:

This means that on lifeline B, the starting of Tb1 has to happen before the cancel-
ling of Tb2, but that the starting of Ta by A can happen at anytime: before the
starting of Tb1, after the cancelling of Tb2 or between the two.
Note that this kind of inline expression is not supported in conformance check-
ing (“Conformance checking: diagram diff & property match” on page 363).
PragmaDev Studio V6.0 Page 379

User Manual
6.2.4.7 Absolute times

In the MSC standard, absolute times can be associated to any event in the diagram by
using a symbol consisting only in a dashed underline under the text for the time.

PragmaDev Tracer supports absolute times, but only associated to complete ‘event rows’:
the times are displayed in the left margin of the diagram and are associated to all events
with the same y coordinate, instead of any event. To keep the same representation as in
the MSC standard, each absolute time is displayed with a dashed underline:

These absolute times are the reference when verifying relative time constraints during
conformance checking (see “Relative time constraints” on page 369 and “Conformance
checking: diagram diff & property match” on page 363). Please note that units are not yet
supported: absolute time constraints must be written as a real number only.

6.2.4.8 Comments

A comment symbol just contains a documentation text for the item it is attached to. Com-
ment symbols are not yet supported in PragmaDev Tracer.

6.2.4.9 Texts

A text symbol contains informal text usually describing global items in the diagram. Text
symbols are not supported yet in PragmaDev Tracer.

Absolute times
Page 380 PragmaDev Studio V6.0

User Manual
6.3 - Usage

6.3.1 Launching PragmaDev Tracer
There are 3 ways to launch PragmaDev Tracer:

• It is fully included in the free version of PragmaDev Studio. So Launching Prag-
maDev Studio will provide a full featured tracer.

• It also has a command-line interface, wich is available via 2 commands:
• The executable pragmatracer (pragmatracer.exe on Windows) with the

--nw option allows to record traces without a GUI.
• The executable pragmatracercommand (pragmatracercommand.exe on

Windows) allows to access other features such as diagram comparison, with-
out a GUI. It is described in “Command line interface” on page 386.

• It also has a dedicated graphical user interface that can be launched via the com-
mand pragmatracer (pragmatracer.exe on Windows) without the --nw
option. Note that this way of launching PragmaDev Tracer is deprecated and will
eventually stop working.

The usage for the pragmatracer command is:
pragmatracer [-p <portNumber>] [-f <fileName>] [-d <directory>] [--nw]

• -p <portNumber>: sets the port number to use when starting socket connec-
tion. If not set, the tracer will use the port number specified in the preferences.

• -f <fileName>: the filename where to save the trace. If provided the trace will
be saved with this name; otherwise a name will be generated or asked to the user.

• -d <directory>: the default directory in which the trace will be saved. Used
only if no file name is provided or if the file name does not indicate the entire
path of the file.

• --nw: to launch the PragmaDev Tracer in command line mode.

6.3.2 Connection
The connection is made by socket where PragmaDev Tracer runs as a server: the socket
is initialized on a port number and then waits for a connection from a client. The port
number can be set in the tracer preferences (see “Tracer preferences” on page 31), or via
an option for the command-line mode. If no port number has been provided when start-
ing the connection, PragmaDev Tracer uses the default value 50000. This port number
must be the same for the client application which will connect to the tracer. If Prag-
maDev Tracer is in command line mode, the socket is opened as soon as the tracer is
started.

Please note several clients can connect to the same PragmaDev Tracer and contribute to
the same trace. As the socket can accept several connections, it might get tricky to syn-
chronize several clients. For example, if 2 client applications are executed in a row in a
shell script, the beginning of the trace of the second client application might get mixed
with the end of the trace of the first one. To avoid this behavior, it is possible to ask for an
acknowledgment to the tracer (see “Acknowledgment” on page 398). Waiting for an
PragmaDev Studio V6.0 Page 381

User Manual
acknowledgment after the last command in the client program guarantees that the next
client program will start when all commands of the previous program have been treated.
Page 382 PragmaDev Studio V6.0

User Manual
6.4 - Graphical user interface

6.4.1 Integration with PragmaDev Studio
The graphical user interface for PragmaDev Tracer is completely integrated in the free
version of PragmaDev Studio. The features that are specific to PragmaDev Tracer are:

• The creation of a trace by reading tracing commands from a socket. This feature
is launched via the “New MSC trace from socket…” entry in the project man-

ager’s “Project” menu, or by simply clicking in the project manager’s tool
bar. This feature does not require a project to be opened: if there is no current
project, a new empty one will be created automatically.

• The creation of a trace by reading a set of tracing command from a file. This fea-
ture is launched via the entry “Import MSC tracer command file…” in the project
manager’s “Project” menu. This feature only works when there is an opened
project, and the resulting MSC diagram is inserted in this project.

Once created, traces are saved as regular MSC diagrams that can be edited with the stan-
dard MSC editor, as described in “MSC editor” on page 83. Specific options for the tracer
are found in the “Tracer” tab of PragmaDev Studio’s preferences (see “Tracer prefer-
ences” on page 31).

6.4.2 Tracer window
Whenever a trace is started, either from a socket connection or PragmaDev Studio’s sim-
ulator or debugger, a trace window pops up:

Empty tracer window
PragmaDev Studio V6.0 Page 383

User Manual
The trace can be paused or resumed by using the buttons and respectively.

By default the trace is running. When the trace is paused, all received commands are
ignored. Note that, by pausing the trace, the socket is not released so the client applica-
tion can continue to send commands without generating an error.

The MSC trace can be zoomed in or zoomed out with and .

Note that if a limit on the number of events is set in the preferences, only the last events
will appear in the trace (see “Tracer preferences” on page 31). This means that when the
limit is reached, the events at the beginning of the trace will start to disappear from the
tracer window. This doesn’t have any impact on the saved MSC diagram, which will still
contain all recorded events from the beginning.

The trace can be saved at any moment with the button .

A name for the file to save the diagram to will be asked. When closing the tracer window,
the trace stops and the socket connection is closed.
Page 384 PragmaDev Studio V6.0

User Manual
Here is an example of a trace displayed in the tracer window:

Trace in tracer window
PragmaDev Studio V6.0 Page 385

User Manual

Page 386 PragmaDev Studio V6.0

6.5 - Command line interface
Specific features of PragmaDev Tracer are available via a command line interface via the
standard executable for PragmaDev Studio’s command-line interface. This executable is
named pragmastudiocommand.exe on Windows and pragmastudiocommand on Unix.
This executable accepts a subcommand called tracer wihich will run PragmaDev tracer
without a GUI. The general syntax for the command as a whole is:
pragmastudiocommand tracer <options>

The available options are:

• -f <file name>: specifies the name of the file where the trace will be saved;

• -d <directory>: specifies the default directory for all files;

• -p <port number>: specifies the port number on which client connections must
be made (default 5000);

• -n <tracer name>: name for the tracer window (ignored in command-line
mode);

• --nmw: If present, only the tracer window is shown, not the main window
(ignored in command-line mode).

User Manual
6.6 - Tracer commands

6.6.1 Command reference
PragmaDev Tracer accepts several commands to generate the MSC trace. They repre-
sent a specific real-time event illustrated by a symbol in the MSC diagram.

The field separator in a command is:

‘| ’ (pipe followed by a space)

The command is ended by:

‘|\n’ (pipe followed by the line feed character i.e. 0x13)

To insert a printable pipe in the command, another pipe must be put up front:

‘||’ => printable ‘|’

For example, the command for a task creation named pPing with pid 1 will be:
taskCreated| -npPing| 0x01|\n

The generic syntax of a command is:
<command_name or alias>[| <options>]| <parameters>|
<optional_arguments>|\n

If a command name or alias is not recognized, the whole command is ignored.

If one of the parameters is not provided, the whole command is ignored.

If a provided option does not exist, the whole command is ignored.

If the number of optional arguments provided is greater than the expected number, the
command interpreter will ignore the additional arguments.

Each command has an alias; e.g.: ms has the same meaning as messageSent.

6.6.1.1 Common options and arguments

The following options and arguments may appear in several commands:

• -t<time>
Represents the time when an event occur; if provided, a symbol containing the
value of time of the associated event will appear at the left of the MSC trace at the
same height that the event symbol (task created, message sent...) involved.
PragmaDev Studio V6.0 Page 387

User Manual
Here the sending of message ping from process pPing occurs at time 100 after
the beginning of system execution.

• -i<mId>
Represents a unique identifier for a given message. It comes with the commands
messageSend, messageReceive, and messageSave. This option provides a
unique identifier for the sending of a message, allowing to match a message
receive to the corresponding message send. If this option is not used, a message
receive will always suppose that the received message is the last message sent
with the same name. This may result in errors in the trace if several messages
with the same name exist at the same moment.
For example:

Without message unique ids

With message unique ids (after message name)

• -M<elt_id>
Specifies the identifier for the model element for this event. The identifier is a
string that is only meaningful for the modelling tool used to create the element.
The identifier is not displayed, but is simply stored in the trace diagram once this
one is saved.

• <sigNum>
Numerical identifier for the name of a message. Note both the name and this
identifier may have to be provided.

• <pId> or <semId>

p1 p2 p3

m
m

m

p1 p2 p3

m

m

p1 p2 p3

m

m

?

p1 p2 p3

m(1)
m(2)

m(1)

p1 p2 p3

m(2)

m(1)
Page 388 PragmaDev Studio V6.0

User Manual
Identifier of a process or semaphore; it is an unique identifier. pId and semId
represents the id of the lifeline, so it is not possible to have a semaphore and a
process with the same id.

• <tId>
unique timer identifier; it must be provided, and may be used as the name of the
timer if no option -T is provided.

6.6.1.2 Task creation

To trace a task creation, the command syntax is:
taskCreated[| -t<time>][| -M<elt_id>]

[| -c<creatorId>][| -n<pName>][| -N<creatorName>]| <pId>|\n

or
pc[| -t<time>][| -M<elt_id>][| -c<creatorId>][| -n<pName>]

[| -N<creatorName>]| <pId>|\n

options:

• -t, -M: time and model element identifier for the event; See “Common options
and arguments” on page 387.

• -c: identifier of creator process,

• -N: name of creator process,

• -n: name of created process; if this option is not present, the process name on
the MSC trace will be its id.

parameters:

• <pId>: unique process identifier.

6.6.1.3 Task deletion

To trace a task deletion, the command syntax is:
taskDeleted[| -t<time>][| -M<elt_id>][| -n<pName>]| <pId>|\n

or
pd[| -t<time>][| -M<elt_id>][| -n<pName>]| <pId>|\n

options:

• -t, -M: time and model element identifier for the event; See “Common options
and arguments” on page 387.

• -n: process name,

parameters:

• <pId>: unique process identifier.
PragmaDev Studio V6.0 Page 389

User Manual
6.6.1.4 Messages

6.6.1.5 Message sending

To trace a message sending from a process, the command syntax is:
messageSent[| -t<time>][| -M<elt_id>][| -d<msgData>][| -n<pName>]

[| -i<mId>]| <pId>| <sigNum>| <msgName>|\n

or
ms[| -t<time>][| -M<elt_id>][| -d<msgData>][| -n<pName>][| -i<mId>]

| <pId>| <sigNum>| <msgName>|\n

options:

• -t, -M: time and model element identifier for the event; See “Common options
and arguments” on page 387.

• -d: data of the message. Spaces are allowed and the data format is free except for
the ‘|’ character that should be doubled:’||’. Detailed format is described in
“Message parameter format” on page 391.

• -n: name of the process sending the message.

• -i: unique identifier for message, See “Common options and arguments” on
page 387.

parameters:

• <pId>: unique process identifier.

• <sigNum>: signal number of the message, See “Common options and arguments”
on page 387.

• <msgName>: message name.

6.6.1.6 Message reception

To trace a message reception, the command syntax is:
messageReceived[| -t<time>][| -M<elt_id>][| -d<msgData>]

[| -n<pName>][| -i<mId>]| <pId>| <sigNum>| <msgName>|\n

or
mr[| -t<time>][| -M<elt_id>][| -d<msgData>][| -n<pName>][| -i<mId>]

| <pId>| <sigNum>| <msgName>|\n

options:

• -t, -M: time and model element identifier for the event; See “Common options
and arguments” on page 387.

• -d: data of the message. Spaces are allowed and the data format is free except for
the ‘|’ character that should be doubled:’||’. Detailed format is described in
“Message parameter format” on page 391.

• -n: name of the process receiving the message.

• -i: unique message identifier, See “Common options and arguments” on
page 387.

parameters:
Page 390 PragmaDev Studio V6.0

User Manual
• <pId>: unique process identifier.

• <sigNum>: signal number of the message, See “Common options and arguments”
on page 387.

• <msgName>: message name.

6.6.1.7 Message parameter format

The format described below applies to structured parameters in messages sent or
received. Sending structured messages with the following format allows to display
parameters in a tree in the MSC editor as shown below.

The format for this text or argument depends on whether the message is structured or
not. Structured parameters are fully described in RTDS Reference Manual. In short, a
message is structured if and only if it is declared with several parameters or with one
parameter that is a pointer to a struct or a union.

• For a non-structured message, the text for the parameter must be a sequence of
bytes written in hexadecimal format, exactly as they will appear in the target pro-
gram memory.

• For a structured message, the text for the parameter must be written as follows:
• The values for base types are written as in C: for example 12 or 871 are valid

values for an int, X is a valid value for a char, and so on…
• The values for pointers are written in hexadecimal, optionally prefixed by 0x,

and followed by |: and the pointed value. For example, for an int*:
• 804A51FE|:67 will define the pointer to be 0x804A51FE and 67 will be the

pointed value;
• |:123 will only describe the pointed value to be 123;
There is a special case for char* pointers: the value can be a full string instead
of just a single char. Please note all ‘|’ characters must be doubled in this
string.

• The values for structs or unions are coded as follows:
|{field1|=value|,field2|=value|,...|}
For example, for a struct defined as:
struct MyStruct { int i; char *s; };
PragmaDev Studio V6.0 Page 391

User Manual
a valid format is:
|{i|=4|,s|=|:abcd|}
In the struct, the field i will be set to 4 and the field s will point to the "abcd".

6.6.1.8 Message saving

To trace a saved message, the command syntax is:
messageSaved[| -t<time>][| -n<pName>][| -i<mId>]| <pId>| <sigNum>

| <msgName>|\n

or
mv[| -t<time>][| -n<pName>][| -i<mId>]| <pId>| <sigNum>| <msgName>|\n

options:

• -t, -M: time and model element identifier for the event; See “Common options
and arguments” on page 387.

• -n: name of process that saves the message,

• -i: unique message identifier, See “Common options and arguments” on
page 387.

parameters:

• <pId>: unique process identifier,

• <sigNum>: signal number for the message, See “Common options and argu-
ments” on page 387.

• <msgName>: saved message name

6.6.1.9 Semaphore creation

To trace a semaphore creation, the command syntax is:
semaphoreCreated[| -t<time>][| -M<elt_id>][| -s<semName>]

[| -c<creatorId>][| -N<creatorName>][| -a<stillAvailable>]
| <pId>|\n

or
sc[| -t<time>][| -M<elt_id>][| -s<semName>][| -c<creatorId>]

[| -N<creatorName>][| -a<stillAvailable>]| <pId>|\n

options:

• -t, -M: time and model element identifier for the event; See “Common options
and arguments” on page 387.

• -s: name of semaphore; if not provided the name of the created semaphore in
the MSC trace will be its internal identifier,

• -c: identifier of the creator process,

• -N: name of the creator process,

• -a: boolean indicating if semaphore is empty (value 0) or full (value 1),

parameters:

• <pId>: unique identifier of the created semaphore.
Page 392 PragmaDev Studio V6.0

User Manual
6.6.1.10 Semaphore deletion

To trace a semaphore deletion, the command syntax is:
semaphoreDeleted[| -t<time>][| -M<elt_id>][| -s<semName>]

[| -c<destructorId>][| -N<destructorName>]| <pId>|\n

or
sd[| -t<time>][| -M<elt_id>][| -s<semName>][| -c<destructorId>]

[| -N<destructorName>]| <pId>|\n

options:

• -t, -M: time and model element identifier for the event; See “Common options
and arguments” on page 387.

• -s: name of deleted semaphore,

• -c: identifier of the destructor process,

• -N: name of the destructor process,

parameters:

• <pId>: unique identifier of the deleted semaphore.

6.6.1.11 Semaphore take attempt

To trace an attempt to take semaphore, the command syntax is:
takeAttempt[| -t<time>][| -M<elt_id>]

[| -n<pName>][| -s<semName>][| -T<timeout>]| <pId>| <semId>|\n

or
sa[| -t<time>][| -M<elt_id>][| -n<pName>][| -s<semName>][| -T<timeout>]

| <pId>| <semId>|\n

options:

• -t, -M: time and model element identifier for the event; See “Common options
and arguments” on page 387.

• -n: name of process taking the semaphore,

• -s: name of the taken semaphore,

• -T: timeout for the take; a value of -1 indicate that the process will wait until the
take have succeeded,

parameters:

• <pId>: identifier of taker process,

• <semId>: identifier for taken semaphore.

6.6.1.12 Semaphore take succeeded

To trace a semaphore has been successfully taken, the command syntax is:
takeSucceeded[| -t<time>][| -M<elt_id>]

[| -n<pName>][| -s<semName>][| -a<stillAvailable>]| <pId>|
<semId>|\n

or
PragmaDev Studio V6.0 Page 393

User Manual
ss[| -t<time>][| -M<elt_id>][| -n<pName>][| -s<semName>]
[| -a<stillAvailable>]| <pId>| <semId>|\n

options:

• -t, -M: time and model element identifier for the event; See “Common options
and arguments” on page 387.

• -n: name of the process taking the semaphore,

• -s: name of taken semaphore,

• -a: boolean indicating if semaphore is empty (value 0) or full (value 1),

parameters:

• <pId>: identifier for taker process,

• <semId>: identifier for taken semaphore.

6.6.1.13 Semaphore take timed out

To trace a semaphore take attempt timed out, the command syntax is:
takeTimedOut[| -t<time>][| -M<elt_id>][| -n<pName>][| -s<semName>]

| <pId>| <semId>|\n

or
st[| -t<time>][| -M<elt_id>][| -n<pName>][| -s<semName>]

| <pId>| <semId>|\n

options:

• -t, -M: time and model element identifier for the event; See “Common options
and arguments” on page 387.

• -n: name of taker process,

• -s: name of taken semaphore,

parameters:

• <pId>: identifier of taker process,

• <semId>: identifier of taken semaphore.

6.6.1.14 Semaphore give

To trace a semaphore give, the command syntax is:
giveSem[| -t<time>][| -M<elt_id>][| -n<pName>][| -s<semName>]

| <pId>| <semId>|\n

or
sg[| -t<time>][| -M<elt_id>][| -n<pName>][| -s<semName>]

| <pId>| <semId>|\n

options:

• -t, -M: time and model element identifier for the event; See “Common options
and arguments” on page 387.

• -n: name of the process giving the semaphore,
Page 394 PragmaDev Studio V6.0

User Manual
• -s: name of given semaphore,

parameters:

• <pId>: identifier of giver process,

• <semId>: identifier of given semaphore.

6.6.1.15 Timer start

To trace the start of a timer, the command syntax is:
timerStarted[| -t<time>][| -M<elt_id>]

[| -n<pName>][| -T<timerName>]| <pId>| <tId>[| <timeLeft>]|\n

or
ts[| -t<time>][| -M<elt_id>][| -n<pName>][| -T<timerName>]

| <pId>| <tId>[| <timeLeft>]|\n

options:

• -t, -M: time and model element identifier for the event; See “Common options
and arguments” on page 387.

• -n: name of process starting the timer,

• -T: name of the timer started,

parameters:

• <pId>: identifier of starter process,

• <tId>: identifier of timer, See “Common options and arguments” on page 387.

optional argument:

• <timeLeft>: time before timer times out.

6.6.1.16 Timer cancellation

To trace the cancellation of a timer, the command syntax is:
timerCancelled[| -t<time>][| -M<elt_id>][| -n<pName>][| -T<timerName>]

| <pId>| <tId>|\n

or
tc[| -t<time>][| -M<elt_id>][| -n<pName>][| -T<timerName>]| <pId>|
<tId>|\n

options:

• -t, -M: time and model element identifier for the event; See “Common options
and arguments” on page 387.

• -n: name of process having starting the timer,

• -T: name of the stopped timer,

parameters:

• <pId>: process identifier,

• <tId>: identifier of timer stopped, See “Common options and arguments” on
page 387.
PragmaDev Studio V6.0 Page 395

User Manual
6.6.1.17 Timer timed out

To trace a timed out timer, the command syntax is:
timerTimedOut[| -t<time>][| -M<elt_id>][| -n<pName>][| -T<timerName>]

| <pId>| <tId>|\n

or
tt[| -t<time>][| -M<elt_id>][| -n<pName>][| -T<timerName>]

| <pId>| <tId>|\n

options:

• -t, -M: time and model element identifier for the event; See “Common options
and arguments” on page 387.

• -n: name of process having started the timer,

• -T: name of the timer that times out ,

parameters:

• <pId>: process identifier,

• <tId>: identifier of the timer that times out, See “Common options and argu-
ments” on page 387.

6.6.1.18 Task state changed

To trace a task state has changed, the command syntax is:
taskChangedState[| -t<time>][| -M<elt_id>][| -n<pName>]

| <pId>| <stateName>|\n

or
ps[| -t<time>][| -M<elt_id>][| -n<pName>]| <pId>| <stateName>|\n

options:

• -t, -M: time and model element identifier for the event; See “Common options
and arguments” on page 387.

• -n: name of process involved,

parameters:

• <pId>: process identifer,

• <stateName>: name of the new state for process.

6.6.1.19 Action symbol

To trace an action in a lifeline, the command syntax is:
information[| -t<time>][| -M<elt_id>][| -n<pName>]| <pId>| <message>|\n

or
in[| -t<time>][| -M<elt_id>][| -n<pName>]| <pId>| <message>|\n

options:

• -t, -M: time and model element identifier for the event; See “Common options
and arguments” on page 387.
Page 396 PragmaDev Studio V6.0

User Manual
• -n: name of process involved,

parameters:

• <pId>: process identifer,

• <message>: information to be displayed in the action symbol.

6.6.1.20 Start a new MSC trace

To start a new MSC trace, the command syntax is:
newTrace[| -f<fileName>]|\n

or
n[| -f<fileName>]|\n

options:

• -f<fileName>: file name is the file name of the new trace.

In graphical mode, this command closes the current trace if it exists, saves it if needed
and launches a new viewer window. In no window mode, the previous trace is stopped
and saved and a new trace starts, ready to accept commands.

6.6.1.21 Pause MSC trace

To pause the current MSC trace, the command syntax is:
pause|\n

or
p|\n

The trace is resumed with the resume command.

6.6.1.22 Resume MSC trace

To resume the current MSC trace, the command syntax is:
resume|\n

or
r|\n

This command is used only after the trace has been paused via the graphical interface or
with the pause command.

6.6.1.23 Close MSC trace

To stop the MSC trace, save and close the file, the command syntax is:
close|\n

or
c|\n

Use to indicate that the current trace will be definitively stopped and then saved. If a file
name has been provided when the current trace started, it will be used to save the dia-
gram; otherwise PragmaDev Tracer will generate a file name like "mscTracer.rdd" in no
window mode or open a dialog asking to choose a file name.

Please note this command will have no effect in graphical mode.
PragmaDev Studio V6.0 Page 397

User Manual
6.6.1.24 Exit PragmaDev Tracer

This command makes the PragmaDev Tracer quit. If a trace was running, it will be
stopped and saved as if a command close was sent.
exit|\n

or
e|\n

Please note this command will have no effect in graphical mode.

6.6.1.25 Set directory

To set the default directory, the command syntax is:
setDirectory| <dir>|\n

or
dr| <dir>|\n

parameters:

• <dir>: default directory.

Used to save traces when no file name is provided or when a file name without an entire
path is given.

6.6.1.26 Acknowledgment

In order to be sure all commands sent have been received, it is possible to ask for an
acknowledgment from PragmaDev Tracer. The command syntax is:
waitingForAck|\n

or
wa|\n

The acknowledgment sent back after receiving the waitingForAck command is the
string:
ack

6.6.2 Tracing example
This example will illustrate the use of the tracing feature of PragmaDev Tracer.

Commands sent:

• taskCreated| -n| pPing| 0x01|\n
Page 398 PragmaDev Studio V6.0

User Manual
• messageSent| -t| 100| -n| pPing| 0x01| 12| Ping|\n

• messageReceived| -t| 110| -n| pPong| 0x02| 12| Ping|\n

• taskChangedState| -t| 120| -n| pPong| 0x02| PingReceived|\n
PragmaDev Studio V6.0 Page 399

User Manual
• semaphoreCreated| -s| sem| 0x03|\n

• takeAttempt| -t| 130| -n| pPong| -s| sem| 0x02| 0x03|\n

• takeSucceeded| -t| 140| -n| pPong| -s| sem| 0x02| 0x03|\n

• timerStarted| -t| 150| -n| pPong| -T| Wait| 0x02| 0x04| 100|\n
Page 400 PragmaDev Studio V6.0

User Manual
• timerTimedOut| -t| 250| -n| pPong| -T| Wait| 0x02| 0x04|\n

• taskCreated| -t| 260| -c| 0x02| -n| newTask| 0x05|\n
PragmaDev Studio V6.0 Page 401

User Manual
• giveSem| -t| 270| -n| pPong| -s| sem| 0x02| 0x03|\n

• taskDeleted| -t| 280| 0x04|\n

6.7 - Importing an MSC-PR file
PragmaDev Studio allows to convert a MSC PR file as defined in the ITU-T Z120 stan-
dard to a PragmaDev Studio MSC diagram file and to include it in an existing project.
This feature is described in detail in paragraph “MSC PR import” on page 109. Note that
the conversion does not produce a project file, but only a diagram file. So a project must
be opened in the project manager to be able to import MSC-PR files.
Page 402 PragmaDev Studio V6.0

User Manual
7 - PragmaDev Studio

7.1 - Scope
PragmaDev Studio includes all other modules (Specifier, Developer, Tester, and Tracer)
and some extra features and links from one module to the other. This chapter covers
these extra features and links exclusively. For this matter this chapter is quite advanced
in the understanding of the tools capabilities.

7.2 - SDL C code generation

7.2.1 Principles
The generation of C code from SDL works mostly as generating the C code from SDL-RT
systems, as described in “Code generation” on page 246. The SDL declarations and actual
code are simply first translated to C. The rules for this translation are described in the
reference manual.

Some code generation options described in “Code generation options” on page 249 are
only meaningful for SDL code generation:

• Data allocation, since it only affects the C code generated for SDL declarations;

• Operators implemented in C, since operators can only appear in SDL type decla-
rations;

• Case-sensitive, as SDL-RT systems are always case-sensitive anyway;

• Prefix enum values names w. type name, as it only impacts the code generated
for LITERALS SDL type definitions;

• Generate ASN.1 codecs for env. messages, as ASN.1 encoders and decoders gen-
eration is only available for SDL systems and is not needed for SDL-RT ones.

The detailed process for ASN.1 encoders and decoders generation is described in the next
section.

7.2.2 ASN.1 codecs for environment messages
If the corresponding option is the generation options is checked, the code generation will
attempt to generate ASN.1 encoders and decoders for messages exchanged between the
SDL system and the environment.

This requires that all types for message parameters are described in ASN.1. The only
exception is SDL base types Boolean, Integer, Real and CharString that have a direct
equivalent in ASN.1: BOOLEAN, INTEGER, REAL and GeneralString, respectively. These
types can be used in message parameters and will be translated automatically.

When the ASN.1 codecs generation is required, the following happens after generating
the code for the system:
PragmaDev Studio V6.0 Page 403

User Manual
• All messages going to the environment or coming from it are checked. If any
message parameter is not defined in ASN.1, or is not a base type among those
listed above, the code generation fails.

• An additional ASN.1 file is generated in the code generation directory. This file
contains ASN.1 types for the messages themselves:
• If a message m has no parameter, a type named RTDS-message-m is created

which is a “syntype” for the NULL ASN.1 type;
• If a message m has parameters, a type named RTDS-message-m is created

which is a SEQUENCE with one field for each message parameter, in order. The
fields are named param1, param2, and so on.

Another type is created, always called RTDS-AllMessages, which is a CHOICE on
all the messages exchanged between the system and the environment. This type
is the only PDU for the ASN.1: all messages will be encoded data for this type.

• C code for the ASN.1 file is generated via an external utility, which is included in
the distribution. This utility is called asn1c and is available freely at the follow-
ing address: http://lionet.info/asn1c/compiler.html
The generated code is placed in a subdirectory of the code generation directory
called asn1. It includes definitions for C types representing the ASN.1 types as
well as the code needed to encode and decode values of these types in the BER/
DER standard ASN.1 encoding.

• A file called RTDS_asn1_codec_functions.c is generated containing the code
converting PragmaDev Studio’s own internal structures for ASN.1 types to the
ones used by asn1c.

• The generation of the file RTDS_messages.h is changed so that any message
going to the environment uses the macro RTDS_ASN1_MESSAGE_FROM_SYSTEM,
which has to be defined by the user. This macro takes as parameters the message
number as defined in RTDS_gen.h as an integer, the number of bytes in the
ASN.1 encoded data as an unsigned long, and a pointer on the encoded data
itself as an unsigned char*.
The file also defines another macro called RTDS_ASN1_MESSAGE_TO_SYSTEM,
taking as parameter a number of bytes and a pointer on ASN.1 encoded data for
the type RTDS-AllMessages described above. This macro calls a function decod-
ing the data, buidling the descriptor for the actual message, figuring out its
receiver from the message and sending it. The purpose of this macro is to be
called in some external C code to send a message described as ASN.1 encoded
data to the running SDL system.

The encoding used for all ASN.1 data is BER/DER. The messages sent to the environ-
ment are actually described as DER, but since DER is a subset of BER, it can be decoded
with any BER decoder for ASN.1. The data describing messages sent from the environ-
ment to the system can be DER or BER.

If another ASN.1 toolkit is used to decode the data sent from the system or encode the
data sent to the system, it should use all the ASN.1 files containing the definitions of the
parameter types for all messages, as well as the generated file RTDS-AllMessages.asn1.
All exchanged values in both ways have the type RTDS-AllMessages, described in this
file.
Page 404 PragmaDev Studio V6.0

http://lionet.info/asn1c/compiler.html
http://lionet.info/asn1c/compiler.html

User Manual
A detailed and commented example is available in the distribution, in Studio/
ASN1Codecs.

7.3 - Performance Analyzer

7.3.1 Objectives
The PragmaDev Performance Analyzer helps to identify the most suited architecture for
best time performance (lower time) and/or best consumption performance (lower pay-
load). For that purpose it evaluates the time and the payload (consumption) of a number
of scenarios against a set of architectures.

7.3.2 Time and payload information

7.3.2.1 The model

Time and payload can be associated to each symbol in the behavior diagram. Whenever
the symbol is executed time and payload will be increased based on the expressions indi-
cated in the properties of the symbol (see “Symbol and link properties” on page 62),
namely “Spent time units” and “Payload units”:

Time and payload units can be any valid SDL expression that shall however result in a
positive integer value. If no value is given, then it will default to 0 (zero).

Important notes:
PragmaDev Studio V6.0 Page 405

User Manual
• The result of the SDL expression represents units of time and payload; the actual
values are obtained by multiplying the units with the factors given in the archi-
tecture (see “The architecture” on page 408).

• The SDL expression is always evaluated before the symbol is executed. Excep-

tions to this rule are the signal input and priority input symbols (and).
This is to make sure that the signal parameters (if any) are always up-to-date
when used in a time and/or payload expression associated to these two symbols.

7.3.2.1.1 The Performance Editor

Time and payload units for symbols can be edited also via the PragmaDev Performance
Editor. The editor can be opened from the project manager menu entry “Project / Edit
performance properties...”:

The editor will display (in a tree form) all SDL symbols found in diagrams with their cor-
responding time and payload properties. While the editor is opened, no modifications to
the project and diagrams will be allowed.
Page 406 PragmaDev Studio V6.0

User Manual
The tree of symbols can be collapsed or expanded also via the “Edit” menu. Double-click-
ing on a symbol will trigger a dialog where time and payload units can be edited:

Any modifications to the properties of a symbol will be reflected in the tree by changing
the color of that symbol and its ancestors:

All modifications can be saved via the “File / Save” menu (or the button), or they can
be discarded via the “File / Revert...” menu.
PragmaDev Studio V6.0 Page 407

User Manual
7.3.2.2 The architecture

The possible allocations of the system are defined in deployment diagrams. The diagram
will define:

• On which nodes the agents are executed.

• The time and payload units of the messages exchanged within the same agent.

• The time and payload multiplying factors that apply on the units.

• The time and payload values of the messages going from one node to the other.

For example, for the following model of a system:

a possible allocation with deployment diagram can be:

The diagram implies execution of the agent bCentral in node cpu_1 and bLocal in
cpu_2. Every message exchanged within the agent (e.g., bCentral) is associated to the
units given by the component’s properties: internalTransferPayloadUnits and
internalTransferTimeUnits. The expected values are positive integers; if not defined
they will default to 0 (zero).

The unit multiplying factors are given by the node’s properties: payloadUnitValue and
timeUnitValue. Expected values for payloadUnitValue are positive integers; for
timeUnitValue are positive integers divided by a power of 10 (e.g., 1/1000). The aim of
the divisor in timeUnitValue is to create a ratio between the time spent in symbols (and
communication within an agent) and the time in the model (e.g., values used in SDL tim-
ers). If incorrect or empty values are detected, then the default value of 1 (one) is
assigned.
Page 408 PragmaDev Studio V6.0

User Manual
Messages exchanged between nodes (i.e., agents executing in different nodes) are associ-
ated to the values given by the connection’s (e.g., cIntern) properties: transferPay-
loadValue and transferTimeValue. These are actual values for the payload and time
(not units, hence no multiplying factors apply). Expected values for transferPayload-
Value are positive integers; for transferTimeValue are positive integers divided by a
power of 10 (e.g., 1/1000). If incorrect or empty values are detected, then the default
value of 0 (zero) is assigned.

The payload and time properties of either node or component can be entered (edited)
directly in the symbol text or via its “Additional properties...” in the “Class” tab:

The same is true for the connection, where the properties can be entered in the link text
or via its “Additional properties...”:
PragmaDev Studio V6.0 Page 409

User Manual
7.3.2.3 The test cases

Performance analysis is driven by scenarios (test cases) described in TTCN-3. However,
test case execution is associated to neither payload nor time units (or values). The pay-
load and time of messages exchanged between the system and the test is 0 (zero). This is
equivalent to having (implicitly in the deployment diagram) a test_case component
attached to a test_case node, which in turn is connected to all other nodes. The perfor-
mance properties of the component, node, and connection are set to 0 (zero).

7.3.2.4 Semantics

7.3.2.4.1 Time

Execution of agents on the same node is sequential, and execution on different nodes is
parallel. Each node is considered to have an internal clock which advances based on the
time spent by the agents executing on that node. Sequential execution (only one node) is
straightforward because there is only one clock. If two (or more) nodes are involved,
their respective clocks are synchronized based on message exchange. For example, let’s
suppose that the internal clock of cpu_1 is 100 and that of cpu_2 is 80. If a message is
Page 410 PragmaDev Studio V6.0

User Manual
sent from cpu_1 to cpu_2, then its estimated time of arrival will be 100 + 150/1000
(because it will travel through cInternal). Because the clock of cpu_2 is less than the
estimated time, upon receiving the message, cpu_2 will:

• advance its clock to the estimated time of arrival of the message,

• handle any events (e.g., SDL timer time-out) that may have been triggered
because of the clock change, and

• handle the received message.

A message sent from cpu_2 to cpu_1 requires no changes to the clock, because the clock
of cpu_1 is greater than the estimated time of arrival of the message. In this case the
message is handled immediately.

The resulting time the end of the analysis is the highest value among the clocks of all
nodes, e.g., 100 in the example above.

7.3.2.4.2 Payload

Each node is considered to have an internal payload accumulator which is incremented
based on the payload associated to the agents (symbols and message exchange) executing
on that node. The resulting payload the end of the analysis is the sum of the accumula-
tors of all nodes. For example, if the accumulated payload of cpu_1 is 40 and that of
cpu_2 is 30, then the resulting payload will be 70.

7.3.3 Table and graphical analysis
The PragmaDev Performance Analyzer requires a specific component to be added in the
project (see “Adding a single component” on page 14):
PragmaDev Studio V6.0 Page 411

User Manual
This will create a performance analysis file and add the corresponding component in the
project tree:

Double-clicking on this component will open the Performance Analyzer:

The user interface is divided in two parts:

• The left part is used to add / remove architectures and test cases (scenarios) to
the analysis.

• The right part displays the results of the analysis in tabular form (left) and
graphical form (right).
Page 412 PragmaDev Studio V6.0

User Manual
The three tabs at the top of the right part (“Time”, “Payload”, and “Log”) can be used to
switch between the results of time and payload respectively, or show the log messages
generated during the analysis which contain all the details.

7.3.3.1 Architectures and test cases

Adding / removing an architecture (or test case) to the analysis is achieved via the corre-
sponding quick-buttons. When trying to add an architecture (or test case) to the
analysis, a list of all available choices will pop-up:

This list is computed automatically based on the available deployment diagrams and
TTCN-3 files present in the project tree.

7.3.3.2 Running the analysis

After the architectures and test cases have been added, the analysis can be started via the
menu “Analysis / Start” or the quick button, and it can be stopped via “Analysis /

Stop” or . As the analysis proceeds, the current pair under analysis (architecture, test
case) will be marked with “Analyzing...” in the corresponding cell of the table. The table
PragmaDev Studio V6.0 Page 413

User Manual
and the graph is updated with the results as soon as they are available (i.e., the analysis of
the current pair is finished).

The result shown in the table and graph depends on the verdict of the test case:

• If the verdict is pass, then the values of time and payload will be shown in both
table and graph.

• If the verdict is anything else (e.g., fail), then the verdict of the test case will be
shown in the table and a 0 (zero) value in the graph.

7.3.3.3 Saving the results

The results of an analysis can be saved via the menu “File / Save” or the quick but-
ton. It is possible to undo any changes to the results by reverting to the last saved state
via the menu “File / Revert...”.

The Performance Analyzer provides also an export functionality that will save the results
in CSV format. This functionality can be accessed via the menu “File / Export to CSV...”,
Page 414 PragmaDev Studio V6.0

User Manual
and the resulting file can be then imported and edited with any spreadsheet application.
Here is an example of the results imported in LibreOffice Calc:

7.3.4 SDL Z.100 performance simulation
The core of PragmaDev Performance Analyzer is the SDL Z.100 Simulator with a spe-
cific scheduler (see “Simulator architecture” on page 186) that takes into account the
time and payload properties in the model and deployment diagram. This allows the use
of the SDL Z.100 Simulator with the performance scheduler. To trigger the use of such
scheduler the simulator should be started on a deployment diagram:
PragmaDev Studio V6.0 Page 415

User Manual
Also, the selected deployment diagram should contain a single component (agent) exe-
cuting on a single node:

The interface and functionality of the simulator remain the same, with the only small dif-
ference that the payload is also shown next to the time:
Page 416 PragmaDev Studio V6.0

User Manual
7.4 - Deployment simulator
PragmaDev Studio offers the possibility to simulate the deployment of process instances
in a distributed infrastructure. The ns-3 network simulator is used to setup the underly-
ing communication infrastructure on top of which the SDL (or SDL-RT) process
instances will execute. Due to the nature of ns-3 simulations (i.e., single task discrete
event simulation), it is required for all process instances to execute in the same task with
the ns-3 simulator. This implies that the system must be fully scheduled so that no paral-
lelism is involved as described in “Built in scheduler” on page 302.

To enable deployment simulation, in addition to the system being fully scheduled, the
following are required:

• Define how process instances will be deployed via a UML deployment diagram.

• Define a code generation profile that requires scheduling and supports deploy-
ment simulation.

• Make sure external messages coming from the environment are handled cor-
rectly.

The following paragraphs describe these points in detail.

7.4.1 Deployment diagram for simulation
A UML deployment diagram has to be defined to indicate how processes will be deployed
for simulation. Agents are represented as components which must be linked to at least
one node via a dependency relation. The nodes in the diagram represent ns-3 objects that
interface agents with the underlying communication infrastructure provided by ns-3.
The code generation should then be run on this diagram to actually generate a simulation
executable.

For example, for the following system:
PragmaDev Studio V6.0 Page 417

User Manual
the components and nodes in the deployment diagram may be:

This means that all process instances within the block bServer will use the node
nServer to get access to ns-3 communication layers. The same is true also for bClient
and nClient. To successfuly communicate between them using ns-3, each agent has to
be uniquely identified in the diagram. This is done via the id attribute in both compo-
nent and node. Values for this attribute are the IP address for the node and the TCP port
for the component. This implies that a pair (address, port) has to be unique in the dia-
gram. A comma separated list of values can be assigned to the attribute. In this case the
number of values for the node and attached components must match. The use of lists
simplifies the definition of large scale deployments (e.g., hundreds or thousands of nodes
and components) and maintains the overall readability of the diagram.

As deployment simulation requires always a fully scheduled system, by default each
deployment diagram used for simulation implicitly includes a system agent component
with the “scheduled” property. So, even if it is not present, the diagram above is consid-
ered to contain:

This automatically fulfills the requirement for such component as described in “Deploy-
ment diagram for scheduling policy” on page 302, thus it can be safely omitted (unless it
is necessary, i.e., must be attached to a node). The same is true also for the property of
every other component in the diagram; the scheduling policy for all agents is set by
default to scheduled and any attempt to change it will be silently ignored by the code gen-
erator.
Page 418 PragmaDev Studio V6.0

User Manual
7.4.2 Profiles for deployment simulation
Code generation for deployment simulation is available on Linux and Windows using a
specific target. This can be chosen in the “Option wizard” in the code generation options
dialog:

Setting the RTOS to “Depl. simulator (ns-3.10)” will use a specific integration in <Prag-
maDev Studio installation dir.>/share/ccg/ns-3.10 that contains all the files
needed for the build. The header files and prebuilt libraries of ns-3 can be found in
<PragmaDev Studio installation dir.>/share/3rdparty/ns-3.10/pragmadev.

In general, in addition to the system being fully scheduled, there are two additional
requirements for code generation profiles to make them compatible with the deployment
simulator:

• The profile must be set to generate C++ code in the “Code gen.” tab:
PragmaDev Studio V6.0 Page 419

User Manual
• The debugger must be set to “Deployment simulator” in the “Debug/trace” tab:

The generated code for deployment simulation will be similar to that of fully scheduled
systems, however there are some important differences that ensure correct integration
with the ns-3 simulator. For more details see the PragmaDev Studio Reference Manual.

7.4.3 External messages
Handling of external messages in deployment simulation is quite different compared to a
RTOS or even scheduling. This is due to the nature of ns-3 simulations in general. Every
event (e.g., message) that is external to the simulator, i.e., that is not registered to or gen-
erated by the ns-3 scheduler during execution, has to be made available to the scheduler
before running the simulation. This implies that the information about external mes-
sages should be available before generating the code for deployment simulation. Infor-
Page 420 PragmaDev Studio V6.0

User Manual
mation about external messages can be included in the UML deployment diagram via a
file symbol:

PragmaDev Studio expects a CSV file format, where each row is on its own line and the
cells separated by a semicolon ‘;’. The contents can be created within a spreadsheet
application. Here is an example of external messages created in LibreOffice Calc:

The first row is considered as the title row; its first cell must be “TIME” (case sensitive),
and all other cells may contain the unique identifiers of the components in the UML
deployment diagram. The identifiers are formed by the id attribute of the node and com-
ponent, separated by a colon ‘:’ (in the form “address:port”).

The first cell of every other row should contain the time in milliseconds at which the mes-
sages appearing in that row will be scheduled (by the ns-3 scheduler) to be received by
the corresponding agent in the component. Time values in rows must be unique and in
ascending order.

All remaining cells may contain external messages with parameters (if any). The format
must adhere to that shown in the table above, i.e., message name followed by a comma-
separated list of parameters in parenthesis. The parenthesis are required even if the mes-
sage expects no parameters. Only integer values are accepted as message parameters.
PragmaDev Studio V6.0 Page 421

User Manual
7.4.4 The deployment simulator

The deployment simulator is started from the “Generation / Execute” menu or the
quick button. Once a profile for deployment simulation is selected, PragmaDev Studio
will:

• check syntax and semantic of the deployment diagram (and CSV file if any),

• check syntax and semantic of the SDL-RT (or SDL) system,

• generate the C++ code, compile and link it producing an executable, and

• start the Deployment Simulator which will run the executable and trace events.

If a CSV file is attached to the diagram and edited with an external spreadsheet applica-
tion, it is recommended to launch the simulation via “Generation / Execute / Force code
generation...”. This is necessary in cases where only the CSV file has been edited.

7.4.4.1 Live tracing

At start, the deployment simulator will launch the generated executable in the back-
ground and display the nodes, state-changes, message send and receives, and time dur-
ing simulation:

The time is displayed at the bottom (progress bar) and updated with the timestamp of
the most recent traced event. A pulsing effect is applied on the displayed time to show
that the simulation is still running (or that the tool has not finished yet reading the traced
events).

All nodes are displayed by default in a grid-like topology with an identifier assigned to
them automatically. The color of each node represents the current state. This is the most
recent state-change triggered by a process instance running on the node.
Page 422 PragmaDev Studio V6.0

User Manual
The list of states is displayed in the upper-left. Each state has a color and a priority
assigned to it:

• The color of the state can be changed by a Left-Click on a state and then on the
desired color in the color chooser. To cancel a color change, a Right-Click on the
color chooser is sufficient.

• The priority of the state can be used to assign a precedence to it during vizualiza-
tion. A state-change will be displayed if the priority assigned to the new state is
grater than or equal to the priority of the current one. A value of 0 (zero) means
that the state-change will not be displayed, regardless of the priority of the cur-
rent state. The priority can be changed by holding down the Ctrl key and Left- or
Right-Click-ing on the state.

Messages are displayed with an arrow from the sender to the receiver. The color repre-
sents the type of the message. The message is removed from the view the moment it is
received. Lost messages are displayed with a dotted line, however the dotted pattern will
be visible only at the end of the simulation. The list of messages is displayed in the bot-
tom-left. Each message has a color and visibility assigned to it. If visibility is enabled, the
message will be displayed during simulation, otherwise it will be hidden. The color and
visibility of messages can be changed in the same way as states.
PragmaDev Studio V6.0 Page 423

User Manual
Holding down the Crtl key and Left-Click-ing on a node will launch an instance of the
PragmaDev Tracer for displaying the events of all process instances running on the node.
Page 424 PragmaDev Studio V6.0

User Manual
7.4.4.2 Post-mortem tracing

After successful termination of the simulation, the progress bar will advance to the end,
and the pulsing effect on the time will stop:

However, if simulation fails for some reason, an error message will be displayed at the
bottom beside the time.

On success, a set of additional functionalities will become available. These allow naviga-
tion into all traced events in a post-mortem fashion:

• (or ‘R’ key) resets simulation (traced events) at its starting point. This sets all
nodes to their initial state, no messages are displayed, and the time is set to zero.

• and (or Down-Arrow and Up-Arrow keys) allow navigation one event
back or forward accordingly. The event can be a node state-change, message
sent, or message received.

• and (or Left-Arrow and Right-Arrow keys) allow back and forward nav-
igation in time steps (in milliseconds). The size of the step can be changed using

 and (or Page-Down and Page-Up keys).

Displaying of events is the same as in live tracing with only exception of lost messages. In
post-mortem tracing such messages are also displayed with a dotted line, but the dotted
pattern is visible immediately, i.e., at the moment the message is sent.

7.4.4.3 Commands summary

The complete list of commands of the deployment simulator is given as follows:
PragmaDev Studio V6.0 Page 425

User Manual
• Color Chooser
• Left-Click: change color and close.
• Right-Click: cancel change and close.

• States
• Left-Click: open color chooser.
• Ctrl + Left-Click: increase priority by 1.
• Ctrl + Right-Click: decrease priority by 1.
• Mouse-Wheel: scroll through the list of states.

• Messages
• Left-Click: open color chooser.
• Ctrl + Left-Click: enable / disable visibility.
• Mouse-Wheel: scroll through the list of messages.

• Nodes

• or ‘I’ key: show / hide additional information.
• Ctrl + Left-Click: launch PragmaDev Tracer.
• Mouse-Move while holding Left-Click: pan view.
• Mouse-Wheel: zoom in / out view.

• or Home key: reset pan and zoom.

• Events

• or ‘R’ key: reset.

• / or Down-Arrow / Up-Arrow key: back / forward one event.

• / or Left-Arrow / Right-Arrow key: back / forward one time step.

• / or Page-Up / Page-Down key: decrease / increase time step.

7.4.5 Simulation modes
The PragmaDev Deployment Simulator is provided as a standalone tool in <PragmaDev
Studio installation dir.>/share/3rdparty/demoddix.

The tool supports two modes of execution:

• Live (or pseudo-live) mode allows visualization of events as they are generated
by the ns-3 simulation. In this mode, the simulation executable generated by
PragmaDev Studio is passed as an argument to the tool, which will launch it in a
separate thread of execution and read and display the XML traces as they are
produced. This mode has two variants, that can be enabled with the following
options:
• --run will read and display all available traced events at once,
• --run-live will read and display traced events one at a time.

• Post-mortem mode allows visualization of events from a pre-generated trace file.
Every deployment simulation generated by PragmaDev Studio will produce such
file during execution. In this mode the trace file (and not the executable) is
passed as an argument using one of the options:
• --trace will read all traced events in the file at once,
Page 426 PragmaDev Studio V6.0

User Manual
• --trace-live will read and display traced events one at a time.

These modes define if and how the traced events should be displayed while loading them.
Once all events are loaded, the navigation functionality will be enabled allowing replay of
the simulation.

If the tool is launched from PragmaDev Studio, it should always be in live mode (--run or
--run-live). This will ensure the execution and display of the generated simulation and
not some other trace file that may have been produced during previous simulations.

7.4.6 ns-3 configuration
The underlying communication infrastructure, on top of which the SDL or SDL-RT pro-
cess instances execute, is provided by ns-3. This infrastructure is composed of:

• Topology - position of nodes (coordinates).

• Network devices and channels - devices are attached to channels to create a com-
munication medium that allows nodes to exchange messages.

• Protocol stack - set of communication protocols (e.g., TCP, IP, etc.)

The code generated by PragmaDev Studio provides a default configuration for the infra-
structure: nodes are positioned in a grid topology, connected via wired communication
medium (Ethernet/CSMA devices and channel), and TCP/IP protocols. A pre-configured
wireless communication medium can be used (instead of wired) simply by adding the
compilation macro RTDS_DEPL_WIFI in the generation options:

These default configurations can be found in <PragmaDev Studio installation
dir.>/share/ccg/ns-3.10/bricks/RTDS_Startup_begin_cpp.c. Changes can be
made here in order to provide other configurations or modify the existing ones. Header
files that maybe required in case of changes should be included in <PragmaDev Studio
installation dir.>/share/ccg/ns-3.10/bricks/RTDS_Startup_begin.c.
PragmaDev Studio V6.0 Page 427

User Manual
It is advised to carefully study the ns-3 documentation prior to making any changes to
the configurations. The ns-3 distribution used with PragmaDev Deployment Simulator
can be found in <PragmaDev Studio installation dir.>/share/3rdparty/ns-
3.10/ns-3.10.zip.
Page 428 PragmaDev Studio V6.0

User Manual
7.5 - Model validation

7.5.1 Integration with OBP

7.5.1.1 Scope & features

PragmaDev Studio offers to validate a model by using OBP (Observer Based Prover), a
requirement verification environment developed at ENSTA Bretagne. The specificity of
this environment is that is does not rely on a transformation of the model into another
language: the verification environment communicates with the modelling tool which is
responsible for the support & execution of the target language. This eliminates the prob-
lems often encountered with other verification tools: the lack of expressivity of the target
language, potentially causing some language features to be unsupported, and the change
of semantics between common concepts, which can lead to a validation that covers too
much or too little.

OBP communicates with PragmaDev Studio to actually execute the model in the SDL
simulator. However, adaptations have been made to cover a range of semantics wider
than the ones used in the simulator, to be able to get as close as possible to the final sys-
tem behavior if it uses a code generator. See “Exploration options” on page 431.

The features available via OBP today are:

• Full coverage analysis of the model: this browses all the possible system states
for the SDL model, allowing the identification of dead code. For this purpose, a
code coverage analysis can be done on the results of an exploration, just as for a
simulation or an execution (see “Code coverage results” on page 161).

• Error & deadlock analysis on the model: this browses the model until reaching a
system state from which no transition can be executed. Simulation errors are
internally described as special system states from which no transition can be
triggered, allowing to identify them as deadlocks too. If an error or a deadlock is
identified, a counter-example can be extracted, which can be either a MSC dia-
gram showing the events causing the problem, or a simulator scenario that will
allow to replay these events.

• Property verification: properties are described via PSC diagrams (see “MSC &
PSC reference guide” on page 363), and can be checked during exploration. As in
deadlock & error analysis, if a property is violated, a counter-example can be
extracted either in MSC format, or as a simulator scenario.

OBP uses an exhaustive exploration technology, which can cause combinatory explosions
or even infinite loops on some systems, especially when types used in system inputs are
not sufficiently constrained. To workaround this problem, PragmaDev Studio allows to
limit further the types of the incoming messages parameters in the system.

Another potential cause for combinatory explosion is the inclusion of unneeded tempo-
rary variables in the state of the system: if a variable is used only in a transition where it
is set previously, it does not need to appear in the system state, and its presence can
cause a lot of system states to be identified for nothing. PragmaDev Studio cannot iden-
tify automatically these variables yet, but allows to manually exclude them from the sys-
tem state.
PragmaDev Studio V6.0 Page 429

http://www.obpcdl.org/

User Manual
The limitation of message parameter values and the exclusion of variables are recorded
in an exploration profile, that is described in detail in “OBP exploration profiles” on
page 430.

OBP is included in the PragmaDev Studio distribution and does not need to be down-
loaded separately. Also note that the integration uses some specific OBP features, that
might not be available in all OBP versions, so it is preferable to use the included version
of OBP.

7.5.1.2 OBP exploration profiles

It is possible to define exploration profiles for OBP by selecting the ‘[OBP] Exploration
profiles…’ entry in the ‘Validation’ menu. The following dialog opens:

The ‘Profiles’ list on the left side lists the already created profiles. Note that there will
always be one profile named ‘Default’ with all the default values for the exploration
options and no message or variable limitations. The buttons under the list allow to create
a new profile, optionally by copying the current one, to delete the current profile or to
rename it.

The zone on the right side of the dialog gives the detail for the currently selected one:

• Exploration options;

• Message limitations;

• Variable limitations.

These are described in the following sections.

Note that the message & variable limitations depend on the agents in the project. If a
change in the agents made one of the limitations obsolete, a warning message will be dis-
played at the bottom of the dialog.
Page 430 PragmaDev Studio V6.0

User Manual
7.5.1.2.1 Exploration options

The exploration options control how the execution will behave during exploration. The
following options are available:

• ‘Message queues’ controls the order in which the messages can be received by
the process instances. The possible values are:
• ‘One queue per instance’: the execution simulates a message queue attached

to each instance. This means that if a message m1 is pending for p1, and a mes-
sage m2 is pending for p2, there are two possibilities for the exploration: p1
receives m1 first, or p2 receives m2 first. The order in which m1 and m2 have
been sent is irrelevant. This simulates the behavior of the generated code on
non-deterministic OS’s. This is the default value.

• ‘Single queue for the whole system’: messages are always received in the order
in which they were sent. So if an instance sends m1 to p1, then another
instance send m2 to p2, there is only one possibility: p1 receives m1, since m1
has been sent first. This is the normal behavior for the SDL simulator.

• ‘Initial transitions’ controls the priority of initial transitions compared to the
other ones. The possible values are:
• ‘Prioritary’: this means that if an initial transition is pending, it will have pri-

ority over all other ones. If several initial transitions are pending, all combina-
tions are tested. This is the normal behavior for the SDL simulator.

• ‘As other transitions’: this means that initial transitions are treated just like
any other one. This is the default value.

• ‘Continuous signals’ controls the semantics of continuous signals. The possible
values are:
• ‘Pending messages have priority’: this enforces the SDL semantics, where

continuous signals are not evaluated if the instance has pending messages.
• ‘Check everything’: this means whether the instance has a pending message or

not is irrelevant, the continuous signal will be tested in all cases, as well as the
pending message. This is introduced because the SDL semantics is often diffi-
cult to implement in RTOS’s, where knowing if a task has a pending message
can be impossible. This is the default value.

• ‘Internal transitions’ controls the priority of internal transitions compared to
transitions triggered by messages coming from the environment. The possible
values are:
• ‘Prioritary over external ones’: this means that no message coming from the

environment will be considered unless there are no pending messages left in
the system. This replicates the behavior of the system when the option ‘Treat
internal messages before external ones’ is checked in the simulation options
(see “Main simulator options” on page 187).

• ‘Check everything’: this means that internal and external transitions are con-
sidered the same way, so an incoming message from the environment can be
accepted even if there are pending messages in the system. Note however that
messages coming from the environment are considered only if an instance is
in the proper state to handle them. This is the default value.
PragmaDev Studio V6.0 Page 431

User Manual
7.5.1.2.2 Message limitations

Message limitations are specified in the ‘Messages’ tab in the exploration profile. All
incoming messages for the system in the project are displayed in the tab, with for each
message:

• A field allowing to specify the maximum number of messages of this type that
can be sent to the system. This allows to limit the exploration for systems that are
infinite loops waiting for an incoming message.

• A field for each of the message parameters, allowing to specify constraints on the
values for this parameter.

Constraints are possible values for the parameter separated with ‘|’ or ‘,’ characters
(existing constraints always use the ‘|’ character). For example, if the parameter param1
is of type CharString, a constraint set to ‘foo|bar’ will only consider the values ‘foo’ &
‘bar’ for this parameter when accepting a message from the environment. If the parame-
ter type is based on an integer, it is also possible to specify a range of values by using the
syntax ‘min..max’. For example, a constraint set to ‘0..3’ is the same as the constraint
‘0|1|2|3’.

Note that the SDL constraints on the type for the message parameter are also considered,
so care must be taken to make sure a constraint is compatible with the type. For example,
if a message has a type defined as the following syntype:
syntype MyParamType = Integer

constraints 0..3;
endsyntype;

and the constraint set in the exploration profile is ‘4|6’, the resulting set of possible val-
ues for the parameter is empty. This will be identified, and the exploration will not be
launched in such a case.

7.5.1.2.3 Variable limitations

Variable limitations are specified in the ‘Variables’ tab in the exploration profile. All
behavioral agents in the system in the project are displayed in the tab, with for each agent
a list of its variables associated to a selector with 3 choices:

• “No” means that the variable must not be included in the system state;

• “Unspecified” means that PragmaDev Studio must figure out if the variable must
be included by itself. Note that this is not supported today, and means that the
variable will be included in the system state.

• “Yes” means that the variable must be included in the system state. Note that
today, this choice is the same as “Unspecified”.
Page 432 PragmaDev Studio V6.0

User Manual
7.5.1.3 Running an OBP exploration

Once an exploration profile has been defined, the exploration can be launches by select-
ing ‘[OBP] Run exploration…’ in the ‘Validation’ menu. The profile selection dialog
appears:

The layout is the same as the profile definition dialog, except the options are not modifi-
able and profiles cannot be added, deleted or renamed. This allows to check the options
defined in the profile to use before running the exploration.

The ‘Exploration kind’ field at the bottom allows to select the type of exploration to per-
form:

• ‘Full exploration’ will run a full exploration, with an optional code coverage
extraction in the end.

• ‘Check for deadlock & errors’ will try to identify deadlocks and errors in the sys-
tem, and stop as soon as one is encountered, with the possibility of extracting a
counter-example in the end.

• ‘Check property <diagram name>’ will check the system to figure out if the
property described as a PSC in the diagram named <diagram name> is verified
or not. If the property is violated, a counter-example can be extracted at the end
of the exploration.

For the property check, please note that PSC diagrams cannot be distinguished from reg-
ular MSC diagrams, so all MSC diagrams will be listed as properties. It is up to the user to
check that the diagram actually contains a PSC property.

Also note that all PSC features are not supported for property checking with OBP. The
supported features are:

• Regular, required and failed messages (prefixes ‘e:’, ‘r:’ & ‘f:’);

• Strict operators;
PragmaDev Studio V6.0 Page 433

User Manual
• Inline expressions of type ‘alt’;

• Past negative chain constraints, i.e sequences of messages between ‘[’ and ‘]’ at
the beginning of a message text and prefixed with ‘=\=>’.

Future chain constraints (positive or negative) and past positive chain constraints are not
supported, as well as any other type of inline expressions. They will trigger an error
before the exploration, which will not run.

Clicking ‘OK’ in the profile selection dialog runs the exploration. The progress is dis-
played in the following dialog:

Once the exploration is complete, the ‘OBP exploration status’ will be set to ‘COM-
PLETE’. Depending on the type of exploration, the buttons at the bottom of the dialog
will be activated:

• extracts the code coverage information for the exploration and displays it in
a regular code coverage results viewer as described in “Code coverage results” on
page 161. This is only available for full explorations.

• is activated only if the ‘Result’ field is ‘VIOLATED’. It displays a menu allow-
ing to select the format for the counter-example, then extracts it. The available
formats are:
• ‘As MSC’: the counter-example is extracted as a MSC, which will appear in a

standard MSC tracer window (see “Tracer window” on page 383);
• ‘As simulator scenario’: the counter-example is extracted as a scenario of com-

mands for the SDL simulator, as described in “Shell” on page 202. The desti-
nation file for the scenario is selected via a standard file dialog. This scenario

can be replayed via the button in the simulator window.
Page 434 PragmaDev Studio V6.0

User Manual
7.5.2 Checking a system against MSC scenarios

PragmaDev Studio offers a way to check the behavior of a new version of the system, pro-
vided you have a set of scenarios described as MSC diagrams that were obtained with a
previous version, for example via manual testing using the tracer. It will check that the
scenarios are still executing correctly and how much of the model they cover. This feature
is available in the project manager’s “Validation” menu, via the “Check system against
MSC scenarios…” entry. When selecting the system to test and launching the analysis,
the following dialog will appear:
PragmaDev Studio V6.0 Page 435

User Manual
Here are listed all MSC diagrams that are present in the project. Only those that repre-
sent a valid execution scenario should be selected. Once this is done, pressing the “Run
tests >>” button will display the next panel in the dialog:

Note: the operations indicated in the panel’s notification zone (“Generating tests from
MSCs”, “Generating bytecode for tests” & “Starting simulator”) might take a while to be
completed.

This is the scenario execution panel. Once the message “All set! Click the ‘Go!’ button to
start the tests” is displayed, the “Go!” button can be pressed, which will execute the tests
Page 436 PragmaDev Studio V6.0

User Manual
listed in the upper left zone one by one. While the execution is running, the model cover-
age will be computed and displayed via the slider on the upper right:
PragmaDev Studio V6.0 Page 437

User Manual
Everything is automatic until all the tests are executed. The final dialog will show all the
verdicts for the tests, as well as the total model coverage reached:

A green check mark means the test has passed; an orange X means it has failed for some
reason. Hovering over the X will display the actual verdict as a tooltip. The verdicts are
those used by TTCN testcases.

After all the tests have been run, a report is generated that can be accessed via the
“Report >>” button in the dialog. It is also possible to get back to the MSC selection panel
to change the set of scenarios; note that it will discard the execution results for the cur-
rent set of tests.
Page 438 PragmaDev Studio V6.0

User Manual
The report panel looks like follows:

The information displayed in this panel is:

• On the upper left corner, the number of executed scenarios, the number of sce-
narios that worked as expected (“passed”) and the number of scenarios that
didn’t, each with a percentage compared to the total number.

• Below are two tables listing the passed scenarios, and the non-passed ones, with
their actual verdict (in the example above, all have a “fail” verdict).
PragmaDev Studio V6.0 Page 439

User Manual
Double-clicking on one of the non-passed scenarios will open the corresponding
diagram and show exactly where the problem has occured:

The expected message is selected, and the notification zone displays the one that
has happened instead. The message is usually a message sent from the system to
the environment.

• The zone below the lists of scenarios in the report panel displays a summary of
the model coverage:
• The total number of symbols in the system;
• The number and percentage of symbols covered by passed scenarios only;
• The number and percentage of symbols covered only by scenarios that ended

up having a non-passed verdict;
• The number and percentage of symbols that weren’t covered by any scenario

at all.

• The two trees at the bottom of the panel display the detail of symbols covered
only by non-passed scenarios (on the left) and not covered at all (on the right).
These trees are actually model coverage trees, as described in “Code coverage
Page 440 PragmaDev Studio V6.0

User Manual
results” on page 161. The same features are available, such as expanding the tree
to a given level by right-clicking on the root node:

or opening the covering tests for a given symbol by right-clicking on the covering
tests count in the tree’s third column:

The “Actions” button in the top right corner allows to perform the following actions:

• “Export report as document” allows to export the displayed report in a sup-
ported document format. This item opens the following dialog:

The available document types are HTML, PDF, RTF, OpenDocument and LaTeX.
Once a type has been selected, the actual name for the exported file can be
entered and a template can be selected for the document. This template has the
same meaning as for document export, as explained in section “Exporting docu-
ments” on page 141. Note that a template has to be specified for OpenDocument
format export, just as for documents.

• “Restart with passed scenarios only…”: this will go back to the MSC scenario
selection panel, unselecting all those that ended up having a non-passed verdict
in the previous execution.
PragmaDev Studio V6.0 Page 441

User Manual
• “Generate TTCN tests for passed scenarios…”: generates the TTCN testcases for
all scenarios that ended up having a “passed” verdict. This is done as described in
“From MSCs and/or HMSCs” on page 356.

• “Generate TTCN tests for all scenarios…”: same as above, except testcases for all
scenarios are generated, not only passed ones.

• “Delete non-passed scenarios from projects…”: deletes all the scenarios that
ended up having a non-passed verdict from the project. A confirmation will be
asked via a standard node deletion dialog, also allowing to specify if the diagram
files should also be deleted.

The three buttons at the bottom of the panel are:

• “<< Back to MSCs“ allows to get back to the MSC selection panel. Note that this
will discard all the results of the previous execution.

• “Save report…” saves the execution report in a file. After the file name is entered
via a standard file dialog, the report will appear in the project tree:

• “Close” closes the dialog, also discarding the results of the previous execution.

Note: this feature is actually an aggregation of various other features in PragmaDev Stu-
dio, made available in an easier to use interface for system checking. What is happening
behind the scenes is:

• TTCN testcases are generated from the selected MSC diagrams, as described in
“From MSCs and/or HMSCs” on page 356.

• TTCN testcases are executed against the system using the model simulator, as
described in “Simulation” on page 346. The model coverage is automatically
extracted during this execution, and all verdicts are recorded and associated to
the initial MSC scenario.

• Simplified traces are also remembered during testcase execution, allowing to
identify the message that made the testcase fail if needed.
Page 442 PragmaDev Studio V6.0

User Manual
7.5.3 Other validation experiments

7.5.3.1 Scope and TRL

PragmaDev Studio offers a gateway to several technologies for system validation: the IF
toolbox from Verimag, Diversity from the CEA List, and Fiacre from LAAS. Please note
these tools are issued from research work and their TRL is not as high as the tools within
PragmaDev Studio environment. For that reason we have estimated a TRL (Technology
Readiness Level) for each technology:

• xLIA format in Diversity tool from CEA: TRL 5

• IF format in IFx tool from Verimag: TRL 5

• Fiacre format in Tina tool from LAAS: TRL 4

Since the third party tool might not have the exact same semantics or concepts support,
the model can not be fully translated. Please refer to the Reference manual for possible
restrictions in order to make sure it can be exported to one of these tools.

By default, because of their low TRL, these gateways are not available in the menus. In
order to activate them go to Studio / Preferences window, and to the tab Advanced. Then
check Show deprecated validation tools in menus in Deprecated features section.

Preferences window
PragmaDev Studio V6.0 Page 443

User Manual
Added items in the Validation menu

It is then possible to create a validation profile from the “Validation / Options...” menu.
When creating a new profile, a pop up window will ask the language used for the verifica-
tion:

7.5.3.2 IF Toolbox

SDL Z.100 systems can be translated to IF descriptions as specified by Verimag. The
translation rules and restrictions can be found in the Reference Manual. Tools based on
IF technology allow:

• Exhaustive simulation,

• Test generation.

The IFx toolbox has to be downloaded on Verimag website: http://www-if.imag.fr/. The
Python language interpreter will be required too; it be found at http://www.python.org/.

Rules to be verified during exploration are described in IF observers. Each time a transi-
tion is executed in the system, the IF observer verifies its internal rules. Whenever a rule
is verified or violated, it is possible to generate an MSC or a test case.

7.5.3.2.1 IF Observers

Rules verified during the state space exploration are described by observers.

An observer file can be directly had to a project, or inside a folder, by choosing “Add child
element...” in the contextual menu. Many observers can be added, and used to test the
system.

Observers are processes that can view everything that happens in the system. They are
evaluated each time the system reaches a new state. They can verify:

• Static rules such as the value of variables,

• Dynamic rules such as a sequence of events.
Page 444 PragmaDev Studio V6.0

http://www-verimag.imag.fr/

User Manual
Observers can define variables, handle timers, and evaluate expressions.

Observers, as supported in PragmaDev Studio, look like SDL processes but they are not
SDL processes. The syntax of the statements is based on IF language, and it does not
have any message queue by default.

7.5.3.2.1.1 Types of Observers

There are three types of Observers:

• pure
That type is the most basic one, it can not interfere with the system nor with the
exploration.

• cut
This is the most common type of observers, it can not interfere with the system
but it can interfere with the state exploration. A typical behavior is to stop explo-
ration (cut) in a branch that is not of interest.

• intrusive
The observer can interfere with the state exploration and it can modify the sys-
tem itself: send signals and modify variables.

The type of Observer is indicated in the declaration symbol:

7.5.3.2.1.2 Data types in Observers

The following basic data types are available in IF: integer, real, boolean, pid, clock; char-
acter and charstring are replaced by RTDS_charstring, which is a string of integers
which holds the ASCII value of each character. To define the value of a charstring, it is
required to define the ASCII code of each element and concatenate all these elements
with the symbol ^.

For example, for a charstring c equal to “toto”:
var c RTDS_charstring;
task c := RTDS_charstring(116) ^ RTDS_charstring(111) ^
RTDS_charstring(116) ^ RTDS_charstring(111);

The following constructs are also available:

Table 6: IF constructs

Constructs Declaration Usage

const const MyConst=3; var v integer;
task v := MyConst;

var var v integer;
var c clock;

var v integer;
task v := 2;
PragmaDev Studio V6.0 Page 445

User Manual
Variables are declared in the text symbol:

Variables are manipulated in:

• Action symbols

enum type MyType =
enum red, green, blue

endenum;

var v MyType;
task v := green;

record type MyRecord=record
FirstField integer;

SecondField boolean;
endrecord;

var v MyRecord;
task v.FirstField := 3;

range type MyRange=range 0..4;

array type MyArray=array[4] of integer; var v MyArray;
task v[3] := 5;

string type MyString=string[5] of integer;
var v MyString

var v MyString;
var w MyString;
var x MyString;

var position integer;
const value = 7;

task position := length(v);
task v := insert(v, position, value);

task w := remove(v, position);
task x := v^w; // concatenate

while while (<condition>) do
<statements>;

endwhile;

while (i<4) do
output sig1;
task i:=i+1;
endwhile

if if (<condition>) then
<statements>;

else
<statements>

endif;

if (i<4) then
output sig1;

else
output sig2;

endif

Table 6: IF constructs

Constructs Declaration Usage
Page 446 PragmaDev Studio V6.0

User Manual
• Provided symbols

• Decision symbols

7.5.3.2.1.3 Action symbols in Observers

The Observer process starts with the Start symbol, can go through a number of states,
and can be ended with the Stop symbol.

States

There are three types of states: ordinary, error, and success. The type of state is written
below the state name with a hash:

By default the state is considered ordinary.

Triggers

Three possible events can trigger the state: match, provided, when.
PragmaDev Studio V6.0 Page 447

User Manual
A match statement is described as a closed continuous signal SDL symbol:

In this example, pidSender has previously been declared like a pid.

The possible match statements are:

• match input <sig(sender pid, params)> in <pid>

• match output <sig(sender pid, params)> from (<pid>) via (<channel>) to (<pid>)

• match fork(<pid>) in <pid>

• match kill(<pid>) in <pid>

• match <deliver>

• match informal "my text" in (<pid>)

The match keyword is omitted in the graphical symbol.

A provided statement is described with the SDL continuous signal symbol:
Page 448 PragmaDev Studio V6.0

User Manual
A when statement is described with the SDL start timer symbol to start the clock, and an
input symbol:

A timer can also be cancelled with the SDL cancel timer symbol:

7.5.3.2.1.4 Statements

Any IF statement can be written in the SDL action symbol:

7.5.3.2.1.5 Output

An IF intrusive observer is able to send signals to any process of the system, but can not
receive any signal

self has always to be add as first parameter for an output in an observer.
PragmaDev Studio V6.0 Page 449

User Manual
7.5.3.2.1.6 Decisions

Decisions are handled with unstable states in IF. It uses the SDL decision symbol:

7.5.3.2.1.7 Reducing state space

Exploration in the current branch can be stopped with the IF cut statement in an action
symbol. Please note the #success or #error states do not stop exploration of the sys-
tem. An explicit cut action should be used afterwards in order to stop exploration.
Page 450 PragmaDev Studio V6.0

User Manual
7.5.3.2.2 General architecture

The SDL system can simply be exported to an IF file, or a full verification process can be
automated from PragmaDev Studio. In that case, after exporting an SDL model to IF lan-
guage, PragmaDev Studio calls a script -which probably calls an IF tool on the IF descrip-
tion- and opens a socket waiting for an MSC trace file. To do so, a validation profile for IF
is needed.

The script or the external executable can be customized via the validation options:

As the current directory is not specified, the executed script should not depend on where
it is executed. The MSC trace file format is the one described in the PragmaDev Tracer
documentation.

SDL

script

or program

MSC or
TTCN-3

IF TOOLPragmaDev

IF
system

Resulting

scenario

socket

file

IF
Observer

IF
Observer

file

Studio
PragmaDev Studio V6.0 Page 451

User Manual
7.5.3.2.3 Example script for Verimag IFx toolset

An example script for the external model checker is delivered with PragmaDev Studio.
This script uses the IFx toolkit from Verimag. This script works as described in the fol-
lowing diagram:

The script can be found in the sub-directory share/3rdparty/IFx/ifChecker.sh of
the PragmaDev Studio installation directory. It requires an IF observer to specify the
properties to check in the SDL system. This observer is specified via the environment
variable RTDS_IF_OBSERVER, which must contain the full path to the observer file.

Once a validation profile for IF has been created and the environment variable has been
set, call IF toolbox by selecting “Validation / Checking...”. This will successively:

• Export the current project as an IF file;

transition
file

SDL

MSC or

TTCN-3

IF compiler

PragmaDev

IF

Resulting

scenario

socket

translate to file

Observer

file

executable

state file error file

Python script

Script file

executes

Observer
translate to file

Studio
Page 452 PragmaDev Studio V6.0

User Manual
• Select the observers to test the system. If observers are inside folder, it is possible
to select every observers by selecting the folder;

• Run the IFx compiler on this file and the observer file, which will produce an exe-
cutable;

• Run this executable to actually perform the simulation;

• Get the output from the execution and pass it to a Python script which will anal-
yse the errors if any. This script displays the following window if the simulation
found some scenarios that invalidate the conditions:

The numbers displayed are the internal numbers for the global system states
identified as errors by the IFx toolkit. For each state number are displayed the
name of the observer which has stopped the system and the corresponding error
state name.
Generating an MSC of the scenario leading to a given error state is done by
selecting the state number in the list and pressing the Generate MSC button.
PragmaDev Studio V6.0 Page 453

User Manual
PragmaDev Studio will display a dialog stating an external file is to be imported
in the project.
Generating TTCN test cases for one or several scenarios is done by selecting one
or several state numbers and pressing the Generate TTCN button. PragmaDev
Studio will display a dialog stating an external file is to be imported in the
project.

7.5.3.3 Diversity

PragmaDev and CEA List created a common laboratory that started in September 2013.
As a result of this lab, test cases can be generated automatically out of an SDL Z.100
model (i.e., model-based testing). For that purpose the Diversity CEA tool is integrated in
PragmaDev Studio environment, but requires a dedicated license. Diversity is based on a
symbolic resolution engine that differs substantially from other model checking technol-
ogies. SDL Z.100 systems are automatically translated to xLIA files (proprietary CEA file
format), and the xLIA files are used as inputs of Diversity. Diversity will process the xLIA
description and generate TTCN-3 testcases corresponding to the verifications goals.

Verification goals can be of four different types:

• Code coverage
To generate the minimum number of test cases that cover all transitions.

• Properties
To generate the test cases verifying a static property. A static property is a verifi-
cation on the process state, and variables value, and communication actions.

• Observers
To generate the test cases verifying a dynamic property. A dynamic property is
defined as a state machine called observer. The syntax in the current version of
PragmaDev Studio is xLIA. Observers are useful in the case of temporal rules or
succession of actions. A property comes with the observers that specifies the tar-
geted observer state.

• Target transitions
To generate a test that covers a specific transition in the SDL model.
Page 454 PragmaDev Studio V6.0

User Manual
The goals are set in the validation profile, which is defined in “Validation /Options...”
menu:

7.5.3.3.1 Coverage

This is the simplest profile since the goal is to cover all transitions in the model.

7.5.3.3.2 Properties expression

Properties must be expressed in a text file. The text file will then be indicated in the Path
to properties file field in the validation profile. Properties allows verification on vari-
ables, processes state and communication actions. Diversity will search and stop when
the property is verified in the system.

Properties have to be written in xLIA. The syntax of the properties file is:
@stateTest = ${ Property to check };

7.5.3.3.2.1 Process State

To verify the state of a process, the syntax is:
schedule#in &spec::ProcessContext.StateName &spec::ProcessContext

with ProcessContext the architectural path to the process. For example, to verify if pro-
cess P1 in block B1 in system S1 is in the state Idle, the property is:
schedule#in &spec::S1.B1.P1.Idle &spec::S1.B1.P1

7.5.3.3.2.2 Variable value

To verify the value of a variable, the syntax is:
EqualitySymbol spec::ProcessContext.VariableName value

with EqualitySymbol the symbol of equality verification (=,!=,<,>).
PragmaDev Studio V6.0 Page 455

User Manual
7.5.3.3.2.3 Communication action

It is also possible to check a process state or a variable value after a communication
action append. The syntax is:
$obs

${ CommunicationAction &spec::SystemName.MessageName }

${ Property to check }

with CommunicationAction the input or output keyword. For example, to verify that
the variable Count in process P1 is at one after message Increment has been received
will be written:
$obs

${ input &spec::SystemName.increment }

${ = spec::SystemName.P1.Count 1}

7.5.3.3.2.4 Multi Properties

It is also possible to verify many properties in the same time by using &&, || or !
before properties expression:
@stateTest = ${ &&

${Property 1}

${Property 2}

};

By using &&, Diversity will check if the system can be in a state where all properties are
verified at the same moment. With ||, Diversity will check if the system can be in a state
where at least one property is verified and with !, only one property must be checked.

7.5.3.3.3 Observers

Diversity allows to write observers to check more complex properties. Observer are pro-
cesses that can view everything that happens in the system.

To do so, two files have to be written, one for the observer itself to indicate in Path to
observers file field, an other for the properties to check on this observer to indicate in
Path to observes properties file field.

7.5.3.3.3.1 Observers syntax

Observers have to be written in xLIA. The general syntax is:
statemachine< or > ObserverName {

@machine:

...

observer behaviour

...

}

Page 456 PragmaDev Studio V6.0

User Manual
The behaviour of the observers are described as state machine. These state machines are
a combination of states and transitions to go from one state to another.

The first state of an observer is always the initial state:
state< initial > #init {

transition {

} --> FirstStateName;

}

Then for each state, the syntax is:
state StateName {

transition TransitionName1 {

TransitionTrigger1

} --> NextStateName1

transition TransitionName2 {

TransitionTrigger2

} --> NextStateName2

...

}

TransitionTrigger is the action happening in the system which will leads the observer
to an other state. Transition triggers can be communication action or guard on state.

The syntax for an input trigger is:
:> obs { input MessageName; } [true];

The syntax for an output trigger is:
:> obs { output MessageName; } #provided true;

The syntax for a guard on state is:
guard (: ProcessContext.StateName schedule#in ProcessContext);

Because during exploration of the system, observers are considered to be inside the sys-
tem, system name does not have to appear in ProcessContext.

As for properties on system, it is now possible to write properties to test observers.
PragmaDev Studio V6.0 Page 457

User Manual
7.5.3.3.4 Transition targeting

It is possible to ask to Diversity to generate automatically a testcase which will lead to a
specific transition in a process. This can be done via “Generate validation profile...” in the
properties of the message input symbol starting the transition in the process diagram.

Doing so will trigger the creation on a new validation profile:
Page 458 PragmaDev Studio V6.0

User Manual
The Symbol ID to target will be filled automatically:

7.5.3.3.5 General validation properties

There are other options in xLIA profile:

Path to Diversity is the path to diversity executable file.

Max. calcul steps, Max. height and Max. width are used by Diversity to limit exploration.
A value of -1 for these information means there are no limit of exploration.

Strategy is for the exploration strategy type:

• DFS: Depth First Search

• BFS: Breadth First Search
PragmaDev Studio V6.0 Page 459

User Manual
• RFS: Random First Search

7.5.3.3.6 Results of verification

When validation profile is defined, run the verification by selecting “Validation / Check-
ing...”. It will ask which validation profile has to be used for verification and in which
folder TTCN-3 files have to be generated:
Page 460 PragmaDev Studio V6.0

User Manual
PragmaDev Studio will automatically generate xLIA code from the system, and run
Diversity to verify the system. During Diversity execution, a graphical view of the system
exploration is shown:

This graph shows the progress of Diversity in relation to the options set in the profile.
The coverage branch shows how far the exploration is from the goals (in the case of
model coverage for example, the number below coverage is the number of transitions in
the model). The exploration will end when coverage is reached, or when maximum calcul
step, maximum height or maximum width is reached.

The following information appears in a rapport at the end of execution:

• The CONTEXT count
The number of evaluation contexts created (they may not all be in the final sym-
bolic execution graph because of the cut-back which eliminates useless context
executions at the end).

• The EVAL count
The number of calculation steps performed.

• The Max HEIGHT reaching
The maximum depth recorded during the symbolic execution.
PragmaDev Studio V6.0 Page 461

User Manual
• The Max WIDTH reaching
The effective max width recognized in respect with contexts effectively evaluated.

• The DEADLOCK found
The number of deadlocks recorded during the symbolic execution.

Followed by the report on the transition coverage and possibly the list of not covered
transitions.

In a case of success:
PROGRAM COVERAGE PROCESSOR

All the << 46 >> transitions are covered!

If the objectives are not complete:
PROGRAM COVERAGE PROCESSOR

 Warning: all the programs are not covered!

 Results: << 52 on 76 >> are covered!

 List of the << 24 >> transitions none covered:

Finally, as a result, many files are generated in the specified folder:

• configuration.favm, needed by Diversity to check properties.

• An .xsfp file named as the system name in spec sub-folder: this file is the xLIA
translation of the SDL system.

• Four ttcn files in output/ttcn sub-folders, results of Diversity exploration. The
testcases are in the TTCN_TestsAndControl.ttcn3 file.

In the case of property check, observer verification or transition targeting, the testcase
will lead the system to the wanted state.

In the case of model coverage, several test cases are generated. Please note each test case
expect the system to be in its initial state. For that reason when simulating the test cases
Page 462 PragmaDev Studio V6.0

User Manual
against the system, check Reset system before each testcase execution before running the
testcases to restart the system after each testcase execution.

7.5.3.4 Tina from LAAS

An export to Fiacre pivot language is available from PragmaDev Studio, but there is no
feedback from the results to the original SDL model.
PragmaDev Studio V6.0 Page 463

User Manual
The only thing to do in this validation profile is to provide the path to the checker:

7.6 - Exporting the project as an SDL/PR file
The item "Export as PR…" in the "Project" menu displays the following dialog:

The PR file format indicates how agent definitions will be inserted in the exported file:

• In a "Flat" PR file, an agent defined in another one will be defined as REFER-
ENCED in its parent and its definition will appear later in the file. The definition
will be fully qualified to avoid ambiguities.

• In a "Hierarchical" PR file, an agent in another one will have its whole definition
included in its parent’s. No qualifier will be inserted as no ambiguity can occur.

The options are:

• Name sub-structures: By default, the SUBSTRUCTURE declarations created for
blocks containing other blocks are not named. If this option is checked, a SUB-
STRUCTURE name will also be inserted, which will be the same as the parent
block’s name.

• Inline connectors: By default, all connectors are put in CONNECTION blocks out-
side the transitions. If this option is checked, no CONNECTION blocks will be cre-
ated and a label will be inserted for each connector in the middle of the first
transition that uses it.
Page 464 PragmaDev Studio V6.0

User Manual
• Force JOINs to a decision branch: By default, a JOIN to a label in front of a deci-
sion can be put anywhere. This means for example that the following diagram:

may be exported as:
START;

A:
DECISION dec1;

(true):
DECISION dec2;

(true):
JOIN A;

(false):
STOP;

ENDDECISION;
(false):

STOP;
ENDDECISION;

This is sometimes not desirable, since the JOIN to the label before the first DECI-
SION is generated in a branch of the second DECISION. This makes it difficult for
external code generators to figure out that the JOIN may actually be converted to
a while-style loop.
Checking the "Force JOINs to a decision branch" option will always try to put
JOIN statements to a DECISION in one of this DECISION’s branches. So the dia-
gram above would be exported as:
START;

A:
DECISION dec1;

(true):
DECISION dec2;

(true):
(false):

STOP;
ENDDECISION;
JOIN A;

(false):
STOP;

ENDDECISION;

A

A

dec1

dec2

true false

true false
PragmaDev Studio V6.0 Page 465

User Manual
• SDL 92/96 services compatibility: By default, processes defining composite
states are exported as such in the PR file, using the SDL 2000 syntax for compos-
ite states. Checking this option will try to export them as SDL 92/96 processes
containing services. To be able do this, the processes must:
• Define at most one composite state;
• If they do, have only a start transition containing a single NEXTSTATE symbol

to this composite state.
In this case, the services defined at composite state level will be put directly into
the parent process using a SDL 92/96 syntax for services. If any process does not
meet these constraints, the export will fail.

• "Natural" order for declaration: By default, all declarations and decision
branches are exported with no specific order. The order may even change from
one export to another, even if the diagrams have not changed. Checking this
option will force a deterministic order on exporting. This order is the "natural"
one when available, i.e the order of the symbols in the diagrams.

• Warn on decisions generating JOINs: There are some cases where a decision in
a diagram cannot be exported without generating an additionnal label. Here is
such a decision:

One of the task blocks A or B can be put after the ENDDECISION, but for the other
one, a label must be generated or the symbol’s code will have to be duplicated in
the exported PR.
By default, this additionnal label is silently generated. This option forces a warn-
ing to be displayed if such a label is generated.

Note: The PR export is available in all project types, but is likely to produce an interesting
result only for Z100 SDL projects. A warning will be displayed if it is attempted on
another type of project.

Note: To import PR files please refer to “Importing a PR/CIF file” on page 224.

A

dec

val1 val3

B

val2 val4
Page 466 PragmaDev Studio V6.0

User Manual
7.7 - SDL Z.100 Code generation
An SDL Z.100 system can be generated to C code, integrated with an RTOS, and graphi-
cally debugged with one of the supported debuggers.

The SDL Z.100 to C code generation translation rules are explained in the SDL to SDL-
RT conversion chapter of the Reference Manual.

C code is generated with a code generation profile. When creating a new profile a pop up
window will ask if the profile is for simulation or code generation:

Select “Code generation” and fill in the options as explained in the “Profiles” on
page 248.

The graphical debugger architecture and features are described in “Model Debugger” on
page 311.

The following external procedures (described in “Provided external procedures” on
page 214) are already available for code generation:

• PragmaDev_b4sprintf

• PragmaDev_i4sprintf

• PragmaDev_f4sprintf

• PragmaDev_s4sprintf

• PragmaDev_sprintf

• PragmaDev_FileOpen

• PragmaDev_FileClose

• PragmaDev_FileReadLine

• PragmaDev_FileWriteLine

The implementation of these procedures can be found in:
$(RTDS_HOME)/share/lib/ExternalProcedures.h

$(RTDS_HOME)/share/lib/ExternalProcedures.c

If one of these procedures is used in the model, the header file is automatically included
in the generated headers, and the source file is automatically included in the generated
makefile.
PragmaDev Studio V6.0 Page 467

User Manual
8 - Index

A
ASN.1

code generation options 249
codecs 403

B
Button bars 65

detaching 66

C
Class

attribute definitions 118
constructor definition 119
operation definitions 119

CMX RTX profile 260
Code coverage

generation option 249
getting 214, 336

Code generation 244
Connector

syntax 243
Continuous signals

syntax 234
Co-simulation 188

D
Diagram

editor 59
frame 62
page setup 67

Directory
importing in project 16

Diversity 454

E
External tools

commands 41
definition 39

F
Fiacre 463
File manipulation 215
File types

custom 12
supported 11

FMI 188
FreeRTOS profile 293

G
Generation profile

CMX RTX 260
FreeRTOS 293
Nucleus 289
OSE Delta 282
OSE Epsilon 286
Posix 266, 269
ThreadX 263
uITRON 274, 277
VxWorks 255
Windows 271

Graph 216

H
HTML export

project 125
single element 125
Page 468 PragmaDev Studio V6.0

User Manual
I
IF 444

M
Memory

good coding practise 309
Message

declaration 231
syntax 235

Model checking
Diversity 454
Fiacre 463
IF 444
OBP 429

MSC
Insert / Remove time 84
Timers 92

N
Next state

syntax 234
Nucleus profile 289

O
OBP 429
OFFSPRING 244
OSE Delta 4.5.2 profile 282
OSE Epsilon profile 286
OTF (Open Trace Format) 112

P
Package 10
PARENT 244
Partitions 66
Posix profile 266, 269
Preferences 224

Procedure
declaration 233
syntax 241

Process
declaration 232
syntax 241

Project 10
exporting to HTML 125
manager 9
tree

adding nodes 14
rearranging 13

Prototyping GUI 151
Publications

options 27

R
Raspberry Pi 221
Refresh

options 321
SDL simulator options 201

Reqtify 44

S
Save

syntax 240
Scheduler 302, 417
SDL

Export 464
Import 224

SDL-RT
Code generation 246
Declarations 230
Keywords 244
Project 230

SELF 244
Semaphore

declaration 231
syntax 240

SENDER 244
Simulator

Options 187
PragmaDev Studio V6.0 Page 469

User Manual
T
Task block

syntax 234
Tasking integration 260
ThreadX integration 263
Timer

syntax 240
Timers

declaration 231
Tool bars 65

detaching 66
Tornado integration 255
Traceability 44

U
uITRON profile 274, 277
UML

code generation 296
diagrams 115

V
VxWorks profile 255

W
Windows profile 271

X
XML-RPC

operators and external procedures 188
Page 470 PragmaDev Studio V6.0

	1 - Introduction
	1.1 - Scope
	1.2 - Licensing

	2 - Common features
	2.1 - Project manager
	2.1.1 Project
	2.1.2 Files and directories
	2.1.3 Packages and folders
	2.1.4 Supported file types
	2.1.5 Rearranging the project tree
	2.1.6 Adding components to the system
	2.1.6.1 Adding a single component
	2.1.6.2 Importing a directory

	2.1.7 Sharing project parts
	2.1.8 Search and replace
	2.1.8.1 Searching the whole project
	2.1.8.1.1 Restrictions
	2.1.8.1.2 Regular expressions
	2.1.8.2 Replacing text in the whole project
	2.1.8.3 Searching and replacing in the editors

	2.1.9 Interface with traceability tools
	2.1.10 Preferences
	2.1.10.1 Project manager preferences
	2.1.10.2 Diagram preferences
	2.1.10.3 Text editor preferences
	2.1.10.4 Debugger preferences
	2.1.10.5 Tracer preferences
	2.1.10.6 General preferences
	2.1.10.7 PR import & export preferences
	2.1.10.8 Licensing options
	2.1.10.9 Advanced options

	2.1.11 User defined external tools
	2.1.11.1 Tool menus definition
	2.1.11.2 Tool commands
	2.1.11.3 Hooks addition and removal

	2.1.12 Traceability information
	2.1.12.1 Scope
	2.1.12.2 Traceability editor
	2.1.12.3 Integration with Reqtify
	2.1.12.3.1 Organisation
	2.1.12.3.2 Installation for Reqtify
	2.1.12.3.3 General architecture
	2.1.12.3.4 Usage
	2.1.12.3.5 Format for traceability information
	2.1.12.3.6 Information imported from requirements tables
	2.1.12.3.7 Example

	2.2 - Editor windows
	2.2.1 Tab management
	2.2.2 Windows menu

	2.3 - Diagram editor
	2.3.1 Common features
	2.3.1.1 Editor modes
	2.3.1.2 Contextual help for declarations
	2.3.1.3 Selecting multiple symbols
	2.3.1.4 Frame concept
	2.3.1.5 Symbol and link properties
	2.3.1.6 Moving symbols
	2.3.1.7 Modifying links
	2.3.1.8 Button and tool bars
	2.3.1.9 Partitions
	2.3.1.10 Page setup
	2.3.1.11 Publications
	2.3.1.11.1 General presentation
	2.3.1.11.2 Creating a publication
	2.3.1.11.3 Documenting a publication
	2.3.1.11.4 Managing publications
	2.3.1.11.5 Documentation hints

	2.3.2 SDL editor features
	2.3.2.1 Creating and opening components
	2.3.2.2 Automatic insertion
	2.3.2.3 Automatic transition selection in legacy mode
	2.3.2.4 "View"�/ "Go to" menu and state�/ message browser
	2.3.2.5 State and connector usage
	2.3.2.6 Diagram diff

	2.3.3 MSC editor
	2.3.3.1 Specific tools
	2.3.3.2 Symbol creation
	2.3.3.3 Manipulating components in lifelines
	2.3.3.4 MSC symbol and link properties
	2.3.3.5 Message parameters display
	2.3.3.6 Conformance checking: diagram diff & property match
	2.3.3.6.1 Basic MSC diff: trace vs. trace, spec. vs. spec., …
	2.3.3.6.2 Spec vs. trace comparison
	2.3.3.6.3 Property match
	2.3.3.6.4 Legacy diagram diff
	2.3.3.7 Filtering
	2.3.3.8 Lifeline collapsing and expanding
	2.3.3.9 MSC PR import
	2.3.3.10 MSC PR export
	2.3.3.11 Open Trace Format (OTF) support

	2.3.4 UML diagrams
	2.3.4.1 Symbol properties
	2.3.4.1.1 “Texts” tab
	2.3.4.1.2 “Class” tab
	2.3.4.1.3 “Attributes” tab
	2.3.4.1.4 “Operations” tab
	2.3.4.2 Link properties
	2.3.4.3 Access to generated C++ files

	2.4 - Text Editor
	2.4.1 MSC generation from TTCN-3 source file.
	2.4.2 SDL generation for comments in a C source file.

	2.5 - Documentation generation
	2.5.1 Exporting elements as HTML files
	2.5.1.1 Exporting a single element
	2.5.1.2 Exporting the whole project

	2.5.2 Export all the publications in a whole project
	2.5.3 Document editor
	2.5.3.1 General presentation
	2.5.3.2 Full documentation generation
	2.5.3.3 Documentation styles & options
	2.5.3.3.1 Style definitions
	2.5.3.3.2 Character styles
	2.5.3.3.3 Paragraph styles
	2.5.3.4 Styled text editor
	2.5.3.5 Table editor
	2.5.3.6 Exporting documents
	2.5.3.6.1 Exporting as RTF
	2.5.3.6.2 Exporting as PDF
	2.5.3.6.3 Exporting as OpenDocument format
	2.5.3.6.4 Exporting as HTML
	2.5.3.6.5 Exporting as LaTeX
	2.5.3.7 Using exported documents
	2.5.3.7.1 In Microsoft Word via RTF
	2.5.3.7.2 In OpenOffice.org via OpenDocument format
	2.5.3.8 Questions and answers

	2.6 - Prototyping GUI
	2.6.1 Prototyping GUI editor
	2.6.2 Prototyping GUI runner
	2.6.2.1 Within the simulator or debugger
	2.6.2.2 Standalone prototyping GUI with external executable

	2.7 - Code coverage results
	2.7.1 Generating code coverage results
	2.7.2 Code coverage results viewer window
	2.7.3 Merging code coverage results

	2.8 - Requirements Table Editor
	2.8.1 Principles
	2.8.2 Covering symbols
	2.8.3 Covering testcases
	2.8.3.1 Co-simulation code coverage analysis
	2.8.3.2 Importing testcase coverage information in requirements

	3 - PragmaDev Specifier
	3.1 - SDL Z.100 project
	3.2 - SDL types and data declarations
	3.2.1 General restrictions
	3.2.2 Pre-defined sorts
	3.2.3 NEWTYPE declarations
	3.2.4 SYNTYPE declarations
	3.2.5 SYNONYM declarations
	3.2.6 FPAR & RETURNS declarations
	3.2.7 TIMER declarations
	3.2.8 SIGNAL & SIGNALLIST declarations
	3.2.9 SIGNALSET declarations
	3.2.10 USE declarations
	3.2.11 INHERITS declaration
	3.2.12 Data declarations (DCL)
	3.2.13 Structural element declarations

	3.3 - SDL symbols syntax
	3.4 - Model Simulator
	3.4.1 Simulator architecture
	3.4.2 Main simulator options
	3.4.3 Co-simulation with FMI
	3.4.3.1 SDL system for co-simulation with FMI
	3.4.3.2 Simulator options for co-simulation with FMI

	3.4.4 Launching the Model Simulator
	3.4.5 Stepping levels
	3.4.6 MSC trace
	3.4.7 Displayed information
	3.4.7.1 Processes
	3.4.7.2 System queue
	3.4.7.3 Timers
	3.4.7.4 Watch
	3.4.7.5 Local variables
	3.4.7.6 Refresh options

	3.4.8 Shell
	3.4.8.1 shell commands
	3.4.8.2 execution commands
	3.4.8.3 interaction commands
	3.4.8.4 variables commands
	3.4.8.5 trace commands
	3.4.8.6 customization commands

	3.4.9 Status bar
	3.4.10 Breakpoints
	3.4.10.1 Setting breakpoints
	3.4.10.2 Listing breakpoints
	3.4.10.3 Deleting breakpoints
	3.4.10.4 Call stack

	3.4.11 Sending SDL messages to the running system
	3.4.12 Model coverage
	3.4.13 Provided external procedures
	3.4.13.1 Formatted output
	3.4.13.2 File manipulation
	3.4.13.3 Radar graph
	3.4.13.4 Querying FMI2 variables

	3.4.14 User defined external operators and procedures
	3.4.15 Connecting an external tool
	3.4.15.1 Normal mode
	3.4.15.2 XML mode

	3.4.16 Command line simulation
	3.4.17 Raspberry Pi GPIO

	3.5 - Importing a PR/CIF file
	3.5.1 Source & destination panel
	3.5.2 Basic options panel
	3.5.3 Advanced options panels
	3.5.4 Summary panel
	3.5.5 PR/CIF import progress and result

	4 - PragmaDev Developer
	4.1 - SDL-RT project
	4.2 - Data and SDL-RT types declarations
	4.2.1 C types declarations
	4.2.2 SDL-RT messages and message lists declaration
	4.2.3 SDL-RT timer declaration
	4.2.4 Semaphore declaration
	4.2.5 Process declaration
	4.2.6 Procedure declaration
	4.2.7 Class description

	4.3 - SDL-RT symbols syntax
	4.3.1 Task block
	4.3.2 Next state
	4.3.3 Continuous signals
	4.3.4 Message input
	4.3.5 Message output
	4.3.5.1 General aspects
	4.3.5.2 Queue Id
	4.3.5.3 Process name
	4.3.5.4 Via a channel or gate
	4.3.5.5 Environment

	4.3.6 Saved message
	4.3.7 Semaphore take
	4.3.8 Semaphore give
	4.3.9 Timer start
	4.3.10 Timer stop
	4.3.11 Process
	4.3.11.1 Procedure call

	4.3.12 Object initialization
	4.3.13 Connectors
	4.3.14 Decision
	4.3.15 SDL-RT keywords
	4.3.15.1 Global keywords
	4.3.15.2 Local keywords

	4.4 - Code generation
	4.4.1 Concerned elements
	4.4.2 Profiles
	4.4.2.1 Description
	4.4.2.1.1 Code generation options
	4.4.2.1.2 Build options
	4.4.2.1.3 Debug and trace options
	4.4.2.2 Option wizard
	4.4.2.3 VxWorks profile
	4.4.2.4 CMX RTX profile
	4.4.2.5 ThreadX profile
	4.4.2.6 Posix profile
	4.4.2.7 Posix profile for macOS
	4.4.2.8 Windows profile
	4.4.2.9 uITRON 3.0 profile
	4.4.2.10 uITRON 4.0 profile
	4.4.2.11 OSE Delta 4.5.2 profile
	4.4.2.12 OSE Epsilon profile
	4.4.2.13 Nucleus profile
	4.4.2.14 FreeRTOS profile

	4.4.3 UML options
	4.4.4 Generated C++ code
	4.4.4.1 Attributes and operations
	4.4.4.2 Declared variables
	4.4.4.3 Access to generated code

	4.4.5 Built in scheduler
	4.4.5.1 Deployment diagram for scheduling policy
	4.4.5.2 Profiles for scheduling
	4.4.5.3 Memory management
	4.4.5.4 Semaphore handling
	4.4.5.5 External messages and time management
	4.4.5.6 Integration in external scheduler

	4.5 - Good coding practise
	4.5.1 Memory allocation
	4.5.2 Shared memory
	4.5.3 C macros and functions

	4.6 - Model Debugger
	4.6.1 Debugger architecture
	4.6.2 Launching the Model Debugger
	4.6.3 Stepping levels
	4.6.4 MSC trace
	4.6.5 Displayed information
	4.6.5.1 Processes
	4.6.5.2 Timers
	4.6.5.3 Semaphores
	4.6.5.4 Watch
	4.6.5.5 Local variables
	4.6.5.6 Refresh options

	4.6.6 Shell
	4.6.6.1 shell commands
	4.6.6.2 execution commands
	4.6.6.3 interaction commands
	4.6.6.4 variables commands
	4.6.6.5 trace commands
	4.6.6.6 customization commands

	4.6.7 Status bar
	4.6.8 Breakpoints
	4.6.8.1 Setting breakpoints
	4.6.8.2 Listing breakpoints
	4.6.8.3 Deleting breakpoints

	4.6.9 Sending SDL messages to the running system
	4.6.9.1 Send SDL message window
	4.6.9.2 Send SDL message shell commands
	4.6.9.3 Prototyping GUI
	4.6.9.4 Button windows

	4.6.10 Testing
	4.6.11 Model coverage
	4.6.12 Connecting an external tool
	4.6.13 Debugger tree view
	4.6.14 Command line debug

	5 - PragmaDev Tester
	5.1 - Levels of support
	5.2 - PragmaDev extensions
	5.3 - TTCN-3 core language file editor
	5.4 - TTCN-3 parameters editor
	5.5 - TTCN-3 co-simulation
	5.5.1 Conventions
	5.5.2 Restrictions
	5.5.3 Simulation
	5.5.4 Provided external functions
	5.5.4.1 Formatted output
	5.5.4.2 File manipulation
	5.5.4.3 Radar graph

	5.6 - C++ code generation
	5.6.1 Stand alone
	5.6.2 Combined with SDL
	5.6.3 Combined with SDL-RT
	5.6.4 Generate the main function
	5.6.5 RTOS integration
	5.6.6 Conventions
	5.6.7 Debug information
	5.6.8 External functions

	5.7 - TTCN-3 automatic generation
	5.7.1 From an SDL/SDL-RT architecture
	5.7.2 From MSCs and/or HMSCs
	5.7.3 From a complete SDL system via model checking technology

	6 - PragmaDev Tracer
	6.1 - Overview
	6.2 - MSC & PSC reference guide
	6.2.1 General diagram format
	6.2.2 Links
	6.2.2.1 Message links
	6.2.2.2 PSC-specific normal, required and failed message syntax
	6.2.2.3 Operation call and return links
	6.2.2.4 Semaphore take, take results and give
	6.2.2.5 Dynamic instance creation links

	6.2.3 Lifeline components
	6.2.3.1 Timer events
	6.2.3.2 Message save
	6.2.3.3 Stop symbol
	6.2.3.4 Action symbol
	6.2.3.5 Method and suspended segments
	6.2.3.6 Semaphore unavailability
	6.2.3.7 Relative time constraints
	6.2.3.8 Co-regions
	6.2.3.9 PSC strict operator
	6.2.3.10 PSC constraints: wanted and unwanted messages & chains

	6.2.4 Main symbols
	6.2.4.1 Lifeline
	6.2.4.2 Semaphore lifeline
	6.2.4.3 Collapsed lifelines
	6.2.4.4 Condition or instance state symbols
	6.2.4.5 MSC references
	6.2.4.6 Inline expressions
	6.2.4.7 Absolute times
	6.2.4.8 Comments
	6.2.4.9 Texts

	6.3 - Usage
	6.3.1 Launching PragmaDev Tracer
	6.3.2 Connection

	6.4 - Graphical user interface
	6.4.1 Integration with PragmaDev Studio
	6.4.2 Tracer window

	6.5 - Command line interface
	6.6 - Tracer commands
	6.6.1 Command reference
	6.6.1.1 Common options and arguments
	6.6.1.2 Task creation
	6.6.1.3 Task deletion
	6.6.1.4 Messages
	6.6.1.5 Message sending
	6.6.1.6 Message reception
	6.6.1.7 Message parameter format
	6.6.1.8 Message saving
	6.6.1.9 Semaphore creation
	6.6.1.10 Semaphore deletion
	6.6.1.11 Semaphore take attempt
	6.6.1.12 Semaphore take succeeded
	6.6.1.13 Semaphore take timed out
	6.6.1.14 Semaphore give
	6.6.1.15 Timer start
	6.6.1.16 Timer cancellation
	6.6.1.17 Timer timed out
	6.6.1.18 Task state changed
	6.6.1.19 Action symbol
	6.6.1.20 Start a new MSC trace
	6.6.1.21 Pause MSC trace
	6.6.1.22 Resume MSC trace
	6.6.1.23 Close MSC trace
	6.6.1.24 Exit PragmaDev Tracer
	6.6.1.25 Set directory
	6.6.1.26 Acknowledgment

	6.6.2 Tracing example

	6.7 - Importing an MSC-PR file

	7 - PragmaDev Studio
	7.1 - Scope
	7.2 - SDL C code generation
	7.2.1 Principles
	7.2.2 ASN.1 codecs for environment messages

	7.3 - Performance Analyzer
	7.3.1 Objectives
	7.3.2 Time and payload information
	7.3.2.1 The model
	7.3.2.1.1 The Performance Editor
	7.3.2.2 The architecture
	7.3.2.3 The test cases
	7.3.2.4 Semantics
	7.3.2.4.1 Time
	7.3.2.4.2 Payload

	7.3.3 Table and graphical analysis
	7.3.3.1 Architectures and test cases
	7.3.3.2 Running the analysis
	7.3.3.3 Saving the results

	7.3.4 SDL Z.100 performance simulation

	7.4 - Deployment simulator
	7.4.1 Deployment diagram for simulation
	7.4.2 Profiles for deployment simulation
	7.4.3 External messages
	7.4.4 The deployment simulator
	7.4.4.1 Live tracing
	7.4.4.2 Post-mortem tracing
	7.4.4.3 Commands summary

	7.4.5 Simulation modes
	7.4.6 ns-3 configuration

	7.5 - Model validation
	7.5.1 Integration with OBP
	7.5.1.1 Scope & features
	7.5.1.2 OBP exploration profiles
	7.5.1.2.1 Exploration options
	7.5.1.2.2 Message limitations
	7.5.1.2.3 Variable limitations
	7.5.1.3 Running an OBP exploration

	7.5.2 Checking a system against MSC scenarios
	7.5.3 Other validation experiments
	7.5.3.1 Scope and TRL
	7.5.3.2 IF Toolbox
	7.5.3.2.1 IF Observers
	7.5.3.2.2 General architecture
	7.5.3.2.3 Example script for Verimag IFx toolset
	7.5.3.3 Diversity
	7.5.3.3.1 Coverage
	7.5.3.3.2 Properties expression
	7.5.3.3.3 Observers
	7.5.3.3.4 Transition targeting
	7.5.3.3.5 General validation properties
	7.5.3.3.6 Results of verification
	7.5.3.4 Tina from LAAS

	7.6 - Exporting the project as an SDL/PR file
	7.7 - SDL Z.100 Code generation

	8 - Index

