PRAGMADEV

PRCESS

USER MANUAL

User manual

Contents

1 Introduction 4q
2 Supported BPMN constructs 5
3 Project manager 7
3.1 Preferences e 7
3.2 Filemanipulations 11
3.3 Checkingthemodels. 13

4 BPMN editor 15
4.1 Symbols e e e 15
4.2 Hierarchy e 17
4.3 Linkwith MEGAHOPEX it 17
4.4 Editor e e e e 18
4.4.1 Selectionmodes 18

4.4.1.1 Selectonly 18

4.4.1.2 Selectoredit. 19

4.4.2 Re-selectlasttool 19

4.4.3 Handling brokensegments 20

4.4.4 Modifying symboltypes L. 22

4.4.5 Connecting Call activities 24

5 Executor 28
5.1 Underlying principles 28
52 Controls. e e e 29
5.3 Behavior 30
5.3.1 Start. e e e e e e e e 30

5.3.2 Sequenceflows., 30

5.3.3 Messageflows 30

5.3.3.1 Implicitresolution 31

5.3.3.2 Explicitresolution. 33

5.3.4 Callactivities e 38

5.3.5 Gateways e e e 38

5.3.5.1 Inclusive, 38

5352 Exclusive. 40

5353 Parallel 42

5354 Event. 44

5.4 Executiontraces e e 50
54.1 Recording 50

PragmaDev Process V1.0 Page 2

User manual

5.4.2 Replay e 51
5.4.2.1 Single-traceexecution 53

5.4.2.2 Multi-traceexecution 54

6 MSC and PSC Editor 55
6.1 OVEIVIEW i it it e e e e e e e e e e e e e e e e e e e 55
6.2 MSC&PSCreferenceguide 55
6.2.1 General diagramformat. 55
6.2.2 Links e 56
6.2.2.1 Messagelinks 56

6.2.2.2 PSC-specific normal, required and failed message syntax 57

6.2.2.3 Sequenceflow, 58

6.2.2.4 Lifelinecomponents 58

6.2.3 Mainsymbols, 63
6.2.3.1 Lifeline., 63

6.2.3.2 Collapsedlifelines 63

6.2.3.3 Inlineexpressions. 64

6.2.3.4 Absolutetimes. 66

6.23.5 Comments 67

6.2.3.6 Texts e 67

6.3 MSCeditor e 68
6.3.1 Specifictools 68
6.3.2 Symbolcreation, 70
6.3.3 Manipulating components in lifelines 72
6.3.4 MSC symbol and link properties 73
6.3.5 Message parametersdisplay 74
6.3.6 Conformance checking: diagram diff & property match 75
6.3.6.1 Basic MSC diff: trace vs. trace, spec. vs. spec.,... 76

6.3.6.2 Specvs. trace comparison 78

6.3.6.3 Propertymatch 79

7 Verifier 82
7.1 Architecture e 82
7.2 Properties e e e e e e e e 83
7.3 Launchaverification, 83
7.4 Resultanalysis e 87
7.4.1 Full state space exploration 87
7.4.2 Property verification. o L. 89

8 Glossary 93

PragmaDev Process V1.0 Page 3

User manual

1 Introduction

Complex organizations or systems operations are based on processes described in graph-
ical models. The most popular notation is BPMN. It describes what the different partic-

ipants in a process do and how they interact with each other. These processes must be

thoroughly discussed before they are applied in a real situation. Any misunderstanding

of the process might lead to a catastrophic situation in operation.

PragmaDev Process is a set of tools:
+ A project manager
The project manager will gather all the files of your project in one place for easy
access.

« BPMN Editor
The BPMN editor allows you to design your process graphically. It is also possi-
ble to import an existing diagram from another tool through the XML standard
BPMN.

« BPMN Executor
The BPMN executor animates your BPMN. The possible path of execution will be
graphically displayed.

+ BPMN Tracer
When executing the model step by step it is possible to trace the different steps in
an MSC. One or several scenario can be replayed automatically against the model.

« BPMN Verifier
The Verifier relies on a third party tool called OBP (Observer Based Prover) devel-
oped by ENSTA Bretagne. This tool will automatically try all possible scenarios
in the model. There are two possible outcomes of this exploration:

— Opverall number of possible steps in the model.
If that number is too high compared to the size and complexity of the model,
it probably means the model is wrong.

— Verification of a property
The property to be verified is expressed with a PSC (Property Sequence Chart)
that is a sort of MSC. The Verifier will search if there is a scenario that verifies
the property.

PragmaDev Process V1.0 Page 4

User manual

2 Supported BPMN constructs

PragmaDev Process is a BPMN Viewer, Editor, and Executor. There are a few restric-
tions to these features as some BPMN constructs can be viewed but not edited or not
executed. A summary of supported constructs is given in table 2.1.

Note: Conditional and default flows are not supported yet in the Editor.

PragmaDev Process V1.0 Page 5

User manual

Table 2.1: Supported BPMN constructs.

BPMN construct Viewer Editor Executor
Pool

Lane

Task

Sub-Process (Transaction, Ad-Hoc, and Event) NO NO

Call-Activity

Data (Object, Input, Output, and Store) NO NO

Start Event

None, Message, Timer, Signal
Conditional, Multiple, Parallel Multiple NO NO
End Event

None, Message, Signal, Terminate

Escalation, Error, Compensation, Multiple, Cancel NO NO

Intermediate Event (Throw)

None, Message, Signal

Escalation, Compensation, Link, Multiple NO NO

Intermediate Event (Catch)

None, Message, Timer, Signal

Link, Conditional, Multiple, Parallel Multiple NO NO
Boundary Event NO NO
Gateway

Exclusive, Inclusive, Parallel, Event

Complex, Event Start, Parallel Event Start NO NO
Group NO -
Text Annotation NO -
Choreography NO NO NO
Conversation NO NO NO

Sequence Flow

Message Flow

Association NO NO

PragmaDev Process V1.0 Page 6

User manual

3 Project manager

When starting the tool, after setting the licensing mechanism described in the Installa-
tion manual, the Project manager pops up.

PragmaDev Process - <unnamed project> — O x

Process File Edit Elerment Check Windows Help

= 5 O & |4

<unnamed project>

A project allows you to gather all the files related to the on going project: BPMN, traces,
and properties. By default an empty unnamed new project is created at startup.

3.1 Preferences

The first menu in the tool gives access to the preferences window:

PragmaDev Process V1.0 Page 7

User manual

PragmaDev Process - <unnamed project> - O *
Process File Edit Element Check Windows Help

Quit Ctrl-Q |

<unnamed project>

In the General tab you can change the language, switch between themes for the GUI
(mostly useful for Linux users), order items in the project by alphabetical order (re-
quires reload), and change the default selection mode of the BPMN editor:

PragmaDev Process V1.0 Page 8

User manual

PragmaDev Process preferences

General Executor Licensing

Language: English ~ (Meeds restart)
Themes: default ~ (Meeds restart)
Order iterns in project tree:]

Default selection tool for models: | Select only ~

Cancel

The Executor tab contains some rules that can be enabled or disabled during BPMN
semantics check and execution, and also the default values used with OBP:

PragmaDev Process preferences d

General | Licensing

General

Show warnings for unresolved message flows
Allow message flows in the same pool

Allow sequence flows between pools

0BP

OBP heartbeat (>0 ms): 1000

Max messages per flow (=0): |10

Cancel

The following General rules are available:

PragmaDev Process V1.0 Page 9

User manual

« Show warnings for unresolved message flows
When enabled, unresolved messages flows will generate warnings during a se-
mantics check (or execution). This option concerns message flows incoming or
outgoing an empty pool or lane (back-box). Message resolution is explained in
"Explicit resolution".

« Allow message flows in the same pool
The BPMN semantic does not allow message flows within the same pool. This
option allows to override this rule.

« Allow sequence flows between pools
The BPMN semantic does not allow sequence flows to cross pool boundaries, i.e.,
they are allowed only within the same pool. This option allows to override this

rule.

The OBP related values are explained in "Launch a verification". They are:
» OBP heartbeat

Allows to change the default refresh value of the status information returned by
OBP during exploration.

« Max messages per flow
Upper limit for the number of pending message flows (sent but not received mes-

sages).

You can also change the licensing mechanism that is explained in the Installation Man-

ual:

PragmaDev Process preferences

General Executor

O

@®

Licensing opticns will take effect only on the next launch of PragmaDev Process.

Use free version.
Model editing features are fully available; execution is limited to 30 steps.
Use a PLM license:
PLM server: 192.168.2.102
PLM port number: 27042
Use a FlexLM license:
Use FlexLM server:
Use FlexLM license file: Browse...
Use a POLLM license:
POLLM legin name:
POLLM password:

Guess from envirenment

Cancel

PragmaDev Process V1.0

Page 10

PRAGMADEV

User manual PR@CESS

3.2 File manipulations

A file is added to the project with the Add file button:

{€ PragmaDev Process - <unnamed project>* - O *
Process File Edit Element Check Windows Help

& H B & U

|Add new BPMMN/MSC/PSC/GPSL file to project
<unnamed project>

A file browsing window will open with the bpmn, rdd, gpsl and file extensions:

£ Add new file *
A <« examples » Process » Pizza w Search Pizza 0

Organize - Mew folder f== o

* Mame Date modified Type

#F Quick access
[Desktop
* Downloads
Documents
&=/ Pictures

D DeliverPizza.bpmn 12/09/2019 11:
D Pizza.bprmn 12/09/2019 11:

EPMM File
BPMM File

3
33

LU Y

Images
J‘! Music

g Videos

Dropbox
@ OneDrive

E This PC w £ >

File name: ~

Save as type: | BPMN files (".bpmn)

] MSC/PSC files (*.rdd)
~ Hide Folders GPSL files (*.gpsl)
All files (=)

A new file is added to the project:

{€ PragmaDev Process - <unnamed project>* - O *
Process File Edit Element Check Windows Help

& H B & U

= <unnamed project>

I MyFirstModel.bpmn

PragmaDev Process V1.0 Page 11

User manual

PRAGMADEV

PR@CESS

Or you can directly open a project:

@ PragmaDlev Process - <unnamed project=

Process File Edit Element Check Windows Help

= E Mew project Ctrl-M
Open project... Ctrl-O

Open recent project 4
Save project... Ctrl-5
Close project Ctrl-W

<unna

Add new BPMMN/MSC/GPSL file...
Add existing files to project...

The selected project will display its associated files:

@ PragmaDlev Process - Pizza.bprj
Process File Edit Element Check Windows Help

& H B & U

= Pizza.bprj

| Pizzabpmn

| DeliverPizza.bpmn
pizza_ck.rdd
pizza_ko.rdd

PragmaDev Process V1.0

Page 12

PRAGMADEV

User manual PR@CESS

3.3 Checking the models

It is possible to check the syntax of a model from the Project manager. Select the dia-
gram and go to the Check menu:

{€ PragmaDev Process - Pizza.bpr] - O *
Process File Edit Element Check Windows Help

E H E H Check syntax / semantics...

= Pizza.bprj

| DeliverPizza.bpmn
pizza_ck.rdd
pizza_ko.rdd

In the case no errors are found:

{E} Messages >

--- Checking syntax/semantics of "H\WORKSPACE S\gaudin-bpmnirtds_rellexamples\Process\Pizza\Pizza.bpmn' ...
Everything's fine!

Close Save dialog text as...

In the case errors are found:

{Ch Messages X

--- Checking syntax/semantics of 'H:WORKSPACE Sigaudin-bpmnirtds_rellexamples/Process/Pizza/MyFirstModel.bpmn® ...
Errort 1D SEM_SYMB_5: End Event must not have any incoming Sequence Flows.
Error: ID: SEM_SYMB_10: Invalid source element for Sequence Flow.

Close Save dialog text as...

A double click on the error line will open the diagram and selected the symbol related
to the error:

PragmaDev Process V1.0 Page 13

PRAGMADEV

User manual PR@CESS

{& PragmaDev Process - BPMN Model Diagrams - O *
Model Edit Search View Execution Windows Help

P A

el

Gi BaE Ae

| & MyFirstModel

|,

PragmaDev Process V1.0 Page 14

User manual

4 BPMN editor

4.1 Symbols

PragmaDev Process - BPMN Models

Model Edit Search View Execution Windows Help

(N
T

L

MyFirstModel

i

A double click on any BPMN diagram in the Project manager will open the BPMN editor:

Pl gl BN BEa AR

i @

i

[l

The different symbols are organized in categories on the left side of the editor. Below is
the list of categories and symbols available in each category:
 Pools

— Horizontal pool
— Vertical pool
» Lane

k

— Horizontal lanes
— Vertical lanes

PragmaDev Process V1.0

Page 15

® @ o

User manual

« Start events

k

— Plain start event
— Message catch start event
— Timer start event
— Signal catch start event
« Intermediate events

]

— Plain intermediate event
— Message throw intermediate event
— Message catch intermediate event
— Timer intermediate event
— Signal throw intermediate event
— Signal catch intermediate event

« End events

]

— Plain end event
— Message throw end event
— Signal throw end event
— Terminate end event
« Tasks

]

— Plain task
— Message send task
— Message receive task
— Service task
— User task
— Manual task
— Script task
— Business
« Call activities

]

— Plain call activity

— User call activity

— Manual call activity

— Script call activity

— Business rule call activity

PragmaDev Process V1.0 Page 16

User manual

— Process call activity
e Gateways

il s i — =

— Exclusive gateway
— Parallel gateway
— Inclusive gateway
— Event gateway

+ Sequence flow

« Message flow

4.2 Hierarchy

BPMN has container symbols that include other symbols. Typically Pools and Lanes are
containers for execution symbols. Drawing a symbol in a container symbol will auto-
matically associate the contained symbol with its container. Moving the container will
move all the contained symbols. Graphically dragging a symbol out of the container will
dissociate the symbols. In the example below, the start, the task and the end symbols
are contained in the One Lane lane. Moving the lane symbol will move all the contained
symbols.

Just do it

OnelLane

4.3 Link with MEGA HOPEX

PragmaDev Process has a specific link with HOPEX tool as we are one of MEGA’s part-
ners. Users of MEGA HOPEX can launch the PragmaDev Process executor from HOPEX
on a set of selected diagrams. Diagrams are automatically exported in BPMN and can
be viewed in PragmaDev Process viewer. In that specific situation the models can not
be edited, they can only be viewed. If a modification should be made on the model it

PragmaDev Process V1.0 Page 17

User manual

should be on the source model in HOPEX. For that matter click on the "Go to source
model" button at the top of the editor:

o

Please note this feature only works with HOPEX web front end.

4.4 Editor

The BPMN editor is quite straight forward but there are a few particular features that
deserve to be explained.
4.4.1 Selection modes

The editor provides 2 modes for selecting and editing. It is possible to toogle from one
to the other with this button:

4.4.1.1 Select only

This is the default mode. Symbols have a graphical shape and some text inside. To
select the graphical shape of the symbol you can click anywhere in the symbol including
the text area:

To edit the text, double click on the text:

finish

This mode is more efficient if most of the work is to graphically re-organize the diagram.

PragmaDev Process V1.0 Page 18

User manual

4.4.1.2 Select or edit

Symbols have a graphical shape and some text inside. To select the graphical shape
of the symbol you should click between the edge of the symbol and the text:

finish

finish

This mode is more efficient if most of the work is to edit the text contents of the symbols.

4.4.2 Re-select last tool

When using the same tool again and again, it might be tedious to select it again and
again. For that situation pressing Ctrl + Space bar actually re-selects the last used tool.

PragmaDev Process V1.0 Page 19

User manual

4.4.3 Handling broken segments

When connecting two symbols with a sequence or a message flow, the link goes straight
from one symbol to the other:

finish

~ |continue
dothis

Would you like a broken segment to connect the two symbol it is possible to right click
on the segment and add a "waypoint" that is an angle in the connection:

start | |continue SN
Open definition

Link to process...

Properties...

Add waypoint (Ctrl+ Alt+click)
Delete waypoint

Clean-up waypoints

Make link straight

~ |continue
dothis

continue

dothis

PragmaDev Process V1.0 Page 20

User manual

continue

continue

dothis

Open definition

Link to process...
Properties...

Add waypoint (Ctrl+Alt+ click)
Delete waypoint

Clean-up waypoints h
Make link straight

Itis also possible to ask the editor to remove all waypoints in the segment to get a default
straight link.

It is also possible to create broken segment from the start, to do so hold the Shift key
down while create the link and click where the waypoint should be:

continue

dothis

continue

PragmaDev Process V1.0 Page 21

User manual

continue

continue

dothis
qF

continue

4.4.4 Modifying symbol types

When selecting a symbol in the editor, some complementary information are displayed
in the right panel:

PragmaDev Process V1.0 Page 22

User manual

PRAGMADEV

PR@CESS

@ PragrmaDev Process - BPMM Models

Model Edit Search View Execution

@ »

~

W= 0O

' Page setup

. Shape properties

Text and cutline color:

Background color:

Shape kind: Plain task -

Default Custom 8

Default Custom 8

Shapeid.: | SEM_SYME_4

' Edge properties

Click on the Shape kind to change the symbol type:

PragmaDev Process V1.0

Page 23

PRAGMADEV

PR@CESS

User manual

{Ch PragmaDev Process - BPMN Models — O X
Model Edit Search View Execution Windows Help
T 8 = |3 w|z" ﬁ|§gs§ Bi ae @§‘|P
| MyFirstModel
%S
Page setup
Shape properties
Text and outline color: Default Custom 8
Background color Default Custom §
Shape kind: Plain task *[}
Shape id.: Plain task
Edge prof Message send task
Message receive task
Service task
User task
Manual task
Script task
Business rule task
v
< >
L] L] oo
4.4.5 Connecting Call activities
A Call activity references a sub-process.
activity

To link the Call activity to the sub-process description right click on the symbol:

PragmaDev Process V1.0 Page 24

User manual

activity

Open definition

Link to process... h‘

Properties...

Add waypoint (Ctrl+Alt+click)
Delete waypoint

Clean-up waypoints

Make link straight

This will open a selection window that will list the possible subprocesses:

Choose a process to link to:

MyFirstiMedel. bpmn: (main;

Cancel

Now it is important to note the list of possible choices depend on the context of the
sub-process as well as the context of the caller. The possible connection will list:

« subprocesses that are in the same pool as the caller,
« subprocesses that are in no pool (implicitly the pool of the caller).

To illustrate this let’s take the example of three processes described in MyFirstModel
diagram, one is defined outside of any pool, one is defined in john pool, and the last one
is defined in jim pool:

PragmaDev Process V1.0 Page 25

User manual

global task |—
liiiillii%lllll

john

jim

In another diagram we have two call activities, one outside of any pool, and one in john’s

pool:
external —

internal

jahn

The possible links for external are:

PragmaDev Process V1.0 Page 26

User manual

Choose a process to link to:

MyFirstModel.bprnn: (main)

Cancel

The only possible choice is (main) of MyFirstModel meaning the process defined out of
the pools.

The possible links for internal are:

Choose a process to link to:

MyFirstMeodel.bprmn: (main)
MyFirsthModel.bpmn: john

Cancel

The two possible choices are:
« the process that has been defined outside of any pool,
« the process defined in john’s lane.

Once the link is done it will be used for navigation: double click will open the sub-
process definition, and for execution: click on the call activity will execute the sub-
process.

PragmaDev Process V1.0 Page 27

User manual

5 Executor

5.1 Underlying principles

Each BPMN element in the model has a state of execution:

e None
The element does not accept any action from the user, and it has never been en-
abled or disabled.

 Active
The element is waiting for either an enabling or disabling action from the user.

» Ready
An enabling action was issued on the element, but the element cannot be enabled
yet because it depends on the state of other elements.

« Enabled
An enabling action was previously issued on the element, and all enabling condi-
tions have been fulfilled (i.e., the other elements it depends on are in the required
state).

« Disabled
A disabling action was issued on the element.

There are two types of actions, that can be issued only on Active elements:
« Enabling: click on active element.
« Disabling: right-click on active element.

In general, these actions can be issued on sequence flows, message flows, and process
call-activities.

Since an element can be enabled or disabled several times (i.e., many flows of execution
can go through the same element), each element has actually a list of states of execution.
During execution the most recent state of the element is displayed in color as show in
the following table.

PragmaDev Process V1.0 Page 28

User manual

Table 5.1: Color representation of execution states.

State Color Example

None Nocolor —#™

Active Blue —_—
Ready —"
Enabled —

Disabled Nocolor ——®™

Having the most recent state shown, an implicit priority is created in displaying exe-
cution states, i.e., Active has the highest priority, then Ready, and last Enabled and
Disabled. For example, given an element that is Active in a flow and Ready in another
flow, its Active state will be shown in blue color.

5.2 Controls

The executor is controlled from the diagram editor with the following tools:

L e 0w

It is started with the Start button

Once started, it can be stopped with the Stop button - .

J

Once started it can be reset with the Reset button

The execution scenario can be recorded with the Record button

®

A single execution scenario can be replayed with the Replay button

&

Several execution scenarios can be replayed with the Replay all button

? .

Last execution step can be undone with the Undo button

a .

Last undone execution action can be re-executed with the Redo button

PragmaDev Process V1.0 Page 29

User manual

5.3 Behavior

5.3.1 Start

When starting, the executor will look for explicit and implicit starting points in the
model. An explicit starting point is... the sequence flow following the Start symbol:

Order a
pizza
Hungry

pizza order

Any outgoing flow (message or sequence) from a task without incoming flows can be an
implicit starting point. Here is a typical example:

5.3.2 Sequence flows

Sequence flows can be either enabled or disabled. However, even though most sequence
flows can be enabled (if they are Active), disabling an Active sequence flow follows the
following rules:

« A normal (uncontrolled) sequence flow can be disabled only if it is an outgoing
flow of an inclusive gateway, and at least one other outgoing flow of the gateway
is still Active or has been enabled.

« In absence of normal (uncontrolled) flows, an outgoing conditional sequence flow
can be disabled only if at least one other outgoing conditional flow is still Active
or has been enabled.

« Default sequence flows can be always disabled if they are Active.

5.3.3 Message flows

Message flows accept only enabling action, i.e., they cannot be disabled. The resolution
of a message flow is the identification of both its endpoints (sender and receiver). The
Executor supports two kinds of message flow resolution:
 Implicit
Both sender and receiver are flow elements (e.g., task, event, etc.). The Executor
automatically identifies these flow elements as message flow endpoints.
« Explicit
Either the sender or the receiver is a black-box participant (i.e., an empty pool
with no flow elements). The Executor expects user action for identifying the end-
points.

PragmaDev Process V1.0 Page 30

User manual

5.3.3.1 Implicit resolution

The general message flow semantic is as follows:

« All outgoing message flows must be sent before execution can move to the outgo-
ing flows, i.e., all outgoing sequence flows become Active when Enabling actions
have been issued on all outgoing message flows.

 Allincoming message flows must be present (Ready) before executing the receiver
of said message flows, i.e., outgoing message or sequence flows become Active
when Enabling actions have be issued on all incoming message flows.

To illustrate this let’s consider the following example:

preparation execution
O

Al
i
|
|
I
|
|
I
i
|
|
I
i
:
I
i
|
|
|

tim

read -;@—.O

When executing the first possible action is to go from the Start symbol to the Task:

preparation execution
O

il
i
I
|
i
I
|
i
i
I
|
i
i
:
i
i
I
|
i

steve

tim

read -;@—.O

stava

PragmaDev Process V1.0 Page 31

User manual

Then the only possible action is to send the message from timto steve:

preparation execution
®

tim

read = validation

steve

Once the message has been sent tim and steve can move on to the next execution step:

preparation execution
O

Al
i
|
|
I
|
|
I
i
|
|
I
i
|
I
i
|
!

{2

tim

| [ooooot|cooosoooooooe

validation

steve

If tim and steve execute a single step, again the only possible action is to send the
message from steve to tim:

PragmaDev Process V1.0 Page 32

User manual

tim

preparation executlon
O

steve

5.3.3.2 Explicit resolution

Large models are described in several diagrams written by different modelers. In these
situations the pools that are defined by the other modelers are represented by empty
pools. We call these empty pools black-boxes. During execution these black-boxes
might be defined or not, and even if they are defined one might not necessarily want to
execute them. The Executor provides a way to handle all these situations with the con-
cept of gates.! A gate is a small rectangle on the border of the pool where the message
endpoint is found. The means that the message flow goes through the gate. At startup,
for each gate, the Executor will look for a process that handles the same message flow
from and to the same pools. If it finds such a definition, the gates can be enabled or dis-
abled by the user (hence explicit resolution). If enabled it will link both processes, and
if disabled it will act like the black-box is undefined. When the black box is undefined,
it is possible to send as many messages as wanted. An undefined black-box will always
receive all messages sent to it.

These concepts are illustrated by the following example with three diagrams. The first
diagram describes a process in pool Y with messages exchanged with pool X and pool Z.

'The gate is not a BPMN symbol; it is a hidden symbol that may become visible only during execution
to support explicit message flow resolution.

PragmaDev Process V1.0 Page 33

User manual

=]---fF---===
=]---fF--=-===

The m1, m2, m4, and m5 interactions between X and Y, and X and Z are described in a
second diagram:

The m3 and m6 interactions are described in a third diagram:

PragmaDev Process V1.0 Page 34

User manual

=
w

X
___.a

¢::|______

=
o

=]---1--=-=

Z
'
Fa

When starting the Executor the links between the three diagrams are analyzed. The m1,
m2, m3, m4, m5, and m6 related gates are Active meaning a diagram definition has been
found for these message flows. It is possible to either enable or disable them.

If we enable the m1 related gate with a simple click on it:

PragmaDev Process V1.0 Page 35

User manual

W
L]
ml :.@ 1: Active

[0: Ready

—————T— 0:Enabled —

| 0:Disabled
W

)

m4:

It will automatically include the related diagram in the execution:

The first diagram will display the following:

PragmaDev Process V1.0 Page 36

User manual

If we disable the m3 related gate with a right click on it, the related diagram (the third
one) is then ignored and pool X is considered a black-box for m3. There is no diagram
that describes the m7 interaction, so for m7 pool X is also considered a black-box. In
practice that means the message flows can be always enabled in the Executor:

PragmaDev Process V1.0 Page 37

User manual

5.3.4 Call activities

Process call-activities accept enabling or disabling actions during execution. Enabling
a process call-activity means including the referenced process’ diagram (if it exists) in
the execution; this can be seen as a step-into the call-activity. Disabling a process call-
activity means ignoring the referenced process and treating the activity as a simple task;
this can be seen as a step-over the call-activity. So, when a process call-activity becomes
Active during execution, a left-click will step-into it, while a right-click will step-over it.

5.3.5 Gateways

The behavior of the gateways is conform to the standard. As a reminder some typical
cases are described in the following paragraphs.

5.3.5.1 Inclusive

Let’s consider a forking and a merging inclusive gateway:

lHHIHHHHI
lHHIHHHHI

The forking gateway allows to enable or disable condition 1 and condition 2. Not
both branches can be disabled because no further action could be done. To enable a
branch left click on it, to disable a branch right click on it. Let’s execute our example,
in the first step the start sequence flow can be enabled:

|HHIHHHH|
|HHIHHHH|

PragmaDev Process V1.0 Page 38

condition 1

O——0

condition 2

condition 1

- —

condition 2

User manual

Then it is possible to enable any of the branches:

condition

condition 2

Let’s enable condition 1 branch:

condition 1

and the sequence flow after do this:

condition 1

condition 2

The merging inclusive gateway is waiting for the other to activate its outgoing sequence
flow. It is either possible to enable condition 2 with aleft click:

PragmaDev Process V1.0 Page 39

User manual

do this

condition 1

©—0

condition 2

do that

and the outgoing flow will be activated:

do this

condition 1

condition 2

do that

or it is possible to disable condition 2 with a right click, and the outgoing flow will be
activated:

do this

condition 1

O—0

condition 2

do that

5.3.5.2 Exclusive

Let’s consider a forking and merging exclusive gateway:

PragmaDev Process V1.0 Page 40

User manual

condition 1

condition 2

Execution of this simple diagram will first propose the sequence flow following the start
event:

condition 1

O—x

condition 2

condition

condition 2

do that

When enabling one of the branches, the other ones get disabled:

PragmaDev Process V1.0 Page 41

User manual

condition 1

@—X

condition 2

The merging gateway does not expect any other active branches to let the flow go through:

do this

condition 1

@—X

condition 2

do that

5.3.5.3 Parallel

Let’s take a simple parallel forking and merging gateway:

do this

condition 1

condition 2

do that

Let’s proceed until the forking gateway will activate both branches:

PragmaDev Process V1.0 Page 42

User manual

condition 1

condition

condition 2

There is no way to disable a branch, both paths have to be enabled for the merging
gateway to allow further execution:

do this

condition 1

condition 2

do that

PragmaDev Process V1.0 Page 43

User manual

do this

condition 1

condition

do that

The upper branch has been enabled. The merging gateway is waiting for the lower
branch to allow further execution:

condition 1

@—

condition 2

do this

condition 1

@—

condition 2

do that

5.3.5.4 Event

Let’s take the following simple example:

PragmaDev Process V1.0 Page 44

User manual

s

: O—@—0
5

The event gateway can be triggered by the m message coming from pool p1l, or a time

out from the 5mn timer, or the s event that could be thrown by the process in pool p2.
Let’s start execution:

PragmaDev Process V1.0 Page 45

User manual

¢
®
)

And enable the sequence flow after the start event:

PragmaDev Process V1.0 Page 46

User manual

ﬁ

A click on the sequence after the timer will activate the sequence after the exclusive
gateway. Note that all other branches are disabled:

PragmaDev Process V1.0 Page 47

User manual

ﬁ

A click on the m message flow will activate the upper sequence flow and disable the
others:

PragmaDev Process V1.0 Page 48

User manual

ﬁ

A click on the start sequence after the start event in pool p2 to throw the event that
will be catched by the lower branch of the gateway. Again the other branches will be
disabled:

PragmaDev Process V1.0 Page 49

User manual

O
®
)

5.4 Execution traces

5.4.1 Recording

An execution scenario can be recorded with the Record button hd . Clicking the but-
ton will open the MSC Tracer and record the execution events, e.g.:

PragmaDev Process V1.0 Page 50

User manual

MSC Tracer — O x

Trace View Windows Help

BE SR, InD

<New 1=
Customer Clerk
Customer Clerk
Order a pizza
- pizz,aﬂ_nrder
Tracing < >

The description of the events that can be traced and the BPMN element (and execution
action) they represent is given in MSC & PSC reference guide.

5.4.2 Replay

A recorded execution trace can be saved for replay. Replay means executing a trace
against the model, while checking for differences between the two at every step. There
two checks done at every step:
» Thereferenced model ID of the current element in the MSC trace is checked against
the ID of the current element in the BPMN model.
» The text of both current elements (MSC and BPMN) are checked to see whether
they are the same.

The referenced model ID of an element in a trace can be accessed in the MSC editor by
right-clicking the element and Lifeline item properties or Link properties:

PragmaDev Process V1.0 Page 51

User manual

PRAGMADEV

PR@CESS

@ PragmaDev Process - M5C Diagrams

Diagram Edit Search View Export Windows

Help

JB pizza_ok |_
o | e e P
. XE£0
DO % Page setup
b A = Symbol properties
.;E. 1 Customer Clerk Text and outline color:
Background color:
|
S * Shortcut texdt: | |
. l Spent time units: | |
.: | Payload units: | |
— | Delete lifeline item PR code suffic | |
B ~
o ~. Description:
— pi‘z‘za order
........ ' et ~ .
h pa\
2 Top model element id. |Piﬂa.bpmnfSEM_S‘f‘MB_11 | Open |
i
P Y Bottom model element id.: |Pizza.bpmn/5EM_SYMB_11 Open
i
i Generate validation profile...
- < ¥ ¥ Link properties
Note that the referenced ID is preceded by <name-of-bpmn-file>/.
In the BPMN editor the element ID can be accessed in a similar way:
PragmaDev Process V1.0 Page 52

User manual

£} PragmaDev Process - BPMN Madels - O X
Model Edit Search View Execution Windows Help
T B =5 | P | P @S K
Pizza
A
I, = O
Page setup
' Shape properties
&
2 o Text and outline colon Default Custom 8
-, E Hungry Open definition
- I - ==
(@) E pizza order! Lt preesss. Ask fo Background celor: Default Custom §
' 4 i Properties, pizza
’ | Shopeting: () Pleintosk
1 Add waypoint (Ctrl+Alt+click) 7
. | id -
C i Delete waypoint FpizEa Shapeid: | SEM_SYMB_11
v, 1 Make link straight ; Edge properties
1 L — i
— ' | ==
L]] Dot
1] |"
(=30 . ! |
I W
L Order received Where is my pizza?
o
o
k=]
=
3 |- . | Bake t
= | 2 izzd
) v
< >

5.4.2.1 Single-trace execution

AL
The Replay button ‘) in the BPMN editor allows replaying of a single trace. After
choosing the trace to replay, the MSC editor will be opened in execution mode. The
execution is controlled from the MSC editor with the following tools:

e H D

A trace can be executed till its end Run button

A single event of the trace can be executed with the Step button

When running, execution can be paused with the Pause button

PragmaDev Process V1.0 Page 53

User manual

Execution mode can be exited with the Stop button
.

When executing a trace either step-by-step or until the end, the state of execution will
be updated also in the BPMN editor. The current event in the trace will be checked and
compared against the BPMN model at every execution step. The execution will stop
either if a difference is found between the trace and the model or if the end of the trace
was reached.

Execution is reset with the Reset button

5.4.2.2 Multi-trace execution

%
The Replay all button
show following window:

allows replaying multiple traces. Clicking the button will

MSC Trace Execution - O x

Select MSC traces to replay:

MSC Trace Status

@ pizza_ko
0 pizza_ok

P EResume% B

To select several traces, hold down Crtl or Shift and click on them.

Left to the trace name is a symbol representing the result of execution. Possible symbols
are:

« 2 =NONE, i.e., trace has not been executed yet.

« .. =PASS, i.e., no differences were found between the trace and the BMPN model.
« . =FAIL, i.e., differences were found between the trace and the BMPN model.

« @& = ERROR, i.e., could not execute trace due to errors.

If the result of execution for a given trace is FAIL, then double-clicking the trace will
open it and the BPMN model in the editors, and select the symbols that caused the fail.

PragmaDev Process V1.0 Page 54

User manual

6 MSC and PSC Editor

6.1 Overview

PragmaDev Tracer is one of PragmaDev Process modules. PragmaDev Tracer allows to
generate execution traces when executing the BPMN model. The traces are based on a
variant of the standard ITU-T MSC representation.

Online traces are created directly by the model being executed which sends trace infor-
mation.

Other features of PragmaDev Process may be used in conjunction with the tracer itself
to get a full-featured tracing utility with conformance checking against specification or
property verification:

« Trace diagrams can be directly created for documentation purposes;

« Trace diagrams can be compared in a visual way;

« Specification MSC diagrams can be created, then can be compared to execution
traces for conformance checking;

Property diagrams can be created using the Property Sequence Chart (PSC) for-
mat, which can be:

— matched against execution traces;
— automatically verified with OBP explorer;

« All diagrams can be easily documented, for example by exporting them fully or
partially to common image formats, allowing to insert them in a document.

The general graphical form of the diagrams supported by PragmaDev Tracer is de-
scribed in section MSC & PSC reference guide below.
The tracing feature is described in the Executor chapter. The MSC and PSC editor is
described in MSC editor. The available checks that can be performed - trace against
trace, specification against trace or property matches - are described in Conformance
checking: diagram diff & property match.

6.2 MSC & PSC reference guide

6.2.1 General diagram format

A MSC or PSC diagram represents the interaction going on between entities called in-
stances over time. Instances will typically be a participant or a lane. Instances are
represented by symbols called lifelines, that look like follows:

PragmaDev Process V1.0 Page 55

User manual

<instance head>

Events
happening on
instance

=

The lifeline always starts with a head that specifies the instance name.

All events happening on the instance are then displayed on a vertical line under the
lifeline head. These events are described below in “Lifeline components” on page 358.

The lifeline terminates by a lifeline tail, that can take several forms depending on the
status of the instance at the end of the diagram.

Lifelines are distributed along the horizontal axis, and the vertical axis represents the
time, flowing from top to bottom. Events happening between lifelines are mostly rep-
resented by links, described in “Links” on page 355. Other symbols allow to further de-
scribe the diagram or add semantics to specification MSCs or PSCs; they are described
in “Main symbols” on page 366.

6.2.2 Links
6.2.2.1 Message links

An asynchronous message sent by an instance and received by another is represented
by a dashed line with an outlined arrow at its end:

sender receiver

“*-message

Note that a message is a plain line in the genuine MSC format.

A message can also be received from an unknown source, or sent to an unknown target.
In this case, they are called a found message and a lost message respectively:

instance

The syntax for the message link text is free.

PragmaDev Process V1.0 Page 56

User manual

6.2.2.2 PSC-specific normal, required and failed message syntax

In PSC diagrams, texts for message links are supposed to be prefixed with one of the
following;:

« ‘e:’ indicates the message is a regular one. This means that the message is part of
the precondition for the property: all messages prefixed with ‘e:” must appear to
trigger a property match. If any of these messages do not appear in the checked
diagram, the preconditions for the property are not satisfied, and no matching is
attempted. Regular messages should appear first in the PSC diagram.

« ‘r.’ indicates a required message. This means that if all the regular messages pre-
ceding this message are present in the checked diagram, this message must be
present for the property to match. If it does not, the property is violated.

« ‘2’ indicates a fail message. This means that if all the regular messages preceding
this message are present in the checked diagram, this message must not appear
for the property to match. If it does appear, the property is violated.

Here is an example of a required message in a property:

client server

e:connect

r:answer

This means that if the client has sent a connect message to the server, then sends a
request message, the server must send back an answer message, or the property is vio-
lated.

Here is an example with a fail message:

client server

e:connect

f:not_connected

This means that if the client has sent a connect message to the server, then sends a re-
quest message, the server must not send back a not_ connected message, or the property
is violated.

Note that in PragmaDev Process, PSC wanted or unwanted constraints will also appear
in the message link text. For more details, see 6.2.2.4.

PragmaDev Process V1.0 Page 57

User manual

6.2.2.3 Sequence flow

A sequence uses a plain arrow that can go from one participant to another:

client waiter

skip cheese '

Or that can stay on the participant:

participant

I out of fuel

Lifeline components are events impacting a single lifeline. They appear as symbols
attached to the lifeline.

6.2.2.4 Lifeline components

Timer events An instance can start timers, that will time-out in a given amount of
time. A timer can also be canceled by the instance that created it. The symbols for
timers are the following ones:

participant

T(d) —
X»
Damg

[]

First symbol: the timer named T starts for a duration of d. Second symbol: time out for
timer named T,

Last symbol: cancellation of timer named T.

Action symbol Action symbols describe actions performed by the lifeline. In the
current version of PragmaDev Tracer, this description is informal. For example:

PragmaDev Process V1.0 Page 58

User manual

instance

Compute checksun

1

Relative time constraints A relative time constraint appearing in a specification
MSC diagram or a PSC diagram indicates that the sequence of events it encloses must
happen within a given time. For example:

client server

4 \\"-rqugst

answer--"""

vl

This specifies there must be less than 10 ms between the time when Client sends the
request message and the time when it receives the answer message.

During conformance checking, relative time constraints are compared to absolute times
in the compared diagram (see 6.3.6 and 6.2.3.4). Please note that units are not yet
supported: relative time constraints can only contain a valid comparison operator (<,
>, <=, >=, ...) followed by a real number.

Co-regions A co-region on a lifeline specifies that all events happening on this life-
line can happen in any order, and not only the order specified graphically. For example:

client server

Tr-request

T(10):§§;———

answer--"""

PragmaDev Process V1.0 Page 59

User manual

The co-region, indicated by the dotted line on the server lifeline, indicates that the timer
and the outputs of messages update and answer can happen in any order.

Note that co-regions are not supported in the conformance checking feature of Prag-
maDev Tracer (6.3.6). The same semantics can usually be specified by using inline
expressions; see 6.2.3.3 for details.

PSC strict operator Events specified on lifeline in PSC diagrams are supposed to
be loosely ordered by default. This means that if anything happens between two of
these events, the property is matched anyway. It is however possible to specify a strict
ordering for a set of events, meaning that these events must happen in this order without
anything in between. This is done with the strict operator, that looks like follows:

This means that a request message received by A must be immediately followed by the
output of an answer message, without anything in between (see 6.2.2.2 for the PSC-
specific link text syntax).

PSC constraints: wanted and unwanted messages & chains PSC diagrams
allow to specify on a message a set of messages that must or must not appear before
or after it for the property to match. Unlike other messages, the messages in these
constraint appear in what PSC calls the intra-message format, i.e as a text formatted
like: <sender instance name>.<message name>.<receiver instance name>.

In the PSC specification, the constraint itself is represented by a symbol appearing un-
der one end of the message link:

« Ifitappearsunder the link start (message output on sender), it is a past constraint,
meaning it must be satisfied before the message is sent for the property to match;

« If it appears under the link end (message input on receiver), it is a future con-
straint, meaning it must be satisfied after the message has been received for the
property to match.

In PragmaDev Process, the constraint is actually specified directly in the text of the link.
So a past constraint will appear in square brackets before the text for the message itself:
[constraint] message_name(parameters...) and a future constraint will appear after the
text for the message: message_name(parameters...) [constraint]

Constraints can have several forms:

« An unwanted message constraint specifies a set of messages that should not ap-
pear. If any of the specified messages appear, the constraint is not satisfied and
the property does not match. In PragmaDev Process, this kind of constraint is

PragmaDev Process V1.0 Page 60

User manual

represented as follows:

Client Server

[=\=> Client.cancel login.Server

| Clien i -Logout.Server] r:login_ok

The brackets isolate the constraint from the message itself, the “=\=>" is the stan-
dard prefix for an unwanted constraint in PragmaDev Process, and the messages
that should not appear before the login_ ok message are separated by a “|”, mean-
ing that if Client sends a login message to Server, Server must answer by sending
back a login_ok message, unless either the message cancel_login has been sent
from Client to Server before, or the message logout has been sent by Client to
Server before.

Note that is standard PSC, the representation would be something like:

| Client ‘ ‘ Server |

e:login

r: login_ok l
b

b = {Client.cancel_login.Server, Client.logout.Server}

« An unwanted chain constraint specifies a sequence of events that should not ap-
pear. If all messages in the constraint appear in the order specified in the con-
straint, then the property does not match. This kind of constraint is represented
in PragmaDev Process as follows:

Client Server

e:login [=\=> Client.request.Server,
Server.answer.Cliert]

The brackets and prefix are the same as in the unwanted message constraint above,
but the separator between the messages in the constraint is now a “,”, denoting a
sequence. The constraint also appears after the message text, so this is a future
constraint. So this means that if Client sends a login message to Server, it is a
property failure if it sends a logout message after it, unless it has sent the request
message and Server has sent back the answer message in-between.

Note that in standard PSC, the representation would be something like:

PragmaDev Process V1.0 Page 61

User manual

Client | | Server ‘

e: login
E
i logout 9
g = (Client.request.Server, Server.answer.Client)

« A wanted chain constraint specifies a sequence of events that must appear. If any
of the messages in the constraint does not appear, or the messages appear in a dif-
ferent order than the one specified in the constraint, then the property does not
match. This kind of constraint is represented in PragmaDev Process as follows:

Client Server

The constraint appears before the message name, so it’s a past constraint. The
prefix “==>"is the standard one for all wanted constraints in PragmaDev Process.
So this specifies that if Client sends a request message to Server, Server must send
back an answer message, and then another one if Client sends the repeat message
after the first answer. Note that the standard PSC representation would be some-
thing like:

| Client | | Server |

e request

r: answer

ri answer

=>
9
N

g = (Client.repeat.Server)

Note: PragmaDev Process actually supports more general types of constraints called
wanted and unwanted alternative chain constraint. These merge the message and chain
constraints described above. The general syntax for these constraints is:

[<constraint type prefix> [1.m1.J1,]2.m2.J2,... | In.mn.Jn,... | Im.mm.Jm,...]

where <constraint type prefix> can be either ==> for a wanted constraint, or =\=> for
an unwanted constraint.

« If the constraint is unwanted, this specifies that neither the sequence I1.m1.J1,
I2.m2.J2, ..., nor the sequence In.mn.Jn, ..., nor the sequence Im.mm.Jm, ... should
appear for the property to match.

« Ifthe constraint is wanted, this specifies that either the sequence I1.m1.J1, [2.m2.J2,
..., or the sequence In.mn.Jn, ..., or the sequence Im.mm.Jm, ... must appear for
the property to match.

This allows to represent all the PSC constraint kinds:

PragmaDev Process V1.0 Page 62

User manual

« Anunwanted message constraint {I1.m1.J1, I2.m2.J2} will be represented as: [=\=>
I[1.m1.J1 | I2.m2.J2]

« An unwanted chain constraint (I1.m1.J1, [2.m2.J2) will be represented as: [=\=>
I1.m1.J1, I2.m2.J2]

« Awanted chain constraint (I1.m1.J1, I2.m2.J2) will be represented as: [==> I1.m1.J1,
I2.m2.J2]

6.2.3 Main symbols
6.2.3.1 Lifeline

A lifeline represents an interacting entity in a MSC or PSC diagram. PragmaDev Tracer
allows the instance name appearing in the lifeline head to have the following format:
<instance name>[:<class name>][(<instance identifier>)]

Lifelines can appear in all kinds of diagrams: MSC trace or specification diagrams, as
well as PSC diagrams.

6.2.3.2 Collapsed lifelines

Collapsed lifelines are a PragmaDev Tracer extension and result from a ‘collapse’ op-
eration. This allows to represent a set of lifelines as a single lifeline, events happening
between the lifelines in the set being hidden. For example, after collapsing the instance
B and C in the following diagram:

Tl%’
T2 —

....,S,ubregue§t,2...>

<..._5}1_b_@[‘_51”_e_'32

TZ%’

I answer ____._.

the diagram appears as follows:

PragmaDev Process V1.0 Page 63

User manual

A B+C

answer

6.2.3.3 Inline expressions

An inline expression in a specification or PSC diagram is a way to specify specific se-
mantics for a group of events. The semantics depend on the kind of inline expression:

« An ‘opt’ inline expression specifies an optional set of events. For example:

A B
.......... mlo
opt
— m2 .
.......... m3
Zommnnne ma

specifies that the message m1 is sent from A to B, then B may send m2 to A, which
answers m3, then B sends m4 to A. So the sequences m1-m2-m3-m4, and m1-m4
are both valid.

+ An ‘alt’ inline expression specifies a set of alternative behaviors. For example:

A B
.......... m 1>
alt
— m2_
— m3_

specifies that when A sends m1 to B, B may answer by sending back m2, or m3. So
the sequences m1-m2 and m1-m3 are both valid. An ‘alt’ inline expression must
have at least two compartments in it, and can have as many as needed.

PragmaDev Process V1.0 Page 64

User manual

« A ‘loop’ inline expression specifies a set of events that might be repeated several

times. For example:

specifies that after A has sent the message mz1 to B, it may send any number of
messages m2, to which B will answer by the message m3, until A sends the mes-
sage m4 to B. So the sequences m1-m4, m1-m2-m3-m4, m1-m2-m3-m2-m3-m4,

and so on, are all valid.

A B
.......... mo

loo
.......... LSRN

Note that the MSC standard allows to indicate minimum and maximum number
of repeats in loop inline expressions. This feature is not yet available in Prag-
mabDev Tracer.

« A ‘par’ inline expression specifies a set of event sequences that must all happen,
but in any order. For example:

A B
par
.......... "Jl........>
— m2_
.......... mo
Zemmenne ma

specifies that the two sequences A sending m1 to B and B answering m2, and A
sending m3 to B and B answering m4 must both happen, but that the order is not
significant between the sequences. So the global sequences m1-m2-m3-m4 and
m3-m4-mi-m2 are both valid.
A ‘par’inline expression must have at least 2 compartments, and can have as many

as needed.

« An ‘exc’ inline expression represents an exception. This means the sequence of

PragmaDev Process V1.0

Page 65

User manual

events in the inline expression is an error case and terminates the scenario. For
example:

specifies that when A sends m1 to B and B answers m2, there is an error and the
scenario should stop. So the sequence m1-m2 is valid, but is an error case, and the
sequence m1-m3-m4 is valid and is a normal execution. Note that the MSC stan-
dard represents an ‘exc’ inline expression with a dotted bottom line. PragmaDev
Tracer uses a solid line in the current version.

 A‘seq’inline expression represents a weak sequence. This means that within such
an inline expression, the events on a specific lifeline must happen in the given or-
der, but the general ordering can be anything. For example:

.......... mlo

seq

Ta% Tbl%

This means that on lifeline B, the starting of Tb1 has to happen before the can-
celing of Tb2, but that the starting of Ta by A can happen at anytime: before the
starting of Tb1, after the canceling of Tb2 or between the two. Note that this kind
of inline expression is not supported in conformance checking (6.3.6).

6.2.3.4 Absolute times

In the MSC standard, absolute times can be associated to any event in the diagram by
using a symbol consisting only in a dashed underline under the text for the time. Prag-
maDev Tracer supports absolute times, but only associated to complete ‘event rows’:

PragmaDev Process V1.0 Page 66

User manual

the times are displayed in the left margin of the diagram and are associated to all events
with the same y coordinate, instead of any event. To keep the same representation as
in the MSC standard, each absolute time is displayed with a dashed underline:

PragmaDev Process - M5C Diagrams - O X
Diagram Edit 5Search View Export Windows Help

H = & 8 « o BA B ~~ [¥
MscCollapse
= @
. A B C
\ | | |
12 L _request o ~
13 D
[
14 | _subrequesil
18 g ~subanswerl |
19 1P
19 T2 %
20 | _ _subrequestz
37 g -subanswerz |
27 Tz%p
28 answer
— :| :| :| W
— £ >

These absolute times are the reference when verifying relative time constraints during
conformance checking (see 6.2.2.4 and 6.3.6). Please note that units are not yet sup-
ported: absolute time constraints must be written as a real number only.

6.2.3.5 Comments

A comment symbol just contains a documentation text for the item it is attached to.
Comment symbols are not yet supported in PragmaDev Tracer.

6.2.3.6 Texis

A text symbol contains informal text usually describing global items in the diagram.
Text symbols are not supported yet in PragmaDev Tracer.

PragmaDev Process V1.0 Page 67

User manual

6.3 MSC editor

This kind of editor is used for Message Sequence Charts. A MSC diagram describes a
sequence of events happening in a system, with a set of “lifelines” represented as vertical
lines, with symbols representing events attached to them.

There are 3 main kinds of MSC diagrams, which are all recognized by PragmaDev Pro-
cess:

« Basic MSCs represent a sequence of events that have actually happened during
a system execution. They will contain a lifeline for each participant or lane, and
events will be sequence flows, message exchanges, and timeouts. They are typi-
cally obtained by using the MSC tracing functionality in the executor.

« Specification MSCs will contain the same kind of events, but can group them
within other symbols with attached semantics. For example, a sequence of events
can be isolated in another MSC diagram that will be referenced via a “MSC refer-
ence” symbol. Or a sequence of events can be enclosed in an “inline expression”,
allowing to specify this sequence is optional, or can be repeated several times.

 Property Sequence Charts are another kind of specification MSCs that are used to
describe “if/then” conditions: if a given sequence of events appear in a diagram,
then another sequence must appear behind it, or must not appear behind it.
The whole format for MSCs - basic & specification - and PSCs is described in 6.2. Note
that there is no specific editor for each kind of diagrams: all symbols are available in
the editor, and the kind of diagram is recognized automatically from what it contains.
The features of the MSC editor and their availability are described in the following para-
graphs.

6.3.1 Specific tools

The selection tool in MSC diagrams allows to select symbols and links, just as in other
editors. It also allows to select a rectangular zones, that can be copied and pasted and
exported as image files:

server

_____ init _ _ >

inst I I ‘ request ‘
- (=S (1 T N et g >

"= ___answer ___ |
close
——————————— >

Selected lifeline Selected message link Rectangular selection

Note that copying and pasting rectangular zones will work only for full “horizontal
slices” of the diagram: if a rectangular zone is selected, but does not span the full dia-
gram width, it will be automatically extended when copied or cut.

For example, if this zone is selected:

PragmaDev Process V1.0 Page 68

User manual

server

e - —anewer]

[L ——

copying it will automatically extend the zone to the full width of the diagram and display
a warning;:

P 4 A ——

¢ _answer]

B B =3

When pasting a rectangular zone, a horizontal insertion line will be displayed:

server

e - —anewer]

[

\I\IE

Clicking in the diagram while the insertion line is displayed will paste the copied zone
at this position:

[L -

e _answer]

B B ==

Note that the copy will fail if any object has an end within the slice but the other end
outside it, such as a lifeline starting before the slice and ending in it. The paste will fail
if one of the copied lifelines does not exist at the paste position.

PragmaDev Process V1.0 Page 69

User manual

6.3.2 Symbol creation

Creating symbols in MSC diagrams is pretty straight forward. But some of the tools have
a special behavior, mostly because of the nature of the MSC diagrams, which describes
mostly a sequence of events, and not individual symbols:

« When creating lifelines, only the horizontal position will be considered: lifelines
are always created starting from the top of the diagram and going to the bottom.

 The creation of a lost (resp. found) message is done by selecting the message
creation tool and clicking on the right side (resp. left side) of the lifeline sending
it (resp. receiving it). For example:

instance

) o

1

instance

T(20)

WD

instance

W@Hlﬁf

T(ZU)% V |:> T(20) -
<
E—

X
|

Note that in legacy diagrams, lost and found messages have their own specific
symbol that must be created the usual way, and a message link has to be created
between the lost (resp. found) message symbol and its sender (resp. receiver)
lifeline.

« For conditions, MSC references and inline expressions, they must be created over
the lifelines they impact. This is done simply by making them span these lifelines,
and optionally all the events that must be included in them:

PragmaDev Process V1.0 Page 70

PRAGMADEV

User manual PR@CESS

ml

A4

m2

- — mnz
LETRE
T ﬂ m3

md

AN

¥

v
3

/) £/ “

Once created, this symbols can be moved up or down by dragging them, and re-
sized horizontally via the handles appearing on their sides when they are selected,
which is the way to make them impact other lifelines than the ones setup at their

creation:
L~]| [_&] S |

ml

alt
m2

ml

alt
m2

Excluding from the symbol a lifeline included in it can be done via the circular
handles appearing at the connection points between the symbols and the lifelines:

PragmaDev Process V1.0 Page 71

User manual

hd

alt

ES

alt
m2

For inline expressions, their kind can then be changed by selecting it in the box
appearing when the mouse cursor is over its text:

s
loap -]
alt L____mz__ _ -
EXC)
foop |
opt - -3
par
seq

(S

6.3.3 Manipulating components in lifelines

To the difference of all other symbols, lifeline are composite symbols: they may include
several components like segments, timers or time constraints. They may also die before
the end of the diagram or survive it.

In normal diagrams these features are managed via the toolbar:

PragmaDev Process V1.0 Page 72

User manual

}

The buttons add to the lifeline a segment, an action symbol, a timer or a time constraint.
After selecting an item in the toolbar, press the mouse button at the desired position in
the lifeline, and drag to its end position (if applicable). To cancel the insertion, hit the
Esc key or select the selection tool.

6.3.4 MSC symbol and link properties

Symbols and links in MSC diagrams display internal information on the right panel.
Please note some of the information may not be relevant to BPMN execution trace yet:

PragmaDev Process V1.0 Page 73

User manual

Symbol properties

Text and outline color: Default Custom I

Background color: Default Custorn il
Shortcut text:

Spent time units:

Payload units:

PR code suffic

Description:

Page setup

Symbol properties
Link properties

Top model element id.: Open
Link coler: Default Custom i
Bottom model element id.: Open

. Start model element id.: Open
Generate validation profile...

End model element id.: o
Link properties nd model element 1 pen

The information might be recorded automatically if the MSC diagram is a trace from an
execution. They can also be specified “manually” via the symbol or link properties.

PragmaDev Process will open itself the model elements that it has recorded in traces.

6.3.5 Message parameters display

Please note this feature is not used in the current version of PragmaDev Process.
A specific sub-menu in the “View” menu controls the message parameter visibility:

« A visibility set to “Full” displays the full text for the message parameters as it is
recorded in the diagram file. The parameters for structured messages are then
displayed in a flat textual format which can be quite difficult to read as this format
is quite complex;

« Avisibility set to “Abbreviated” still displays completely parameters for non-structured
messages, but only displays the first level of parameter values in structured pa-
rameters. An example of this visibility can be seen below;

« A visibility set to “None” hides all message parameters.

This visibility setting is stored with the diagram. Please note it is only possible to modify
the text for the message parameters if the visibility is set to “Full”.

When the visibility is set to “None” or “Abbreviated”, structured messages are indicated
by a “»” before their name. Their parameters may be displayed by clicking on the mes-
sage link: a panel then appears in the right part of the editor window displaying the

parameters as a tree. For example, for a message with the full text:
mParams(|{param1|=42|,param2|=Hello|})
the display with parameter visibility set to “Abbreviated” and the link selected is:

PragmaDev Process V1.0 Page 74

User manual

PragmaDev Process - MSC Diagrams - O x
Diagram Edit Search View Export Windows Help
B = & g e o BA B [
MessageWithParameters
| e & o
- =0
* -l message
=l From: sender
sender receiver State before:
State after:
o] = To: receiver
State before:
| State after:
= Params.:
.paraml 42
.param2 Hello
- |« > < >

Other information is also displayed in the panel:
« The sender and receiver process;

« The states of the sender and receiver processes before and after they sent or re-
ceived the message (not relevant with current version);

6.3.6 Conformance checking: diagram diff & property match

PragmaDev Studio offers 3 levels of conformance checking:

« A MSC trace can be compared to another MSC trace, used as a reference. This can
typically be used for regression testing, the reference trace giving the wanted be-
havior, and being compared to a newly obtained trace. In this kind of comparison,
all events in both diagrams are compared one by one without any interpretation of
any kind. This is mainly intended for trace comparisons, but it also works on other
diagram kinds, as items normally only present in specification or PSC diagrams
are taken into account too, e.g inline expressions or relative time constraints.

« A MSC trace can be compared to a specification diagram. For this comparison,
the semantics in the specification is taken into account. For example, if there is
an ‘opt’ inline expression in the specification containing a sequence of message
exchanges, the comparison will interpret it, and consider that the diagrams are
matching if the sequence is there, or if it is not there at all. This allows to describe
expected scenarios in a powerful way via specification MSC diagrams and match
the execution traces against them later.

 Occurrences of a property described in a PSC diagram can be found in a MSC trace.
In this case, the semantics are considered in the PSC diagram, as well as the PSC
specific elements. Note that this is different from a specification vs. trace com-
parison, as properties describe a small part of a scenario that can actually match

PragmaDev Process V1.0 Page 75

User manual

several times in a trace. MSC specification diagrams describe a whole scenario,

and will be matched entirely on the trace. Properties are a good and powerful way

to specify wanted and unwanted behavior in the designed system.
Important note: the current implementation of the algorithm used for specification vs.
trace comparisons and property matches is limited in the number of events it can handle
after a matched one and before the next one. The current limitation is 200 events in
the trace, so if an event matches and the next event that should match is more than
200 events away from it, it won’t be found. This limitation will be removed in a future
version.

6.3.6.1 Basic MSC diff: trace vs. trace, spec. vs. spec., ...

The basic MSC diff just compare two diagrams events by events and reports the found
differences. This kind of comparison is launched by selecting ‘Compare diagrams...” in

the ‘Diagram’ menu, or by clicking the & }utton in the toolbar. The following dialog
then appears:

PragmaDev Process x
Diff type: Basic MSC diff ~
First M5C: MscDiffTracel.rdd ~ Browse ...
Second MSC: ~ Browse ...)

[Filter activated

All
Display full results

Cancel

Selecting the basic MSC diff is done by selecting the corresponding value in the ‘Diff
type’ field. The name for first MSC will be automatically set to the name of the cur-
rently displayed diagram. For the MSC to compare, it can be either selected in the list
attached to the ‘Second MSC’ field, or loaded from a file via its ‘Browse...” button. Once
selected, the arrow in the right part of the dialog allows to exchange the two MSCs if the
comparison must be done the opposite way.

PragmaDev Process V1.0 Page 76

User manual

PragmaDlev Process X
Diff type: Basic MSC diff ~
First M5C: MscDiffTracel.rdd ~ Browse ...
Second M5C: ~ Browse ...)

[Filter activated

All

Display full results

Cancel

PragmaDev Studio allows to exclude some elements from the comparison based on their
type. This is done by checking the ‘Filter activated’ option:

PragmaDev Process X
Diff type: Basic M5 diff ~
First M5C: MscDiff Tracel.rdd ~ Browse...

)

Second MSC: | MscDiffTrace2.rdd ~ Browse...

Filter activated

Diff
Messages:
Tirners: O
Time constraints:
All
Display full results

All the shown element types can be included or excluded from the comparison. The ‘All’

button will check all the boxes if any of them is unchecked, and uncheck them if all are
checked.

The option ‘Display full results’ at the bottom of the dialog allows to display only a sum-
mary of the comparison results instead of the full set of differences. To display the
summary, just uncheck the box.

If this option is checked and after validating the dialog, PragmaDev Studio puts each
diagram in its own window and displays them side by side. A dialog also appears at the
bottom of the screen, allowing to browse through the found differences:

PragmaDev Process V1.0 Page 77

User manual

Diagram Edit Search View Export Windows Help

e = & B o B BEA I
MscDiffTracel
|
-
LY
client server
.
L
e—il T >
,,,,EEHLLESJ,,,>
- - - answel
1
& f========== >

- <
Diagrams differ. (1 difference(s))
a Exportl

Diagram Edit Search View Export Windows Help

Highlight: Current All Message deleted from origin diagram

B AR D RXEFAPE
] MscDiffTrace2
o | @
.
LY
client server
.
inl

| Al >

7777[egu7es;t777>

(___gngw_e[____
H-

A summary of the differences is displayed at the top. Each difference will be highlighted
in red in the diagram displayed on the left, and in blue in the diagram displayed on
the right. The text in the dialog gives a short description of the identified difference.
The arrows allow to browse through the differences. The option ‘Highlight’ allows to
highlight all differences in both diagrams to get a quick view of what differs without
having to browse through all the differences.

6.3.6.2 Spec vs. trace comparison

Comparing a specification diagram to an actual trace is done the same way as for a basic
MSC diff, except the diff type has to be set to ‘Spec. vs. trace’ in the dialog;:

PragmaDev Process V1.0

Page 78

User manual

PragmaDev Process >
Diff type: | Spec. vs trace -
Spec. MSC: | MscDiffSpec.rdd ~ Browse...
Trace M5C: | MscDiffTracel.rdd ~ Browse...)

All
Display full results

Cancel

Note also that the specification diagram must be the one specified in the field ‘Spec MSC’
in the dialog, which is always the first one. If needed, the diagrams can be swapped by
using the arrow button on the dialog’s right side. The same filters are provided as for a
basic MSC diff.

Once validated, the found differences are displayed in the same way as for a basic MSC
diff; only the way to perform the comparison changes, as semantics in the specification
is taken into account where it wouldn’t be in a basic MSC diff:

Diagram Edit Search View Export Windows Help Diagram Edit Search View Export Windows Help

(=R W= - IS - APl W B =4 « B AL AP Lt
McDiffSpec || 3 MscDifTracet
(=] L .3 =] L 4
- ‘ client server ‘ -
h init ~ *
*********** >
request client server
---------- > = .
inl
-] e >
S | _request]
(,,,E”EWSE,,,,
- - - anzwer ___
. close
e S >
- - L] L]
,,,,, close __ 5|
; L]] vl |
el 3 Diagram differences X |

Diagrams are matching.

Highlight: Current All |(Diagrams are matching)

Close

6.3.6.3 Property match

Matching a PSC diagram against a MSC trace is done the same way as for the other
kinds of comparisons, except the diff type has to be set to ‘Property match’:

PragmaDev Process V1.0 Page 79

User manual

PragmaDev Process
Diff type: | Property match -
Prop. M5C: | MscDiffProperty.rdd
Trace MSC: | MscDiffTracel.rdd

[Filter activated

Display full results

Cancel

~ Browse...)

~ Browse...

All

Note that the PSC diagram has to be the one specified in the ‘Prop. MSC’ field, which is
always the first one. If needed, the diagrams can be swapped with the arrow button on
the right side of the dialog. The same comparison options are provided as for basic MSC
and specification vs. trace comparisons, but they are less significant here, as a property
diagram is always partial.
Once validated, the property matches and violations are displayed in a similar way to the
display of differences in the other kinds of comparisons. Mostly the colors and the dif-
ference descriptions differ: each matched element in the property or the MSC diagram
will be displayed as green, and each unmatched one as red. The difference description

.
will be:
¢ > s .
 ‘Property match’ if the property matches:
Diagram Edit Search View Export Windows Help Diagram Edit Search
CEEAR BEXBEFLFPS H B2isR
MscDiffSpec MscDiffProperty : MscDiffTracel
Nal L 4 (o] W
-
% »
client server
.
e; reques’
o | R i
- - RIS —
= -
—. —.
I
Diagram differences
- Diagrams are matching.
Highlight: Current All |(Diagrams are matching)
a3
j]
0/0
L
T

View Export Windows Help

B A B FFE

server

client

init
——————————— >

b 2=l ___J
close
——————————— >

]

]

« ‘Violated property!’ if the property does not match.

PragmaDev Process V1.0

Page 80

User manual

 ‘Possibly violated property’ in some very specific cases where it is impossible to
tell if the property is matched or not. A typical example where this case happens
is the following:

A B
e:ml
.................... >
alt
e:m2
.................... >
S rim3_
— rimd

If the trace contains a message m1 from A to B, followed neither by a message m2
from A to B, nor by a message m4 from B to A, there’s no way to know which part
of the alternative should have matched. But if it was the first part, the message
mz2 is not there, so the property does not apply, and if it was the second one, the
required message m4 is not there either, so the property is violated. In this case, a
possible property violation will be reported. Note that a property is not necessarily
violated if something does not match in it. Typically, an unmatched fail message
means the property is matched.

PragmaDev Process V1.0 Page 81

User manual

7 Verifier

The Verifier automatically explores all possible execution path of the model. The possi-
ble paths and their intermediate states build what is called a state space. There are two
interesting results for this feature:

« The size of the state space. That is basically the number of possible execution
steps in the model. If it is too high that means the model is complex and might
not be doing what is expected.

« Verify a property in order to make sure some scenario actually can not happen
whatever the scenario.

Please note OBP requires Java to be installed on the computer.

7.1 Architecture

The state space exploration is done with OBP (Observer Based Prover) tool developed
by ENSTA Bretagne research lab. To do so OBP relies on PragmaDev Executor. At each
step OBP asks the executor what are the possible paths of execution (what we call tran-
sitions). OBP will then try all possible paths and the executor will provide the resulting
state for each one. For each resulting state OBP will ask for the possible transitions
and so on. The key aspect here is that OBP does not execute the model, it relies on the
executor. This is quite unique as usually verification tools have their own semantic and
executor.

' Get model state [\ '
Context (| [Model
| |

/[| set model state

A Get firable transitions | A
BPMN
OBP ‘P - - ‘P
: ecute transition | executor
| | .
~ II I| Complex property || ||
|| | ‘ Properties ‘

Evaluate property

\/ \J

‘ Requirements

While exploring OBP can verify user defined properties defined with a PSC (Property
Sequence Chart) diagram. Internally the PSC is translated to a Biichi automaton and

PragmaDev Process V1.0 Page 82

User manual

sent to OBP. The Biichi automaton is based on what we call atomic properties of the
model. At each step of execution OBP asks the BPMN executor to evaluate the atomic
properties to evaluate the overall Biichi automaton. While atomic properties are static
and usually boolean, the Biichi automaton can express quite complex sequence of events.

7.2 Properties

The properties are defined using the PSC format. For the time being only the following
features are supported in the PSC:

« e (regular message),
« 1 (required message),
« f (failed message),
« Altin-line expression,
o Strict operator.
Please refer to the 6.2.2.2 pages for more information.

7.3 Launch a verification

-

The Verifier is launched from the editor windows with the following button: o

The following window will then open:

OBP options for Pizza *

Property to verify:

BFS

DFS

property_always_get_pizza [psc]
property_calmed_or_pay [psc]

OBP heartbeat (>0 ms): 1000
Max messages per flow (=0): |10

0K Cancel

The first 2 lines are always present, they are the default full state space exploration
policies. To explain these two exploration techniques let us consider the following state
space:

PragmaDev Process V1.0 Page 83

User manual

The exploration policies will do the following:
« BFS: Breadth First Search: 123456
« DFS: Depth First Search: 124536
Depending on your model organization, one or the other might be better choice.

The lines after that are the PSCs found in the project. A PSC defines a single property.
OBP can only explore for one property at a time.

An exploration might take a substantial amount of time. For that reason, every heart-
beat, some status information is displayed in the exploration window. It is possible to
change the refresh value of the status information.

During exploration the history states are cleaned up because they do not impact the
upcoming execution of the model. For example a loop executed once or a hundred times
will end up in the same state. But if a message is sent from the loop this creates a
different configuration that is to remember. Since this can potentially create an infinity
of possible configuration (one per number of messages in the queue), the exploration
window offers an upper limit for the number of pending messages in the queue.

Once the exploration is launched, the following window will show what the status is:

PragmaDev Process V1.0 Page 84

User manual

OBP Execution — O X
Running OBP with 1000 ms heartbeat and 10 max messages per flow:

INFO: Loading Buchi language plugin

INFO: Loading Remote language plugin

INFO: BFS state-space exploration

INFO: Connecting to localhost: 50005 (attempt 1)

HEARTBEAT: configurations=0 status=INCOMPLETE result=UIMNKNOWN
HEARTBEAT: configurations=160 status=INMCOMPLETE result=UMNKNOWN
HEARTBEAT: configurations=285 status=INMCOMPLETE result=UMNKNOWN
HEARTBEAT: configurations=402 status=INCOMPLETE result=UNKNOWN
HEARTBEAT: configurations=513 status=INCOMPLETE result=UNKNOWN
HEARTBEAT: configurations=621 status=INCOMPLETE result=UNKNOWN
HEARTBEAT: configurations=726 status=INMCOMPLETE result=UNKNOWN
HEARTBEAT: configurations=824 status=IMCOMPLETE result=UNKNOWN
HEARTBEAT: configurations=817 status=INMCOMPLETE result=UMNKNOWN
HEARTBEAT: configurations=1010 status=INCOMPLETE result=UMNKMNOWMN
HEARTBEAT: configurations=1108 status=INCOMPLETE result=UMNKMNOWMN
HEARTBEAT: configurations=1204 status=INCOMPLETE result=UNKMNOWN
HEARTBEAT: configurations=1297 status=INCOMPLETE result=UNKMNOWN
HEARTBEAT: configurations=1384 status=INCOMPLETE result=UNKMNOWN
HEARTBEAT: configurations=1470 status=INCOMPLETE result=UMNKMNOWMN
HEARTBEAT: configurations=1558 status=INCOMPLETE result=UMKMNOWMN
HEARTBEAT: configurations=1643 status=INCOMPLETE result=UMKMNOWMN

= 11 B ¢

Since exploration can take quite some CPU and memory, it is possible to pause the

The exploration can then be resumed or paused again:

exploration with the Pause button:

PragmaDev Process V1.0 Page 85

User manual

OBP Execution — O X
Running OBP with 1000 ms heartbeat and 10 max messages per flow:

INFO: Loading Buchi language plugin

INFO: Loading Remote language plugin

INFO: BFS state-space exploration

INFO: Connecting to localhost: 50005 (attempt 1)

HEARTBEAT: configurations=0 status=INCOMPLETE result=UIMNKNOWN
HEARTBEAT: configurations=162 status=INMCOMPLETE result=UMNKNOWN
PAUSED

RESUMED

HEARTBEAT: configurations=196 status=INCOMPLETE result=UNKNOWN
HEARTBEAT: configurations=322 status=INCOMPLETE result=UNKNOWN
HEARTBEAT: configurations=434 status=INMCOMPLETE result=UNKNOWN
PAUSED

> .. W Y

It is also possible to interrupt the state space exploration with the Stop button:
Once this button pressed, the exploration is interrupted and can not be resumed.
At the end of the exploration the exploration window will indicate a COMPLETE status:

PragmaDev Process V1.0 Page 86

User manual

OBP Execution
Running OBP with 1000 ms heartbeat and 10 max messages per flow:

INFO: BFS state-space exploration

INFO: Connecting to localhost 50005 (attempt 1)

HEARTBEAT: configurations=0 status=INCOMPLETE result=UMNKNOWN
HEARTBEAT: configurations=163 status=INMCOMPLETE result=UNKNOWN
HEARTBEAT: configurations=289 status=IMCOMPLETE result=UMNKNOWN
HEARTBEAT: configurations=405 status=INMCOMPLETE result=UMNKNOWN
HEARTBEAT: configurations=514 status=INMCOMPLETE result=UMNKMNOWN
HEARTBEAT: configurations=621 status=INCOMPLETE result=UNKNOWN
HEARTBEAT: configurations=726 status=INCOMPLETE result=UNKNOWN
HEARTBEAT: configurations=824 status=INCOMPLETE result=UNKNOWN
HEARTBEAT: configurations=819 status=INMCOMPLETE result=UNKNOWN
HEARTBEAT: configurations=1014 status=INCOMPLETE result=UMKMNOWMN
HEARTBEAT: configurations=1109 status=INCOMFPLETE result=UMNKMNOWMN
HEARTBEAT: configurations=1185 status=INCOMPLETE result=UMNKMNOWMN
HEARTBEAT: configurations=1273 status=INCOMPLETE result=UMNKMNOWMN
HEARTBEAT: configurations=1361 status=INCOMPLETE result=UNKMNOWN
HEARTBEAT: configurations=1447 status=INCOMPLETE result=UNKMNOWN
HEARTBEAT: configurations=1533 status=INCOMPLETE result=UNKMNOWN
HEARTBEAT: configurations=1615 status=INCOMPLETE result=UMNKMNOWMN
HEARTBEAT: configurations=1691 status=INCOMPLETE result=UMKMNOWMN
HEARTBEAT: configurations=1768 status=INCOMPLETE result=UMNKMNOWMN
HEARTBEAT: configurations=1807 status=COMPLETE result=SATISFIED
COMPLETED

= % - o =

7.4 Result analysis

7.4.1 Full state space exploration

The full state space exploration does not verify any property, it is only a full exploration
of all the possible configurations of the model. At the end of the exploration the only
valuable information is the number of configurations that have been explored. In the

example below:

PragmaDev Process V1.0

Page 87

User manual

OBP Execution
Running OBP with 1000 ms heartbeat and 10 max messages per flow:

INFO: BFS state-space exploration

INFO: Connecting to localhost 50005 (attempt 1)

HEARTBEAT: configurations=0 status=INCOMPLETE result=UMNKNOWN
HEARTBEAT: configurations=163 status=INMCOMPLETE result=UNKNOWN
HEARTBEAT: configurations=289 status=IMCOMPLETE result=UMNKNOWN
HEARTBEAT: configurations=405 status=INMCOMPLETE result=UMNKNOWN
HEARTBEAT: configurations=514 status=INMCOMPLETE result=UMNKMNOWN
HEARTBEAT: configurations=621 status=INCOMPLETE result=UNKNOWN
HEARTBEAT: configurations=726 status=INCOMPLETE result=UNKNOWN
HEARTBEAT: configurations=824 status=INCOMPLETE result=UNKNOWN
HEARTBEAT: configurations=819 status=INMCOMPLETE result=UNKNOWN
HEARTBEAT: configurations=1014 status=INCOMPLETE result=UMKMNOWMN
HEARTBEAT: configurations=1109 status=INCOMFPLETE result=UMNKMNOWMN
HEARTBEAT: configurations=1185 status=INCOMPLETE result=UMNKMNOWMN
HEARTBEAT: configurations=1273 status=INCOMPLETE result=UMNKMNOWMN
HEARTBEAT: configurations=1361 status=INCOMPLETE result=UNKMNOWN
HEARTBEAT: configurations=1447 status=INCOMPLETE result=UNKMNOWN
HEARTBEAT: configurations=1533 status=INCOMPLETE result=UNKMNOWN
HEARTBEAT: configurations=1615 status=INCOMPLETE result=UMNKMNOWMN
HEARTBEAT: configurations=1691 status=INCOMPLETE result=UMKMNOWMN
HEARTBEAT: configurations=1768 status=INCOMPLETE result=UMNKMNOWMN
HEARTBEAT: configurations=1807 status=COMPLETE result=SATISFIED
COMPLETED

w if - WE e

1807 different configurations have been explored. This has to be compared to the model
complexity to find out if that result is too high or normal. A simple plain sequence is
usually less than a hundred configurations. If it is too high, there is probably a mis-
construct in the model. But if there are messages exchanged in loops in the model the

number of configurations can go way up a thousand.

The Stop button = will stop OBP in the background:

PragmaDev Process V1.0

Page 88

User manual

OBP Execution

Running OBP with 1000 ms heartbeat and 10 max messages per flow:

INFO: Connecting to localhost 50005 (attempt 1)

HEARTBEAT: configurations=0 status=INCOMPLETE result=UMKNOWN
HEARTBEAT: configurations=162 status=INMCOMPLETE result=UNKNOWN
HEARTBEAT: configurations=289 status=INMCOMPLETE result=UNKNOWN
HEARTBEAT: configurations=406 status=IMCOMPLETE result=UMNKNOWN
HEARTBEAT: configurations=516 status=INMCOMPLETE result=UMNKNOWN
HEARTBEAT: configurations=624 status=INMCOMPLETE result=UMNKNOWN
HEARTBEAT: configurations=727 status=INCOMPLETE result=UNKMNOWN
HEARTBEAT: configurations=828 status=INCOMPLETE result=UNKNOWN
HEARTBEAT: configurations=922 status=INCOMPLETE result=UNKNOWN
HEARTBEAT: configurations=1017 status=INCOMPLETE result=UMKMNOWMN
HEARTBEAT: configurations=1115 status=INCOMPLETE result=UMNKMNOWMN
HEARTBEAT: configurations=1210 status=INCOMFPLETE result=UMNKMNOWMN
HEARTBEAT: configurations=1301 status=INCOMPLETE result=UMNKMNOWMN
HEARTBEAT: configurations=1388 status=INCOMPLETE result=UMNKMNOWMN
HEARTBEAT: configurations=1473 status=INCOMPLETE result=UNKMNOWN
HEARTBEAT: configurations=1558 status=INCOMPLETE result=UNKMOWN
HEARTBEAT: configurations=1643 status=INCOMPLETE result=UNKMNOWHN
HEARTBEAT: configurations=1720 status=INCOMPLETE result=UMNKMNOWMN
HEARTBEAT: configurations=1795 status=INCOMPLETE result=UMKMNOWMN
HEARTBEAT: configurations=1807 status=COMPLETE result=S5ATISFIED
COMPLETED

STOPPED

w if e W B

The Quit button - will propose to save the exploration information and then close

the exploration window.

7.4.2 Property verification

At the end of the exploration, the window will indicate if the property has been violated
or not. In the example it has been violated quickly after starting the execution:

PragmaDev Process V1.0

Page 89

User manual

OBP Execution — O X
Running OBP with 1000 ms heartbeat and 10 max messages per flow:

INFO: Loading Buchi language plugin

INFO: Loading Remote language plugin

INFO: LTL model-checking

INFO: Connecting to localhost: 50005 (attempt 1)

HEARTBEAT: configurations=0 status=INCOMPLETE result=UIMNKNOWN
HEARTBEAT: configurations=19 status=COMPLETE result=VIOLATED
COMPLETED

0 M.

Pressing the Record button hd to replay the scenario that violated the property:

PragmaDev Process V1.0 Page 90

User manual

C PragmaDev Process - BPMN Model Diagrams - O X
Model Edit Search View Execution Windows Help
‘I‘Elwlg‘wwﬂﬁm i oLE w|ﬂ‘w-“)w;§;vgywv]
J Pizza |
~
B
,
Eat the
@, pizza
I
o
), g Hungry : Pizza ; - Satisfied
. I |
O, E pizza order! E money ! !
[s] i ! \ '
I ! H '
i ! ' H
' f 60 minutes O Fizza o 1ts way ! H H
I ' ' H H '
4 3 suery for przze: : ' ! ;
*, ; : : : : :
|l e J ' : ' |
— == i |mmmmmmmemnas i | i !
] N]
T n T
ey T + + T
1 H H '
¥ r ! H 1
' ' |
- : |
customer H ' !
L | I L A .
L Order received Where 1s my pizza? : ' :
= A
'] '
'] '
. i 1
A] 1
- ' ' i
o H i \
=l ' ' "
3 |5 Bake the] I 1
> |2 i i I '
5 pizza ! i H
Lo
L
T a: TeCEIpt
Ey
@
- Deliver
E the pizza
a
=
1
a
A
< >
i
B
Execution started...

An execution traced is also generated with all the execution steps:

PragmaDev Process V1.0

Page 91

PRAGMADEV

User manual PR@CESS
(£ MSC Tracer X
Trace View Windows Help
& AR ln
JEB <New 1= o
Customer Clerk
&8 minutes
ask for
pizza
A 4
o Ii‘l‘.lETY_._‘FE-r fizza
N
Y
Calm
| 1 I.
Tracing < >
The problem can then be fully analyzed and the model corrected.
PragmaDev Process V1.0 Page 92

User manual

8 Glossary

| Acronym | Meaning |
BPMN | Business Model Process Notation
MSC Message Sequence Chart
PSC Property Sequence Chart
OBP Observer Based Prover
BFS Breadth First Search
DFS Depth First Search

PragmaDev Process V1.0

Page 93

	Introduction
	Supported BPMN constructs
	Project manager
	Preferences
	File manipulations
	Checking the models

	BPMN editor
	Symbols
	Hierarchy
	Link with MEGA HOPEX
	Editor
	Selection modes
	Select only
	Select or edit

	Re-select last tool
	Handling broken segments
	Modifying symbol types
	Connecting Call activities

	Executor
	Underlying principles
	Controls
	Behavior
	Start
	Sequence flows
	Message flows
	Implicit resolution
	Explicit resolution

	Call activities
	Gateways
	Inclusive
	Exclusive
	Parallel
	Event

	Execution traces
	Recording
	Replay
	Single-trace execution
	Multi-trace execution

	MSC and PSC Editor
	Overview
	MSC & PSC reference guide
	General diagram format
	Links
	Message links
	PSC-specific normal, required and failed message syntax
	Sequence flow
	Lifeline components

	Main symbols
	Lifeline
	Collapsed lifelines
	Inline expressions
	Absolute times
	Comments
	Texts

	MSC editor
	Specific tools
	Symbol creation
	Manipulating components in lifelines
	MSC symbol and link properties
	Message parameters display
	Conformance checking: diagram diff & property match
	Basic MSC diff: trace vs. trace, spec. vs. spec., …
	Spec vs. trace comparison
	Property match

	Verifier
	Architecture
	Properties
	Launch a verification
	Result analysis
	Full state space exploration
	Property verification

	Glossary

