
2.2

September 1st, 2006

Graphical language to specify
and design real time
and embedded software

http://www.sdl-rt.org

SDL-RT standard V2.2
Page 2 Specification & Description Language - Real Time

SDL-RT standard V2.2
Introduction - 7

Architecture - 9
System ..9
Agents...9

Communication - 11
Behavior - 14

Start ..14
State..14
Stop...15
Message input...16
Message output...17

To a queue Id 18
To a process name 18
To the environment 19
Via a channel or a gate 20

Message save..23
Continuous signal...23
Action ...24
Decision..24
Semaphore take ..25
Semaphore give ..26
Timer start ..26
Timer stop ..26
Task creation ..27
Procedure call...27
Connectors..28
Transition option ..28
Comment ..29
Extension..30
Procedure start..31
Procedure return ...31
Text symbol..31
Additional heading symbol ..32
Object creation symbol...32
Super class transition symbol...33
Super class next state symbol...34
Composite state ..34

Composite state definition 34
Composite state usage 35

Symbols ordering ...37

Declarations - 38
Process..38
Procedure declaration...39

SDL-RT defined procedure 39
Specification & Description Language - Real Time Page 3

SDL-RT standard V2.2
C defined procedure 40
Messages .. 40
Timers .. 41
Semaphores .. 41

MSC - 42
Agent instance.. 42
Semaphore representation .. 43
Semaphore manipulations .. 43
Message exchange.. 45
Synchronous calls .. 47
State.. 48
Timers .. 50
Time interval .. 52
Coregion... 54
MSC reference ... 55
Text symbol.. 57
Comment .. 57
Action... 57
High-level MSC (HMSC) .. 58

Data types - 60
Type definitions and headers ... 60
Variables .. 60
C functions ... 60
External functions .. 60

Object orientation - 61
Block class ... 61
Process class... 62

Adding a transition 65
Overload a transition 66
Abstract transition 66
Reference to the super class 68
Example 71

Class diagram... 72
Class 72
Specialisation 75
Association 75
Aggregation 76
Composition 77

Package .. 77
Usage in an agent 78
Usage in a class diagram 78

Deployment diagram - 79
Node ... 79
Component ... 79
Page 4 Specification & Description Language - Real Time

SDL-RT standard V2.2
Connection ...80
Dependency..81
Aggregation..82
Node and components identifiers...82

Symbols contained in diagrams - 83
Textual representation - 84

Example systems - 88
Ping Pong ...88
A global variable manipulation ..92
Access Control System...96

Requirements 96
Analysis 99
Architecture 100
pCentral process 101
getCardNCode procedure 102
pLocal process 103
Display procedure 106
DisplayStar procedure 107
Deployment 108

Differences with classical SDL - 109
Data types...109
Semaphores ..109
Inputs..109
Names...109
Object orientation...109

Memory management - 111
Global variables..111
Message parameters ...111

Keywords - 112

Syntax - 113
Naming convention - 114

Lexical rules - 115

Glossary - 116
Modifications from previous releases - 117

Semaphore manipulation..117
V1.0 to V1.1 117

Object orientation...117
V1.1 to V1.2 117
V1.2 to V2.0 117
V2.1 to V2.2 117

Messages ..117
Specification & Description Language - Real Time Page 5

SDL-RT standard V2.2
V1.1 to V1.2 117
V2.0 to V2.1 117

MSC ... 118
V1.1 to V1.2 118

Task.. 118
V1.2 to V2.0 118

Organisation ... 118
V1.2 to V2.0 118

New concept... 118
V2.1 to V2.2 118

Index - 119
Page 6 Specification & Description Language - Real Time

SDL-RT standard V2.2
1 - Introduction

As its name states, SDL-RT is based on SDL standard from ITU extended with real time concepts.
V2.0 has introduced support of UML from OMG in order to extend SDL-RT usage to static part
of the embedded software and distributed systems.

SDL has been developed in the first place to specify telecommunication protocols but experience
showed some of its basic principles could be used in a wide variety of real time and embedded
systems. Its main benefits are:

• architecture definition,
• graphical finite state machine,
• object orientation.

But SDL was not meant to design real time systems and some major drawbacks prevented it to be
widely used in the industry:

• obsolete data types,
• old fashioned syntax,
• no pointer concept,
• no semaphore concept.

SDL being a graphical language it is obviously not suited for any type of coding. Some parts of
the application still need to be written in C or assembly language. Furthermore legacy code or off
the shelf libraries such as RTOS, protocol stacks, drivers have C APIs. Last but not least there is
no SDL compilers so SDL need to be translated into C code to get down to target. So all SDL ben-
efits are lost when it comes to real coding and integration with real hardware and software.

Considering the above considerations a real time extension to SDL needed to be defined that
would keep the benefits of SDL and solve its weaknesses. The simpler the better ! SDL-RT was
born based on 2 basic principles:

• Replace SDL data types by C,
• Add semaphore support in the behavior diagrams.

UML diagrams have been added to SDL-RT V2.0 to extend SDL-RT application field:
• When it comes to object orientation, UML class diagram brings a perfect graphical rep-

resentation of the classes organisation and relations. Dynamic classes represent SDL
agents and static classes represent C++ classes.

• To handle distributed systems, UML deployment diagram offers a graphical representa-
tion of the physical architecture and how the different nodes communicate with each
other.
Specification & Description Language - Real Time Page 7

SDL-RT standard V2.2
The result, SDL-RT, is a:
• simpler,
• object oriented,
• graphical language,
• combining dynamic and static representations,
• supporting classical real time concepts,
• extended to distributed systems,
• based on standard languages.
Page 8 Specification & Description Language - Real Time

SDL-RT standard V2.2
2 - Architecture

2.1 - System
The overall design is called the system and everything that is outside the system is called the
environment. There is no specific graphical representation for the system but the block represen-
tation can be used if needed.

2.2 - Agents
An agent is an element in the system structure. There are two kinds of agents: blocks and proc-
esses. A system is the outermost block.
A block is a structuring element that does not imply any physical implementation on the target. A
block can be further decomposed in blocks and so on allowing to handle large systems. A block
symbol is a solid rectangle with its name in it:

A simple block example.

When the SDL-RT system is decomposed down to the simplest block, the way the block fulfils its
functionality is described with processes. A lowest level block can be composed of one or several
processes. To avoid having blocks with only one process it is allowed to mix together blocks and
processes at the same level e.g. in the same block.
A process symbol is a rectangle with cut corners with its name in it:

A simple process example.
A process is basically the code that will be executed. It is a finite state machine based task (Cf.
“Behavior” on page 14) and has an implicit message queue to receive messages. It is possible to
have several instances of the same process running independently. The number of instances
present when the system starts and the maximum number of instances are declared between
parenthesis after the name of the process. The full syntax in the process symbol is:
<process name>[(<number of instances at startup>, <maximum number of instances>)]
If omitted default values are 1 for the number of instances at startup and infinite for the maximum
number of instances.

MyBlock

MyProcess
Specification & Description Language - Real Time Page 9

SDL-RT standard V2.2
An example process that has no instance at startup and a maximum of 10 instances.
The overall architecture can be seen as a tree where the leaves are the processes.

When viewing a block, depending on the size of the system, it is more comfortable to only repre-
sent the current block level without the lower agents.

MyProcess(0,10)

MySystem

blockA blockB

blockCprocessA1 processA2(0,10) processB1(1,1)

processC2processC1 processC3

A view of the architecture tree
Page 10 Specification & Description Language - Real Time

SDL-RT standard V2.2
3 - Communication

SDL-RT is event driven, meaning communication is based on message exchanges. A message has
a name and a parameter that is basically a pointer to some data. Messages go through channels
that connect agents and end up in the processes implicit queues.
Channels have names and are represented by a one-way or two-ways arrows. A channel name is
written next to the arrow without any specific delimiter. The list of messages going in a specific
way are listed next to the arrow between brackets and separated by commas. Messages can be
gathered in message lists, to indicate a message list in the list of messages going through a chan-
nel the message list is surrounded by parenthesis. Note the same message can be listed in both
directions.

Channels end points can be connected to: the environment, another channel or a process. Graphi-
cally a channel can be connected to a block but it is actually connected to another channel inside
the block. To represent the outside channels connected to the block at the upper architecture level,
a block view is surrounded by a frame representing the edge of the block. The upper level chan-
nels connected to the block are then represented outside the frame and channels inside the block
can be connected to these upper level channels. Note a channel can be connected to several chan-
nels. In any case consistency is kept between levels e.g. all messages in a channel are listed in the
upper or lower level channels connected to it.

[message1,
(messageList1),
message2]

channelName

channelName

[message1,
message2,
(messageList1)]

[message4,
message5,
message2]

aOneWayChannel example:

aTwoWayChannel example:
Specification & Description Language - Real Time Page 11

SDL-RT standard V2.2
Example:
Let us consider an SDL-RT system made of two blocks: blockA and blockB.

The channels chEnvA and chEnvB are connected to the surrounding frame of the system mySys-
tem. They define communication with the environment, e.g. the interface of the system. chEnvA
and chAB are connected to blockA and define the messages coming in or going out of the block.

The inner view of block blockA shows it is made of the blocks blockC and blockD and of the pro-
cess processE. chEnvAC is connected to the upper level channel chEnvA and chABD is connected

blockA blockB

mySystem

chEnvB

chABchEnvA

[message1,
message2,
message3]

[message4] [message5,
message6]

[message7]

[message8,
message9]

An example system view

blockC blockD

blockA

chAB

chEnvA

chABD

chCDchEnvAC

[message1,
message2,
message3]

[message4,
message10,
message11]

[message5,
message12,
message13]

[message4]

[message5,
message6]

[message14]

An inner block view

processE
chCE
Page 12 Specification & Description Language - Real Time

SDL-RT standard V2.2
to the upper channel chAB. The flow of messages is consistent between levels since for example
the messages coming in block blockA through chEnvA (message1, message2, message3) are also
listed in chEnvAC.
Specification & Description Language - Real Time Page 13

SDL-RT standard V2.2
4 - Behavior

First of all a process has an implicit message queue to receive the messages listed in the channels.
A process description is based on an extended finite state machine. A process state determines
which behavior the process will have when receiving a specific stimulation. A transition is the
code between two states. The process can be hanging on its message queue or a semaphore or run-
ning e.g. executing code.
SDL-RT processes run concurrently; depending on the underlying RTOS and sometimes on the
target hardware the behavior might be slightly different. But messages and semaphores are there
to handle process synchronization so the final behavior should be independent of the RTOS and of
the hardware. Since SDL-RT is open to any C code it is up to the designer to make sure this state-
ment stays true !
Note that in a state diagram the previous statement is always connected to the symbol upper frame
and the next statement is connected to the lower frame or on the side.

4.1 - Start
The start symbol represent the starting point for the execution of the process:

Start symbol

The transition between the Start symbol and the first state of the process is called the start transi-
tion. This transition is the first thing the process will do when started. During this initialization
phase the process can not receive messages. All other symbols are allowed.

4.2 - State
The name of the process state is written in the state symbol:

State symbol
The state symbol means the process is waiting for some input to go on, the allowed symbols to
follow a state symbol are:

• message input
the message could be coming from an external channel, or it could be a timer message
started by the process itself.

• continuous signal

<state name>
Page 14 Specification & Description Language - Real Time

SDL-RT standard V2.2
when reaching a state with continuous signals, the expressions in the continuous signals
are evaluated following the defined priorities. All continuous signal expressions are eval-
uated before the message input !

• save
the incoming message can not be treated in the current process state. It is saved until the
process state changes. When the process state has changed the saved messages are
treated first (before any other messages in the queue but after continuous signals).

Some transitions can be valid for several states, the different state names are then listed separated
by a comma. A star (’*’) means all states.
Examples:

A process in a specific state can receive several types of messages or treat several continuous sig-
nals. To represent such a situation it is possible to have several message inputs connected to the
state or to split the state in several symbols with the same name.
Examples:

4.3 - Stop
A process can terminate itself with the stop symbol.

In state idle msg1 can be
received and msg2 is saved.

Message msg1 can
be received in any

state

In states idle and
maintenance the
expression a>0 is
first evaluated.

msg1 msg1

*

a > 0

idle,
maintenanceidle

msg2

Two ways of writing in state idle,
 sig1 or sig2 can be received.

sig1 sig2 sig1 sig1

idle idle idle
Specification & Description Language - Real Time Page 15

SDL-RT standard V2.2
Stop symbol

Note a process can not kill another process, it can only kill itself.
There is no syntax for that symbol.

4.4 - Message input
The message input symbol represent the type of message that is expected in an SDL-RT state. It
always follows an SDL-RT state symbol and if received the symbols following the input are exe-
cuted.

Message input symbol

An input has a name and can come with parameters. To receive the parameters it is necessary to
declare the variables that will be assigned to the parameters values in accordance with the mes-
sage definition.
The syntax in the message input symbol is the following:
<Message name> [(<parameter name> {, <parameter name>}*)]
<parameter name> is a variable that needs to be declared.

If the parameter type is undeclared it is still possible to transmit unstructured data with the param-
eter length and a pointer on the data.
If the parameter length is unknown, because the parameters are unstructured data, it is also possi-
ble to get the parameter length assigned to a pre-declared variable.

Message with undeclared parameters

The syntax in the message input symbol is the following:
<Message name> [(<data length>, <pointer on data>)]

<data length> is a variable that needs to be declared as a long.
<pointer on data> is a variable that needs to be declared as an unsigned char *.

<Message name>
[(<parameter
{,<parameter>}*)]

<Message name>
[(<data length>,
<pointer on data>)]
Page 16 Specification & Description Language - Real Time

SDL-RT standard V2.2
Examples:

4.5 - Message output
A message output is used to exchange information. It puts data in the receiver’s message queue in
an asynchronous way.

Message output symbol
When a message has parameters, user defined local variables are used to assign the parameters.
General syntax in the output symbol is:
<message name>[(<parameter value> {,<parameter value>}*)] TO_XXX...

If the parameter is undefined the length of data and a pointer on the data can be provided. In that
case, the symbol syntax is:
<message name>[(<data length>, <pointer on data>)] TO_XXX...

The syntax in the message output symbol can be written in several ways depending if the queue Id
or the name of the receiver is known or not. A message can be sent to a queue Id or to a process
name or via a channel or a gate. When communicating with the environment, a special syntax is
provided.

ConReq
(pData,
myInt,
myChar)

ConConf
DisReq
(myDataLength,
pData)

MESSAGE
ConReq(myStruct *, int, char),
ConConf,
DisReq;

myStruct *pData;
int myInt;
char myChar;
long myDataLength;
unsigned char *myData;
Specification & Description Language - Real Time Page 17

SDL-RT standard V2.2
4.5.1 To a queue Id

Message output to a queue id

The symbol syntax is:
<message name>[(<parameter value> {,<parameter value>}*)] TO_ID <receiver
queue id>
It can take the value given by the SDL-RT keywords:
PARENT The queue id of the parent process.
SELF The queue id of the current process.
OFFSPRING The queue id of the last created process if any or NULL if none.
SENDER The queue id of the sender of the last received message.

Examples:

4.5.2 To a process name

Message output to a process name

The syntax is:

<Message name>
[(<parameter value>
{,<parameter value>)}*]
TO_ID
<receiver queue id>

ConReq
(myStruct, myInt)
TO_ID PARENT

ConConf TO_ID
aCalculatedReceiver

MESSAGE
ConReq(aStruct *, int),
ConConf,
DisReq;

aStruct *myStruct;
int myInt;
long myDataLength;
unsigned char *pData;

DisReq
(myDataLength,
pData) TO_ID

DisReq parameter is
undefined. Length of

data and pointer on data
are given.

There is no parameter
associated with the
message ConConf.

ConReq take 2 parame-
ters. A pointer on

aStruct and an int.

<Message name>
[(<parameter value>
{,<parameter value>)}*]
TO_NAME
<receiver name>
Page 18 Specification & Description Language - Real Time

SDL-RT standard V2.2
<message name>[(<parameter value> {,<parameter value>}*)] TO_NAME <receiver
name>
<receiver name> is the name of a process if unique or it can be ENV when simulating and the
message is sent out of the SDL system.

Examples:

Note:
If several instances have the same process name (several instances of the same process for exam-
ple), the ’TO_NAME’ will send the message to the first created process with the corresponding
name. Therefore this method should no be used when the process name is not unique within the
system.

4.5.3 To the environment

Message output to environment

The symbol syntax is:
<message name>[(<parameter value> {,<parameter value>}*)] TO_ENV [<C macro
name>]
<C macro name> is the name of the macro that will be called when this SDL output symbol is hit.
The macro will take 3 parameters:

• name of message,
• length of a C struct that contains all parameters,
• pointer on the C struct containing all parameters.

The fields of the implicit C struct will have the same type as the types defined for the message.

If no macro is declared the message will be sent to the environment.

ConReq
(myStruct, myInt)
TO_NAME ENV

ConConf
TO_NAME
receiverProcess

<Message name>
[(<parameter value>
{,<parameter value>)}*]
TO_ENV
<C macro name>
Specification & Description Language - Real Time Page 19

SDL-RT standard V2.2
Example:

Note:
The implicit C struct memory space is implictly allocated and it is the C macro responsability to
ensure it will be freed at some point.

4.5.4 Via a channel or a gate
A message can be sent via a channel in the case of a process or via a gate in the case of a process
class.

Message output via a channel or a gate

The symbol syntax is:
<message name>[(<parameter value> {,<parameter value>}*)] VIA <channel or gate
name>
<channel or gate name> is the name of the channel or gate the message will go through.
This concept is especially usefull when using object orientation since classes are not supposed to
know their environment; so messages are sent via the gates that will be connected to the surroud-
ing environment when instanciated.

ConReq
(myStruct, myInt,
myChar) TO_ENV

ConReq
(myStruct, myInt,
myChar) TO_ENV
MESSAGE_TO_HDLC

In this second example the generated code will be:
MESSAGE_TO_HDLC(ConReq,implicitC-
StructLength,implicitCStructPointer)
The implicit C struct will have the following definition:
typedef struct implicitCStruct {

aStruct*param1,
int param2;
char param3;
} implicitCStruct;

That allows to re-use the same macro with different types of

MESSAGE
ConReq(aStruct *, int, char);

<Message name>
[(<parameter value>
{,<parameter value>)}*]
VIA
<channel or gate name>
Page 20 Specification & Description Language - Real Time

SDL-RT standard V2.2
Examples:

With the architecture defined above, both outputs are equivalent.

mySystem

chEnvB

chABchEnvA

[message1] [message2] [message3]

[message4]

[message2]

processBprocessA

message2
VIA
chAB

message2
TO_NAME
processA
Specification & Description Language - Real Time Page 21

SDL-RT standard V2.2
aProcess:myClass

gate1

myProcess

gate2

upperLevelChannel
[msg1]

[msg2]

msg1

myClass

myGate1

stable

idle

[msg1]

msg2
VIA
myGate2

cInternal

cUpperLevel

[msg2]

myGate2

aProcess sends msg2 to myProcess without knowing its name nor its PID
Page 22 Specification & Description Language - Real Time

SDL-RT standard V2.2
4.6 - Message save
A process may have intermediate states that can not deal with new request until the on-going job
is done. These new requests should not be lost but kept until the process reaches a stable state.
Save concept has been made for that matter, it basically holds the message until it can be treated.

Save symbol

The Save symbol is followed by no symbol. When the process changes to a new state the saved
messages will be the first to be treated (after continuous signals if any).
The symbol syntax is:
<message name>
Even if the message has parameters.

Example:

4.7 - Continuous signal
A continuous signal is an expression that is evaluated right after a process reaches a new state. It
is evaluated before any message input or saved messages.

Continuous signal symbol
The continuous signal expression to evaluate can contain any standard C expression that returns a
C true/false expression. Since an SDL state can contain several continuous signal a priority level

<Message name>

msg1 msg2 msg3 msg3 msg1

Let’s consider the above pro-
cess in state inter to receive
the following messages:

msg3, msg2, msg1. msg3 will
be saved, msg2 will make the
process go to state stable.

Since msg3 has been saved it
will first be treated and
finally msg1.

inter stable

inter stable stable stable

<condition
expression>
Specification & Description Language - Real Time Page 23

SDL-RT standard V2.2
needs to be defined with the PRIO keyword. Lower values correspond to higher priorities. A con-
tinuous signal symbol can be followed by any other symbol except another continuous signal or a
message input. The syntax is:
<C condition expression>
PRIO <priority level>

Example:

4.8 - Action
An action symbol contains a set of instructions in C code. The syntax is the one of C language.

Example:

4.9 - Decision
A decision symbol can be seen as a C switch / case.

Decision symbols

a > 5
PRIO 2

 (b<10) || (c!=0)
PRIO 1

msg1

In the above example, when the process gets
in state idle it will first evaluate expression
(b<10) || (c!=0). If the expression is not true or
if the process stayed in the same state it will

evaluate expression a > 5. If the expression is
not true or if the process stayed in the same
state it will execute msg1 transition.

...

idle

/* Say hi to your friend */
printf("Hello world !\n");
for (i=0;i<MAX;i++)

{
newString[i] = oldString[i];
}

or
Page 24 Specification & Description Language - Real Time

SDL-RT standard V2.2
Since it is graphical and therefore uses quite some space on the diagram it is recommended to use
it when its result modifies the resulting process state. The decision symbol is a diamond with
branches. Since a diamond is one of the worst shape to put text in it, it can be a "diamonded" rect-
angle. Each branch can be seen as a case of the switch.
The expression to evaluate in the symbol can contain:

• any standard C expression that returns a C true/false expression,
• an expression that will be evaluated against the values in the decision branches.

The values of the branches have keyword expressions such as:
• >, <, >=, <=, !=, ==
• true, false, else

The else branch contains the default branch if no other branch made it.

Examples:

4.10 - Semaphore take
The Semaphore take symbol is used when the process attempts to take a semaphore.

Semaphore take symbol

To take a semaphore, the syntax in the ‘semaphore take SDL-RT graphical symbol’ is:
[<status> =] <semaphore name>(<timeout option>)
where <timeout option> is:

• FOREVER
Hangs on the semaphore forever if not available.

• NO_WAIT
Does not hang on the semaphore at all if not available.

aValue
==

bValue

true false else

myValue

< 2== 2 else

...

...

[<status> =]
<semaphore name>

(<timeout option>)
Specification & Description Language - Real Time Page 25

SDL-RT standard V2.2
• <number of ticks to wait for>
Hangs on the semaphore the specified number of ticks if not available.

and <status> is:
• OK

If the semaphore has been successfully taken
• ERROR

If the semaphore was not found or if the take attempt timed out.

4.11 - Semaphore give

Semaphore give symbol

To give a semaphore, the syntax in the ‘semaphore give SDL-RT graphical symbol’ is:
<semaphore name>

4.12 - Timer start

Timer start symbol
To start a timer the syntax in the ‘start timer SDL-RT graphical symbol’ is :
<timer name>(<time value in tick counts>)
<time value in tick counts> is usually an ‘int’ but is RTOS and target dependant.

4.13 - Timer stop

Timer stop symbol

To cancel a timer the syntax in the ‘cancel timer SDL-RT graphical symbol’ is :
<timer name>

<semaphore name>

<timer name>
(<time out value
in tick counts>)

<timer name>
Page 26 Specification & Description Language - Real Time

SDL-RT standard V2.2
4.14 - Task creation

Task creation symbol
To create a process the syntax in the create process symbol is:
<process name>[:<process class>] [PRIO <priority>]
to create one instance of <process class> named <process name> with priority <priority>.

Examples:

4.15 - Procedure call

Procedure call symbol

The procedure call symbol is used to call an SDL-RT procedure (Cf. “Procedure declaration” on
page 39). Since it is possible to call any C function in an SDL-RT action symbol it is important to
note SDL-RT procedures are different because they know the calling process context, e.g. SDL-
RT keywords such as SENDER, OFFSPRING, PARENT are the ones of the calling process.
The syntax in the procedure call SDL graphical symbol is the standard C syntax:
[<return variable> =] <procedure name>({<parameters>}*);

Examples:

<process name>
[:<process class>]
[PRIO <priority>]

myProcess
anotherProcess:
aClassOfProcess myProcess

PRIO 80

[<return variable> =]
<procedure name>
({<parameters>}*);

myResult =
myProcedure

(myParameter);
anotherProcedure();
Specification & Description Language - Real Time Page 27

SDL-RT standard V2.2
4.16 - Connectors

Connectors are used to:
• split a transition into several pieces so that the diagram stays legible and printable,
• to gather different branches to a same point.

A connector-out symbol has a name that relates to a connector-in. The flow of execution goes
from the connector out to the connector in symbol.
A connector contains a name that has to be unique in the process. The syntax is:
<connector name>

Examples:

4.17 - Transition option
Transition options are similar to C #ifdef.

Transition option symbol

The branches of the symbol have values true or false. The true branch is defined when the
expression is defined so the equivalent C code is:

Connector out Connector in

<connector name> <connector name>

printf("Hello ");

printf("world !\n");
myLabel

myLabel
Page 28 Specification & Description Language - Real Time

SDL-RT standard V2.2
#ifdef <expression>
The branches can stay separated to the end of the transition or they can meet again and close the
option as would do an #endif.

Examples:

4.18 - Comment
The comment symbol allows to write any type of informal text and connect it to the desired sym-
bol. If needed the comment symbol can be left unconnected.

a = 2;
b = 3;

a = 2;
b = 3;

myLogFunction(a,b);

DEBUG

true false

a = 4;
b = 4;
c = 10;

a = 2;
b = 3;
c = 4;

EXTEND

true false

idle maintenance
Specification & Description Language - Real Time Page 29

SDL-RT standard V2.2
Comment symbol

Example:

4.19 - Extension
The extension symbol is used to complete an expression in a symbol. The expression in the exten-
sion symbol is considered part of the expression in the connected symbol. Therefore the syntax is
the one of the connected symbol.

Extension symbol

Free text to
comment a con-
nected symbol.

msg1

...

msg1 indicates
the system is

ready.

idle

<connected
symbol
syntax>
Page 30 Specification & Description Language - Real Time

SDL-RT standard V2.2
Example:

4.20 - Procedure start
This symbol is specific to a procedure diagram. It indicates the procedure entry point.

Procedure start symbol
There is no syntax associated with this symbol.

4.21 - Procedure return
This symbol is specific to a procedure diagram. It indicates the end of the procedure.

Procedure return symbol

This symbol is specific to a procedure diagram. It indicates the end of the procedure. If the proce-
dure has a return value it should be placed by the symbol.

4.22 - Text symbol
This symbol is used to declare C types variables.

ConReq
(myDataLength, myData)
TO_ENV
MESSAGE_TO_HDLC

ConReq
(myDataLength,
myData)
TO_ENV
MESSAGE_TO_HDLC

is equivalent to:

[<return value>]
Specification & Description Language - Real Time Page 31

SDL-RT standard V2.2
Text symbol

The syntax is C language syntax.

4.23 - Additional heading symbol
This symbol is used to declare SDL-RT specific headings.

Additional heading symbol

It has a specific syntax depending in which diagram it is used.
• Block heading

Allows to declare messages and messages lists:
MESSAGE <message name> [(<param type>)] {,<msg name> [(<param type>)]};
MESSAGE_LIST <message list name> = <message name> {,<message name>}*;

• Process class heading
Allows to specify the superclass to inherit from:
INHERITS <superclass name>;

• System, Block, Block class heading
Allows to specify the package to use:
USE <package name>;

• Process or Process class heading
Allows to define the stack size:
STACK <stack size value>;

4.24 - Object creation symbol

This is equivalent to creating an instance of class <class name> named <object name>.
This symbol can be used by tools to check consistency between the dynamic SDL view and the
static UML view.

<any C language instructions >

<SDL-RT contextual declaration >

<object name>:<class name>({<parameter>}*)
Page 32 Specification & Description Language - Real Time

SDL-RT standard V2.2
Examples:

4.25 - Super class transition symbol
This symbol is used to call the corresponding super class transition. It can be used anywhere in the
transition between the “Message input” symbol and the next “State” symbol. The sub class transi-
tion signature must be exactly the same as the super class transition signature including the variale
names. More explanations in “Object orientation” on page 61.

myObject:MyClass(12,"foo");

myObject = new MyClass(12, "foo");

MyClass

foo 1

myProcess

foo:MyClass(...)

myProcess start
transition

The relation described in the class diagram implies the instance of MyClass
named after role name foo must be created in the start transition.
Specification & Description Language - Real Time Page 33

SDL-RT standard V2.2
4.26 - Super class next state symbol
This symbol is used to set the next state to the one of the super class. It replaces the standard
“State” symbol at the end of a transition. More explanations in “Object orientation” on page 61.

4.27 - Composite state

4.27.1 Composite state definition
A composite state is a state composed of sub finite state machines. Each sub-fsm handles a differ-
ent subset of messages. The super-fsm also handles its own inputs. When a message is for one of
the sub-fsm the super-state does not change. But when a message is for the super-fsm all sub-fsm
are terminated.

The Sub-fsm definition symbols are connected to channels. Each message is routed to a specific
sub-fsm, the same message can not be received by two different sub-fsm.
The definition is done as described below:

<composite state

<sub fsm name>

name> Composite state definition symbol

Sub fsm definition symbol
Page 34 Specification & Description Language - Real Time

SDL-RT standard V2.2
This mecanism is currently known as "state hierarchy" in UML or "services" in SDL.

4.27.2 Composite state usage
A dashed state symbol is used to indicate the fsm is getting into a composite state.

MyCompState

ASubFsm

AnotherSubFsm

[messages]

[messages]

[messages]

msgA

state2

state1

[msgB]

[msgA]

msgB

state2

state1
Specification & Description Language - Real Time Page 35

SDL-RT standard V2.2
When in the composite state MyCompState, messages are routed toward the corresponding sub-
fsm. When receiving the MyMessage message, the sub-fsm are terminated and the super fsm tran-
sition is executed. If the same message can be received by the super fsm and by one of the sub
fsm, the super fsm transition has priority.

MyCompState

idle

MyMessage

...MyCompState
Page 36 Specification & Description Language - Real Time

SDL-RT standard V2.2
4.28 - Symbols ordering
The following table shows which symbols can be connected to a specific symbol.

The table above should be read row by row. The symbol in the left column can be followed by the
ticked symbols on its row. For example the stop symbol can not be followed by any other symbol.
The state symbol can be followed by input, save, or continuous signal symbols.

The symbol in
this column can
be followed by
the ticked sym-
bols in its row.

st
ar

t
st

at
e

st
op

in

pu
t

ou
tp

ut
sa

ve
co

nt
in

uo
us

 si
gn

al
ac

tio
n

de
ci

si
on

se
m

ap
ho

re
 ta

ke
se

m
ap

ho
re

 g
iv

e
tim

er
 st

ar
t

tim
er

 st
op

ta
sk

 c
re

at
io

n
pr

oc
ed

ur
e

ca
ll

co
nn

ec
to

r i
n

co
nn

ec
to

r o
ut

tra
ns

iti
on

 o
pt

io
n

pr
oc

ed
ur

e
st

ar
t

pr
oc

ed
ur

e
re

tu
rn

ob
je

ct
 c

re
at

io
n

su
pe

r c
la

ss
 tr

an
si

tio
n

su
pe

r c
la

ss
 n

ex
t s

ta
te

start - x x - x - - x x x x x - x x x x x - - x x x
state - - - x - x x - - - - - - - - - - - - - - - -
stop -
input - x x - x - - x x x x x x x x x x x - x x x x
output - x x - x - - x x x x x x x x x x x - x x x x
save -
continuous - x x - x - - x x x x x x x x x x x - x x - -
action - x x - x - - x x x x x x x x x x x - x x x x
semaphore take - x x - x - - x x x x x x x x x x x - x x x x
semaphore give - x x - x - - x x x x x x x x x x x - x x x x
timer start - x x - x - - x x x x x x x x x x x - x x x x
timer stop - x x - x - - x x x x x x x x x x x - x x x x
task creation - x x - x - - x x x x x x x x x x x - x x x x
procedure call - x x - x - - x x x x x x x x x x x - x x x x
connector out -
connector in - x x - x - - x x x x x x x x - - x - x x x x
transition option - x x - x - - x x x x x x x x - x x - x x x x
procedure start - x x - x - - x x x x x x x x - x x - x x x x
procedure return -
super class
transition

- x x - x - - x x x x x x x x x - x - x x - x

super class
next state

- -
Specification & Description Language - Real Time Page 37

SDL-RT standard V2.2
5 - Declarations

5.1 - Process
A process is implicitly declared in the architecture of the system (Cf. “Architecture” on page 9)
since the communication channels need to be connected.

Process symbol
A process has an initial number of instances at startup and a maximum number of instances. A
process can also be an instance of a process class (Cf. “Object orientation” on page 61), in that
case the name of the class follows the name of the instance after a colon.
The general syntax is:
<process instance name>[:<process class>][(<initial number of instances>, <maximum
number of instances>)] [PRIO <priority>]
The priority is the one of the target RTOS.
Please note the stack size can be defined in the process or process class additional heading symbol
as described in paragraph “Additional heading symbol” on page 32.

When a process is an instance of a process class the gates of the process class need to be con-
nected in the architecture diagram. The names of the gates appear in the process symbol with a
black circle representing the connection point.

Process class instance
The messages defined in the package going through the gates must be consistent with the mes-
sages listed in the architecture diagram where the process instance is defined.

aProcess

<process name>:
<process class name>

<gate name>
Page 38 Specification & Description Language - Real Time

SDL-RT standard V2.2
Example:

5.2 - Procedure declaration
An SDL-RT procedure can be defined in any diagram: system, block, or process. It is usually not
connected to the architecture but since it can output messages a channel can be connected to it for
informational purpose.

Procedure declaration symbol
The declaration syntax is the same as a C function. A procedure definition can be done graphi-
cally with SDL-RT or textually in a standard C file.

5.2.1 SDL-RT defined procedure
If defined with SDL-RT the calling process context is implicitly given to the procedure. So if a
message output is done, the message will be output from the process calling the procedure. That is
why the message should be defined in one of the channels connected to the process instead of a
channel connected to a procedure. To call such a procedure the procedure call symbol should be
used.

aProcess:aProcessClass

gate1

myProcess

gate2

upperLevelChannel
[sigIn1][sigOut1]

[sig2]

[sig3]

<return type>
<function name>

({<parameter type>
<parameter name>}*);
Specification & Description Language - Real Time Page 39

SDL-RT standard V2.2
5.2.2 C defined procedure
If defined in C language the process context is not present. To call such a procedure a standard C
statement should be used in a action symbol.

Example:

5.3 - Messages
Messages are declared at any architecture level in the additional heading symbol. A message dec-
laration may include one or several parameters. The parameters data types are declared in C. The
syntax is:
MESSAGE <message name> [(<parameter type> {,parameter type}*)] {,<message
name> [(<parameter type>)]}*;

It is also possible to declare message lists to make the architecture view more synthetic. Such a
declaration can be made at any architecture level in the additional heading symbol. The syntax is:
MESSAGE_LIST <message list name> = <message name> {, <message name>}*{, (<mes-
sage list name>)}*;
The message parameters are not present when defining a message list. A message list can contain
a message list, in that case the included message list name is surrounded by parenthesis.

bProcess

aProcess

upperLevelChannel
[sigIn1][sigOut1]

[sig2]

[sig3]

int
calculateCRC

(int dataLength,
char *pData);
Page 40 Specification & Description Language - Real Time

SDL-RT standard V2.2
Example:

5.4 - Timers
There is no need to declare timers. They are self declared when used in a diagram.

5.5 - Semaphores
Semaphores can be declared at any architecture level. Since each RTOS has its own type of sema-
phores with specific options there will be no detailed description of the syntax. The general syntax
in the declaration symbol is:

Semaphore declaration
It is important to note the semaphore is identified by its name.

MESSAGE
msg1(myStruct *, int, char),
msg2(void),
msg3(void *, short),
msg4(int *),
msg5;

MESSAGE_LIST
myMessageList = msg1, msg2;

MESSAGE_LIST
anotherMessageList = (myMessageList), msg3;

<semaphore type>
<semaphore name>({<list of options>[,]}*);
Specification & Description Language - Real Time Page 41

SDL-RT standard V2.2
6 - MSC

SDL-RT integrates the Message Sequence Chart dynamic view. On such a diagram, time flows
from top to bottom. Lifelines represent SDL-RT agents or semaphores and key SDL-RT events
are represented. The diagram put up front the sequence in which the events occur.
In the case of embedded C++ it is possible to use a lifeline to represent an object. In that case the
type is object and the name should be <object name>:<class name>

6.1 - Agent instance
An agent instance starts with an agent instance head followed by an instance axis and ends with
an instance tail or an instance stop as shown in the diagrams below.

The type of the agent can be specified on top of the head symbol and the name of the agent is writ-
ten in the instance head symbol. The instance tail symbol means the agent lives after the diagram.
The instance stop symbol means the agent no longer exist after the symbol.
When an agent creates another agent a dashed arrow goes from the parent agent to the child agent.

<name>

Lifeline with an instance
tail symbol

Lifeline with an instance
stop symbol

[<type>]
<name>
[<type>]
Page 42 Specification & Description Language - Real Time

SDL-RT standard V2.2
Example:

6.2 - Semaphore representation
A semaphore representation is made of a semaphore head, a lifeline, and a semaphore end or tail.
The symbols are the same as for a process except for the head of the semaphore.

6.3 - Semaphore manipulations
Several cases are to be considered with semaphore manipulations. A process makes an attempt to
take a semaphore, its attempt can be successful or unsuccessful, if successful the semaphore
might still be available (counting semaphore) or become unavailable. During the time the sema-
phore is unavailable, its lifeline gets thicker until it is released.

pParent

Process pParent creates process pOffspring

process

pOffspring
process

<name>

Semaphore with an
instance tail symbol

Semaphore with an
instance stop symbol

[semaphore]

<name>

[semaphore]
Specification & Description Language - Real Time Page 43

SDL-RT standard V2.2
The manipulation symbols are the following:

Semaphore creation from a known
process.

<sem name> <sem name>

take

give

take

Semaphore creation from an
unknown process.

Semaphore take attempt. Semaphore take attempt on a
locked semaphore.

Semaphore take successfull but
semaphore is still available.

Semaphore give. The semaphore
was available before the give.

Semaphore is killed by a known
process.

Semaphore is killed by an
unknown process.

succeeded

Semaphore take successfull and the
semaphore is not available any

more.

succeeded

give

Semaphore give. The semaphore
was unavailable before the give.

Semaphore take timed out.

timed out

Semaphore continues.
Page 44 Specification & Description Language - Real Time

SDL-RT standard V2.2
Example:

6.4 - Message exchange
A message symbol is a simple arrow with its name and optional parameters next to it. The arrow
can be horizontal meaning the message arrived instantly to the receiver or the arrow can go down
to show the message arrived after a certain time or after another event. A message can not go up !
When the sender and the receiver are represented on the diagram the arrow is connected to their
instances. If the sender is missing it is replaced by a white circle, if the receiver is missing it is
replaced by a black circle.The name of the sender or the receiver can optionally be written next to
the circle.

myProc1

Process myProc1 first creates semaphore mySem, then takes it successfully.
Process myProc2 makes an attempt to take semaphore mySem but gets

blocked on it. Process myProc1 releases the semaphore so myProc2 suc-
cessfully gets the semaphore. Process myProc2 gives it back, and kills it.

mySem

take

give

myProc2

take

give

succeeded

succeeded
Specification & Description Language - Real Time Page 45

SDL-RT standard V2.2
A message is considered received by an agent when it is read from the agent’s message queue; not
when it arrives in the message queue !

sender

An external agent called keypad sends run message to process sender.
Process sender sends initMsg that is considered to be received immedi-

atly to block receiver. Block receiver replies readyMsg, process sender
sends startMsg, and block receiver sends run to an external agent.

process
receiver

block

initMsg
(12,"Hello world\n")

startMsg

readyMsg

run

runkeypad

engine
Page 46 Specification & Description Language - Real Time

SDL-RT standard V2.2
6.5 - Synchronous calls
This representation is used when using embedded C++ to show method calls on an object. Object
can be represented by lifelines. Synchronous calls are shown with an arrow to the instance repre-
senting the object. While the object has the focus its lifeline becomes a black rectangle and the
agent lifeline becomes a white rectangle. That means the execution flow has been transferred to
the object. When the method returns a dashed arrow return to the method caller.

msg1

msg1 is received from an unknown
sender

msg1

msg1 is saved and is still in the
save queue

msg1

msg1 is sent to an unknown
receiver

msg1

 saved msg1 is now consumed

msg1

a b

msg1 is sent from instance a to
instance b

msg1
Specification & Description Language - Real Time Page 47

SDL-RT standard V2.2
6.6 - State
A lifeline represents a process and depending on its internal state a process reacts differently to
the same message. It is interesting to represent a process state on its lifeline. It is also interesting
to represent a global state for information. In that case the state symbol covers the concerned
instances. In both cases the same symbol is used.

State symbol

keyboard

Process keyboard calls method set_URL from myPhoneBook object that is
an instance of PhoneBook class.

process
myPhoneBook:PhoneBook

object

set_URL
("http://www.sdl-rt.org")

<state>
Page 48 Specification & Description Language - Real Time

SDL-RT standard V2.2
Example:

caller

Process server goes to idle state. Process caller in its start transition
sends a conReq to server and goes to state idle. Process server returns

an conConf message and goes to connected state. When conConf message
is received by process caller it also moves to connected state.

process

idle

idle

server
process

connectedconnected

conReq

conConf
Specification & Description Language - Real Time Page 49

SDL-RT standard V2.2
6.7 - Timers
Two symbols are available for each timer action depending if the beginning and the end of the
timer are connected or not. The timer name is by the cross and timeout value is optional. When
specified the timeout value unit is not specified; it is usually RTOS tick counts.

Timer start connected

Timer start unconnected

Timer stop unconnected

Timer stop connected

Timeout unconnected

Timeout connected

<timer name>
[(<timer time>)]

<timer name>
[(<timer time>)]

<timer name>
[(<timer time>)]

<timer name>
[(<timer time>)]

<timer name>
[(<timer time>)]

<timer name>
[(<timer time>)]

Timer restart connected

<timer name>
[(<timer time>)]
Page 50 Specification & Description Language - Real Time

SDL-RT standard V2.2
Examples:

caller

Process caller tries to initiate connection with conReq message. At the
same time it starts timer tConReq so that if no answer is received it will

retry connecting. If an answer is received the timer is cancelled and process
caller goes to state connected.

process

idle

idle

server
process

connectedconnected

conReq

tConReq
(100)

conConf

tConReq
Specification & Description Language - Real Time Page 51

SDL-RT standard V2.2
6.8 - Time interval
To specify a time interval between two events the following symbol is used.

Time constraint syntax is the following:
• absolute time is expressed with an @ up front the time value,

caller

Process caller tries to initiate connection with conReq message. Since it
receives no answer after two tries it gives up and goes to unconnected state.

process

connecting

idle

server
process

idleunconnected

conReq

tConReq
(100)

conReq

connecting

tConReq
(100)

<time constraint>
Page 52 Specification & Description Language - Real Time

SDL-RT standard V2.2
• relative time is expressed with nothing up front its value,
• time interval is expressed between square brackets,
• time unit is RTOS specific -usually tick counts- unless specified (s, ms, µs).

Note it is possible to use time constraint on a single MSC reference.

Absolute time can also be specified with the following symbol:

Examples:

Table 1: Examples of time constraint expressions

Expression Meaning

1.3ms takes 1.3 ms to do

[1,3] takes a minimum of 1 to a maximum of 3 time units

@[12.4s,14.7s] should not occur before absolute time 12.4 s and should not finish after
absolute time 14.7 s.

<5 takes less than 5 time units

<absolute time value>

client

Process server reaches state idle at absolute time 34 Sec.
Process client request process server to compute some work in less than

0x02FF time units.

process

waiting

idle

server
process

workReq

workResp

[0,0x02FF]

@34S
Specification & Description Language - Real Time Page 53

SDL-RT standard V2.2
6.9 - Coregion
Coregion is used whenever the sequence of events does not matter. Events in a coregion can hap-
pen in any order. The coregion symbol replaces the lifeline instance.

Example:

caller
process

server
process

Connecting[0,200mS]

Connecting MSC should take less than 200mS.

Coregion symbol

controller

Process controller
sends stopEngine and displayInfo or
sends displayInfo and stopEngine.

process

stopEngine

displayInfo
Page 54 Specification & Description Language - Real Time

SDL-RT standard V2.2
6.10 - MSC reference
MSC reference allows to refer to another MSC. The resulting MSC is smaller and more legible.

A reference concerns the connected instances. An instance is connected if its lifeline disappears in
the symbol. An instance is not connected if it goes over the reference symbol.

<MSC name>

MSC reference symbol
Specification & Description Language - Real Time Page 55

SDL-RT standard V2.2
Example:

caller

Connecting MSC

process

idle

idle

server
process

connectedconnected

conReq

tConReq
(100)

conConf

tConReq

caller

DataTransfer MSC

process
server

process

sendData

sendData

Connecting

The DataTransfer MSC starts with a reference to Connecting MSC. That
means the scenario described in Connecting MSC is to be done before the
rest of the DataTransfer MSC occur.
Page 56 Specification & Description Language - Real Time

SDL-RT standard V2.2
6.11 - Text symbol
The text symbol contains data or variable declarations if needed in the MSC.

Text symbol

6.12 - Comment
As its name states...

Comment symbol

6.13 - Action
An action symbol contains a set of instructions in C code. The syntax is the one of C language.

Examples:

<any C language declarations>

Free text to
comment a con-
nected symbol.

/* Say hi to your friend */
printf("Hello world !\n");
for (i=0;i<MAX;i++)

{
newString[i] = oldString[i];
}

Specification & Description Language - Real Time Page 57

SDL-RT standard V2.2
6.14 - High-level MSC (HMSC)
High level MSC diagram is a synthetic view of how MSCs relate to each other. It is only a few
symbols: start, stop, alternative, parallel, state or condition, and MSC reference.

caller

DataTransfer MSC

process
server

process

sendData
(length,data)

Connecting

The action symbol contains standard C instructions related to data declarations.

memcpy(
fullData,
data,
length);

unsigned char *fullData, *data;
int length;

fullData
pointer points
at the end of

buffer.

Start Stop Parallel Alternative

MSC reference

<MSC name> <state>

State or condition
Page 58 Specification & Description Language - Real Time

SDL-RT standard V2.2
The SDL-RT HMSC starts with the start symbol and ends with the stop symbol. The parallel sym-
bol means the following connected path will be executed in parallel. The Alternative symbol
means one and only one of the connected path is executed. Whenever two paths meet again the
path separator symbol is to be repeated. That means if a parallel symbol is used that creates two
different paths, the parallel symbol should be used when the path merge back.
Symbols are connected with lines or arrows if clearer. A symbol is entered by its upper level edge
and leaved by any other edge.

Example:

conFailed

disconnected

conSucceeded

supervising dataTransfer

The system starts in disconnected state. Connection attempts are made,
either the conFailed scenario or the conSucceeded scenario is executed. If
conSucceeded is executed supervising and dataTransfer are executing
in parallel. They merge back to disconnect and end the HMSC scenario.

disconnect
Specification & Description Language - Real Time Page 59

SDL-RT standard V2.2
7 - Data types

The data types, the syntax and the semantic are the ones of ANSI C and C++ languages. In order
to ease readibility in the rest of the document, the expression ’C code’ implicitly means ’ANSI C
and C++ code’. There is no SDL-RT predefined data types at all but just some keywords that
should not be used in the C code. Considering the SDL-RT architecture and concepts surrounding
the C code some important aspects need to be described.

7.1 - Type definitions and headers
Types are declared in the text symbol:

Types declared in an agent are only visible in the architecture below the agent.

7.2 - Variables
Variables are declared after the type definitions in the same text symbol.

Variables declared in an agent are only visible in the architecture below the agent. For example
global variables are to be declared at system level. A variable declared in a block level is not seen
by an upper level block. Variables declared in an SDL-RT process in a text symbol are local to the
process. They can not be seen or manipulated by any other process.

7.3 - C functions
SDL-RT internal C functions are to be defined through the SDL-RT procedure symbol. An SDL-
RT procedure can be defined graphically in SDL-RT or textually in C. When defined in C the pro-
cedure call symbol should not be used. A standard C statement in an action symbol should be
used.

7.4 - External functions
External C functions can be called from the SDL-RT system. These should be prototyped in the
system or in an external C header. It is up to an SDL-RT tool to gather the right files when compil-
ing and linking.

<Any C type declaration >

<Any C type definition >
<Any C global variable definition >
Page 60 Specification & Description Language - Real Time

SDL-RT standard V2.2
8 - Object orientation

8.1 - Block class
Defining a block class allows to use the same block several times in the SDL-RT system. The
SDL-RT block does not support any other object oriented features. A block class symbol is a
block symbol with a double frame. It has no channels connected to it.

A block class can be instantiated in a block or system. The syntax in the block symbol is:
<block instance name>:<block class name>
Messages come in and go out of a block class through gates. In the block class diagram gates are
represented out of the block class frame. When a block class is instantiated the gates are con-
nected to the surrounding SDL-RT architecture. The messages listed in the gates are to be consis-
tent with the messages listed in the connected channels.

<block class name>

<block instance name>:
<block class name>

<gate name>
Specification & Description Language - Real Time Page 61

SDL-RT standard V2.2
Example:

8.2 - Process class
Defining a process class allows to:

• have several instances of the same process in different places of the SDL-RT architec-
ture,

• inherit from a process super-class,
• specialize transitions and states.

bProcess

aProcess

[sigIn1][sigOut1]

[sig2]

[sig3]

[sigIn1][sigOut1,
sigOut3]

cEnv1

cInternal

[sigIn2][sigOut2]

myGate2

[sigIn2][sigOut2]

cEnv2

cEnv3

[sigOut3]

myBlockClass

myGate1

Definition diagram of myBlockClass block class

blockA:myBlockClass blockB

mySystem

chEnvB

chAB
chEnvA

[message7]

[message8,
message9]

myGate1 myGate2
[sigIn1][sigOut1,

sigOut3]
[sigIn2] [sigOut2]

blockA is an instance of myBlockClass
Page 62 Specification & Description Language - Real Time

SDL-RT standard V2.2
A process class symbol is a process symbol with a double frame. It is has no channels connected
to it.

A process class can be instantiated in a block or a system. The syntax in the process symbol is:
<process instance name>:<process class name>
Messages come in and go out of a process class through gates. In the process class diagram, gates
are represented out of the process class frame. When a process class is instantiated the gates are
connected to the surrounding SDL-RT architecture. The messages listed in the gates are to be con-
sistent with the messages listed in the connected channels. The names of the gates appear in the
process symbol with a black circle representing the connection point.

Since a class is not supposed to know the surrounding architecture, message outputs should not
use the TO_NAME concept. Instead TO_ID, VIA, or TO_ENV should be used.

MyProcess

<process name>:
<process class name>

<gate name>
Specification & Description Language - Real Time Page 63

SDL-RT standard V2.2
Example:

SDL-RT transitions, gates and data are the elements that can be redefined when specializing. In
the sub class, the super class to inherit from is defined with the INHERITS keyword in an addi-
tional heading symbol. There are several ways to specialize a process class depending on what is
defined in the super class.

aProcess:aProcessClass

gate1

myProcess

gate2

upperLevelChannel
[sigIn1][sigOut1]

[sig2]

[sig3]
Page 64 Specification & Description Language - Real Time

SDL-RT standard V2.2
8.2.1 Adding a transition
If the transition is new in the sub class, it is simply added to the super class definition.

msg3 msg1

msg3 msg1

MySuperClass

INHERITS MySuperClass;

An instance of MyClass

MyClass

[msg3]

myGate1

[msg3]

myGate1

stable stable

idle unstable

stable

idle unstable
Specification & Description Language - Real Time Page 65

SDL-RT standard V2.2
8.2.2 Overload a transition
If the element exists in the super class, the new element definition overwrites the one of the super

class,.

8.2.3 Abstract transition
A class can be defined as abstract with the ABSTRACT keyword. It means the class can not be
instantiated as is; it needs to be specialized. A class can define abstract transitions or abstract

msg3

idle

msg3

MySuperClass

INHERITS MySuperClass;

An instance of MyClass

MyClass

myVar = 2; myVar = 3;

msg3

myVar = 3;

int myVar;

int myVar;

[msg3]

[msg3]

myGate1

myGate1

unstable

stable stable

stable

unstable
Page 66 Specification & Description Language - Real Time

SDL-RT standard V2.2
gates. It means the abstract transition or gate exists but that it is not defined. Such a class is obvi-
ously abstract and needs to be defined as such.

ABSTRACT
msg3 msg3

msg3

MyAbstractSuperClass

INHERITS MyAbstractSuperClass;

An instance of MyClass

MyClass

[msg3]

myGate1

[msg3]

myGate1
unstable

unstable

stable stable

stable
Specification & Description Language - Real Time Page 67

SDL-RT standard V2.2
8.2.4 Reference to the super class
When specializing a class it is important to be able to refer to the super class transition and next
state. A typical example is the start transition of a sub class that needs to execute the super class
initialization:

msg3

idle

MySuperClass

myVar++;

int myVar;

stable

myVar = 2;

stable

msg1

idle

MyClass

myOtherVar++;

int myOtherVar;

stable

myOtherVar = 7;

INHERITS MySuperClass;
Page 68 Specification & Description Language - Real Time

SDL-RT standard V2.2
Please note the input signature must be the same in the super class and in the sub class including
the variable names. For example if the super class transition is MyMsg(a) where a is an int, the

An instance of MyClass

msg1msg3

idle

myVar++;

int myVar;
int myOtherVar;

stable

myVar = 2;

stable

myOtherVar = 7;

idle

myOtherVar++;
Specification & Description Language - Real Time Page 69

SDL-RT standard V2.2
sub class transition must be MyMsg(a) as well. It can not be MyMsg(b) even if b is also an int.

MyMessage
(i,c)

int i;
char c;

stable

unstable

MESSAGE MyMessage(int, char);

MyMessage
(i,c)

int j;
char d;

stable

i++;

MyMessage
(j,c)

int j;
char d;

stable

Super class Correct sub class

Incorrect sub class
The transition signature is inconsistent
Page 70 Specification & Description Language - Real Time

SDL-RT standard V2.2
8.2.5 Example
Here comes an example mixing some object oriented concepts and the resulting object:

msg3

msg3

MyAbstractSuperClass

INHERITS MyAbstractSuperClass;

MyClass

myVar = 2;

myVar = 3;

int myVar;

[msg3]

myGate1

ABSTRACT
msg2VIRTUAL

myGate2

msg2

myOtherVar = ’a’;

msg1

msg4
VIA myGate2myGate2

[msg2,
msg1]

[msg4]

char myOtherVar;

msg5

myVar = 5;

stable

stable

stable

maint idle

idleunstable
Specification & Description Language - Real Time Page 71

SDL-RT standard V2.2
8.3 - Class diagram
The SDL-RT class diagram is conform to UML 1.3 class diagram. Normalised stereotypes with
specific graphical symbols are defined to link with SDL graphical representation. All symbols are
briefly explained in the paragraphs below. Detailed information can be found in the OMG UML
v1.3 specification.

8.3.1 Class
A class is the descriptor for a set of objects with similar structure, behavior, and relationships.

A stereotype is an extension of the UML vocabulary allowing to create specific types of classes.
If present, the stereotype is placed above the class name within guillemets. Alternatively to this
purely textual notation, special symbols may be used in place of the class symbol.

msg3

myVar = 3;

[msg3]

myGate1 msg2

myOtherVar = ’a’;

msg1

msg4
VIA myGate2

myGate2
[msg2,
msg1]

[msg4]

int myVar;
char myOtherVar;

msg5

myVar = 5;

An instance of MyClass

stable

stableunstable idlemaint

<class name> <class name>

<attributes>
<operations>

Class symbol with
details suppressed Class symbol full rep-

resentation
Page 72 Specification & Description Language - Real Time

SDL-RT standard V2.2
Classes are divided in active classes and passive classes. An instance of an active class owns a
thread of control and may initiate control activity. An instance of a passive class holds data, but
does not initiate control. In the class diagram, agents are represented by active classes. Agent type
is defined by the class stereotype. Known stereotypes are: system, block, block class, proc-
ess, and process class. Active classes do not have any attribute. Operations defined for an
active class are incoming or outgoing asynchronous messages. The syntax is:
<message way> <message name> [(<parameter type>)] [{via <gate name>}]
<message way> can be one of the characters:

• ’>’ for incoming messages,
• ’<’ for outgoing messages.

<operations>

Class stereotyped as a
process

<<process>>
<process name>

<operations>

Class stereotyped as a
process

<process name>

> call(int) {via gEnv}
> hangUp {via gEnv}
< conReq {via gSwitch}
< conConf {via gSwitch}
< disReq {via gSwitch}
< disConf {via gSwitch}

Process class pPhone can receive messages
call and hangUp through gate gEnv and
send conReq, conConf, disReq, disConf

through gate gSwitch.

pPhone
Specification & Description Language - Real Time Page 73

SDL-RT standard V2.2
Pre-defined graphical symbols for stereotyped classes are described below:

<operations>
Class stereotyped as

a block

<<block>>
<block name>

Class stereotyped as
a block

<operations>

<block name>

<operations>

Class stereotyped as
a class of block

<<block
class>>

Class stereotyped as
a class of block

<operations>

<block name>

<operations>

Class stereotyped as
a class of process

<<process
class>>

<operations>

Class stereotyped as
a class of process

<process class

<operations>

Class stereotyped as
a process

<<process>>
<process name>

<operations>

Class stereotyped as
a process

<process name>

<operations>
Class stereotyped as

a system

<<system>>
<system name>

Class stereotyped as
a system

<operations>

<<system>>
<system name>
Page 74 Specification & Description Language - Real Time

SDL-RT standard V2.2
8.3.2 Specialisation
Specialisation defines a ’is a kind of’ relationship between two classes. The most general class is
called the superclass and the specialised class is called the subclass.

The relationship from the subclass to the superclass is called generalisation.

8.3.3 Association
An association is a relationship between two classes. It enables objects to communicate with each
other. The meaning of an association is defined by its name or the role names of the associated
classes. Cardinality indicates how many objects are connected at the end of the association.

<superclass
name>

Subclass is a kind of
superclass

<subclass name>
Specialisation link

<class B name>

<class A name>

<association name>

<class B
role name>

<class A
role name>

<cardinality>

<cardinality>
Specification & Description Language - Real Time Page 75

SDL-RT standard V2.2
Instances of a class are identified by the associated class via its role name.
In the example above an isntance of Switch identifies the instances of Telephone it is connected
to via the name terminal.

8.3.4 Aggregation
Aggregation defines a ’is a part of’ relationship between two classes.

Objects identify each other as described for regular associations (Cf. “Association” on page 75).

Switch

Telephone

is connected to

switch

terminal

1

*
Each Telephone is
connected to one
Switch. A Switch is
connected to several
Telephone.
A Telephone is a
terminal for a
Switch.

<container class
name>

contained class is a part
of container class

<contained class
name>

Aggregation link

<role name>

<role name>

<cardinality>
Page 76 Specification & Description Language - Real Time

SDL-RT standard V2.2
8.3.5 Composition
Composition is a strict form of aggregation, in which the parts are existence dependent on the
container.

Objects identify each other as described for regular associations (Cf. “Association” on page 75).

8.4 - Package
A package is a separated entity that contains classes, agents or classes of agents. It is referenced
by its name.

It can contain:
• classes,
• systems,
• blocks,
• classes of blocks,
• processes,
• classes of processes,
• procedures,
• data definitions.

<container class
name>

contained class is a part
of container class

<contained class
name>

Aggregation link

<role name>

<role name>

<cardinality>

<package name>
Specification & Description Language - Real Time Page 77

SDL-RT standard V2.2
8.4.1 Usage in an agent
Agent classes definitions can be gathered in a package. To be able to use classes defined in a
package, an SDL-RT system should explicitly import the package with USE keyword in an addi-
tional heading symbol at system level.

8.4.2 Usage in a class diagram
Classes defined in a package can be referenced in 2 ways:

• prefix the class name with the package name

• use the package graphical symbol as a container of the class symbol

USE <package name>;

<operations>
...

<attributes>
...

<package name>::<class name>

Class <class name> is defined in
package <package name>

myPackage

MySuperClass

MyClass

myAttributes
myOperations

MyClass specialises MySuperClass
defined in myPackage.
Page 78 Specification & Description Language - Real Time

SDL-RT standard V2.2
9 - Deployment diagram

The Deployment diagram shows the physical configuration of run-time processing elements of a
distributed system.

9.1 - Node
A node is a physical object that represents a processing resource.

9.2 - Component
A component represents a distributable piece of implementation of a system. There are two types
of components:

• Executable component

• File component

<Node name>

<Node attribute>

<Component name>

<Component attribute>

<file name>
Specification & Description Language - Real Time Page 79

SDL-RT standard V2.2
9.3 - Connection
A connection is a physical link between two nodes or two executable components. It is defined
by its name and stereotype.

SatelliteAntenna
<< <stereotype> >>

<connection name>
Page 80 Specification & Description Language - Real Time

SDL-RT standard V2.2
9.4 - Dependency
Dependency between elements can be represented graphically.

• A dependency from a node to an executable component means the executable is running
on the node.

• A dependency from a component to a file component means the component needs the
file to be built.

• A dependency from a node to a file means that all the executable components running on
the node need the file to be built.

MyNode

MyComponent runs on MyNode and needs MyCode.c file to
be built.

MyComponent

MyCode.c

MyNode

MyComponent runs on MyNode and needs MyCode.c file to
be built.

MyComponent

MyCode.c
Specification & Description Language - Real Time Page 81

SDL-RT standard V2.2
9.5 - Aggregation
A node can be subdivided of nodes.

9.6 - Node and components identifiers
Attributes are used by connected nodes or components to identify each other.

Nodes’ attribute can be omitted if not needed.

ControlBoardNetworkBoard

VmeRack

VmeRack node is subdivided of NewtorkBoard and ControlBoard

NodeA1

NodeA

CptA1

<<IP>>
myNet

myNet.id=192.168.1.1
NodeA2

myNet.id=192.168.1.2

NodeB
myNet.id=192.168.1.12

myNet.id=49250

CptA2
myNet.id=49251

CptB
myNet.id=50000

CptB can connect to CptA1 via myNet connection by using NodeA1 myNet.id
attribute and CptA1 myNet.id attribute.
Page 82 Specification & Description Language - Real Time

SDL-RT standard V2.2
10 - Symbols contained in diagrams

The table below shows what symbols can be contained in a specific diagram type.

A diagram listed in the first column can contain the ticked symbols in the other columns. For
example the process symbol can contain the additional heading symbol, the text symbol and all
the behavior symbols. The behavior symbols are all symbols described in “Behavior” on page 14.

In the diagrams listed
in this column the
ticked symbols on the
right can be used.

pa
ck

ag
e

bl
oc

k
cl

as
s

pr
oc

es
s c

la
ss

bl
oc

k
pr

oc
es

s
pr

oc
ed

ur
e

de
cl

ar
at

io
n

se
m

ap
ho

re
 d

ec
la

ra
tio

n
ch

an
ne

l
ad

di
tio

na
l h

ea
di

ng
te

xt
ga

te
 d

ef
in

iti
on

ga
te

 u
sa

ge
be

ha
vi

or
 sy

m
bo

ls
cl

as
s

as
so

ci
at

io
n

co
m

po
si

tio
n

sp
ec

ia
lis

at
io

n
no

de
co

m
po

ne
nt

co
nn

ec
tio

n
de

pe
nd

en
cy

ag
gr

eg
at

io
n

package x x x x x x x x x x x - - x x x - x
class diagram x x x x x - - - - - - - - x x x - x
block class - - - x x x x x x x x x - - - - - -
process class - - - - - - - - x x x - x - - - - -
block - - - x x x x x x x - x - - - - - -
process - - - - - - - - x x - - x - - - - -
procedure - - - - - - - - - x - - x - - - - -
deployment x x
Specification & Description Language - Real Time Page 83

SDL-RT standard V2.2
11 - Textual representation

Storage format follows XML (eXtensible Markup Language standard from W3C available at
http://www.w3.org) standard with the following DTD (Document Type Definition):

<!-- Entity for booleans -->
<!-- =================== -->

<!ENTITY % boolean "(TRUE|FALSE)">

<!-- Entities for symbol types -->
<!-- ========================= -->

<!ENTITY % sdlSymbolTypes1 "sdlSysDgmFrm|sdlSysTypeDgmFrm|sdlBlkDgmFrm|sdlBlkTypeDgmFrm|
sdlBlkType|sdlBlk|sdlBlkTypeInst|sdlPrcsType|sdlPrcs|sdlPrcsTypeInst">
<!ENTITY % sdlSymbolTypes2 "sdlInherits|sdlPrcsTypeDgmFrm|sdlPrcsDgmFrm|sdlPrcdDgmFrm|
sdlStart|sdlState|sdlInputSig|sdlSendSig|sdlSaveSig|sdlContSig">
<!ENTITY % sdlSymbolTypes3 "sdlTask|sdlDecision|sdlTransOpt|sdlJoin|sdlText|sdlComment|
sdlTextExt|sdlCnctrOut|sdlCnctrIn|sdlPrcsCreation|sdlStop|sdlObjCre">
<!ENTITY % sdlSymbolTypes4 "sdlInitTimer|sdlResetTimer|sdlSemDecl|sdlSemTake|sdlSemGive|
sdlPrcdProto|sdlPrcdDecl|sdlPrcdCall|sdlPrcdStart|sdlPrcdReturn">
<!ENTITY % sdlSymbolTypes5 "sdlCompState|sdlCompStateDef|sdlService|sdlCompStateDgmFrm|
sdlServDgmFrm">
<!ENTITY % sdlSymbolTypes "%sdlSymbolTypes1;|%sdlSymbolTypes2;|%sdlSymbolTypes3;|
%sdlSymbolTypes4;|%sdlSymbolTypes5;">

<!ENTITY % mscSymbolTypes1 "mscExternalFrm|mscInlineExpr|mscLifeline|mscSemaphore|mscLostMsg|
mscFoundMsg|mscComment">
<!ENTITY % mscSymbolTypes2 "mscGenNameArea|mscText|mscAbsTimeConstr|mscCondition|mscMscRef|
mscInlineExprZone|mscSave">
<!ENTITY % mscSymbolTypes "%mscSymbolTypes1;|%mscSymbolTypes2;">

<!ENTITY % hmscSymbolTypes "hmscDgmFrm|hmscParallel|hmscStart|hmscEnd|hmscCondition|
hmscMscRef|hmscAlternativePoint">
<!ENTITY % mscdocSymbolTypes "mscdocDgmFrm|mscdocMscRef|mscdocHeader">

<!ENTITY % umlClassSymbolTypes "umlClassDgmFrm|umlPckg|umlClass|umlComment|umlSys|umlBlkCls|
umlBlk|umlPrcsCls|umlPrcs">
<!ENTITY % umlDeplSymbolTypes "umlDeplDgmFrm|umlNode|umlComp|umlFile">
<!ENTITY % umlUCSymbolTypes "umlUCDgmFrm|umlUseCase|umlActor">

<!ENTITY % SymbolType "(%sdlSymbolTypes;|%mscSymbolTypes;|%hmscSymbolTypes;|%mscdocSymbolTypes;|
%umlClassSymbolTypes;|%umlDeplSymbolTypes;|%umlUCSymbolTypes;)">

<!-- Entity for lifeline component type -->
<!-- ================================== -->

<!ENTITY % LifelineComponentType "(norm|susp|meth|coreg|act)">

<!-- Entity for time interval type -->
<!-- ============================= -->

<!ENTITY % TimeIntervalType "(start|end|timeout|constraint)">

<!-- Entity for connector types -->
<!-- ========================== -->
Page 84 Specification & Description Language - Real Time

http://www.w3.org
http://www.w3.org
http://www.w3c.org

SDL-RT standard V2.2
<!ENTITY % ConnectorType "(void|chnl|chnlgate|sdlarrow|mscvoid|mscgate|mscarrowgate|hmscarrow|
umlcvoid|umlassoc|umlrole|umldvoid)">

<!-- Entity for side for connectors -->
<!-- ============================== -->

<!ENTITY % Side "(n|s|w|e|x|y)">

<!-- Entity for end types for connectors -->
<!-- =================================== -->

<!ENTITY % ConnectorEndType "(voidend|arrow|midarrow|fullarrow|outltri|outldiam|filldiam|
outldiamarw|filldiamarw)">

<!-- Entity for link segment orientation -->
<!-- =================================== -->

<!ENTITY % Orientation "(h|v)">

<!-- Entity for link types -->
<!-- ===================== -->

<!ENTITY % LinkType "(sbvoid|dbvoid|ssvoid|dsvoid|chnl|dec|transopt|msg|meth|rtn|instcre|assoc|
spec|aggr|comp|cnx|dep)">

<!-- Entity for diagram types -->
<!-- ======================== -->

<!ENTITY % DiagramType "(sys|systype|blk|blktype|prcs|prcstype|prcd|msc|hmsc|mscdoc|class|usec|
depl|compstate|service)">

<!-- Element for text in symbols/links/... -->
<!-- ===================================== -->

<!ELEMENT Text (#PCDATA)>
<!ATTLIST Text
 id CDATA "0"
>

<!-- Element for lifeline symbol components (MSC specific) -->
<!-- === -->
<!-- The "Text" component and "width" attribute are only for action symbols -->

<!ELEMENT LifelineComponent (Text?)>
<!ATTLIST LifelineComponent
 type %LifelineComponentType; #REQUIRED
 height CDATA #REQUIRED
 color CDATA "#000000"
 width CDATA "-1"
>

<!-- Element for lifeline symbol time intervals (MSC specific) -->
<!-- === -->

<!ELEMENT TimeInterval (Text)>
<!ATTLIST TimeInterval
 type %TimeIntervalType; #REQUIRED
Specification & Description Language - Real Time Page 85

SDL-RT standard V2.2
 startpos CDATA #REQUIRED
 endpos CDATA "-1"
 offset CDATA #REQUIRED
 color CDATA "#000000"
>

<!-- Element for spanned lifelines for spanning symbols (MSC specific) -->
<!-- === -->

<!ELEMENT SpannedLifeline EMPTY>
<!ATTLIST SpannedLifeline
 lifelineId IDREF #REQUIRED
>

<!-- Element for inline expression zones (MSC specific) -->
<!-- == -->

<!ELEMENT Zone EMPTY>
<!ATTLIST Zone
 zoneSymbolId IDREF #REQUIRED
>

<!-- Element for symbols -->
<!-- =================== -->
<!-- The "LifelineComponent" and "TimeInterval" components and the "dies" attribute are only for
lifelines symbols -->
<!-- The "Zone" component is only for inline expression symbols -->
<!-- The "SpannedLifeline" component is only for spanning symbols in MSC diagrams -->
<!-- The "Symbol*" component is for contained symbols and does not apply to MSC lifelines or
spanning symbols -->

<!ELEMENT Symbol (Text+, (((LifelineComponent*), (TimeInterval*)) | ((SpannedLifeline*), (Zone*))
| (Symbol*)))>
<!ATTLIST Symbol
 symbolId ID #REQUIRED
 type %SymbolType; #REQUIRED
 xCenter CDATA #REQUIRED
 yCenter CDATA #REQUIRED
 fixedDimensions %boolean; "FALSE"
 width CDATA "10"
 height CDATA "10"
 color CDATA "#000000"
 fillColor CDATA "#ffffff"
 dies %boolean; "FALSE"
>

<!-- Element for connectors -->
<!-- ====================== -->

<!ELEMENT Connector (Text, Text)>
<!ATTLIST Connector
 connectorId CDATA ""
 attachedSymbolId IDREF #REQUIRED
 type %ConnectorType; #REQUIRED
 isOutside %boolean; #REQUIRED
 side %Side; #REQUIRED
 position CDATA #REQUIRED
 endType %ConnectorEndType; #REQUIRED
>

Page 86 Specification & Description Language - Real Time

SDL-RT standard V2.2
<!-- Element for link segments -->
<!-- ========================= -->

<!ELEMENT LinkSegment EMPTY>
<!ATTLIST LinkSegment
 orientation %Orientation; #REQUIRED
 length CDATA #REQUIRED
>

<!-- Element for links -->
<!-- ================= -->

<!ELEMENT Link (Text, Connector, Connector, LinkSegment*)>
<!ATTLIST Link
 linkId CDATA ""
 type %LinkType; #REQUIRED
 textSegmentNum CDATA #REQUIRED
 color CDATA "#000000"
 reverseRead %boolean; "FALSE"
>

<!-- Element PageSpecification -->
<!-- ========================= -->
<!-- Attributes for diagram pages; all dimensions are centimetres -->

<!ELEMENT PageSpecification EMPTY>
<!ATTLIST PageSpecification
 pageWidth CDATA "21"
 pageHeight CDATA "29.7"
 topMargin CDATA "1.5"
 bottomMargin CDATA "1.5"
 leftMargin CDATA "1.5"
 rightMargin CDATA "1.5"
 pageFooter %boolean; "TRUE"
>

<!-- Element DiagramPartition -->
<!-- ======================== -->
<!-- A partition in a diagram -->

<!ELEMENT DiagramPartition (PageSpecification, Symbol, Link*)>
<!ATTLIST DiagramPartition
 name CDATA ""
 nbPagesH CDATA "1"
 nbPagesV CDATA "1"
>

<!-- Element for diagrams -->
<!-- ==================== -->

<!ELEMENT Diagram (DiagramPartition+)>
<!ATTLIST Diagram
 type %DiagramType; #REQUIRED
 name CDATA ""
 cellWidthMm CDATA "5"
 linksCrossingAllowed %boolean; "FALSE"
>>
Specification & Description Language - Real Time Page 87

SDL-RT standard V2.2
12 - Example systems

12.1 - Ping Pong

Ping pong system view
Page 88 Specification & Description Language - Real Time

SDL-RT standard V2.2
Ping process
Specification & Description Language - Real Time Page 89

SDL-RT standard V2.2
Pong process
Page 90 Specification & Description Language - Real Time

SDL-RT standard V2.2
MSC trace of the ping pong system
Specification & Description Language - Real Time Page 91

SDL-RT standard V2.2
12.2 - A global variable manipulation

Global variable manipulation example system
Page 92 Specification & Description Language - Real Time

SDL-RT standard V2.2
Process A
Specification & Description Language - Real Time Page 93

SDL-RT standard V2.2
Process B
Page 94 Specification & Description Language - Real Time

SDL-RT standard V2.2
MSC trace of the global variable manipulation
Specification & Description Language - Real Time Page 95

SDL-RT standard V2.2
12.3 - Access Control System
This system controls the access to a building. To get in, one need to insert a card and type a code.
The database is in the central block. When starting the system there is no user registered in the
base so the first user needs to be the administrator.

12.3.1 Requirements

Either one of the MSCs can be executed indefinitly
Page 96 Specification & Description Language - Real Time

SDL-RT standard V2.2
Standard scenario
Specification & Description Language - Real Time Page 97

SDL-RT standard V2.2
Standard refusal scenario
Page 98 Specification & Description Language - Real Time

SDL-RT standard V2.2
12.3.2 Analysis

The class diagram shows the relation between pCentral (task) active class and UserFactory and
User passive classes (C++)
Specification & Description Language - Real Time Page 99

SDL-RT standard V2.2
12.3.3 Architecture

The system is made of two tasks: pCentral and pLocal
Page 100 Specification & Description Language - Real Time

SDL-RT standard V2.2
12.3.4 pCentral process
Specification & Description Language - Real Time Page 101

SDL-RT standard V2.2
12.3.5 getCardNCode procedure
Page 102 Specification & Description Language - Real Time

SDL-RT standard V2.2
12.3.6 pLocal process
Specification & Description Language - Real Time Page 103

SDL-RT standard V2.2
Page 104 Specification & Description Language - Real Time

SDL-RT standard V2.2
Specification & Description Language - Real Time Page 105

SDL-RT standard V2.2
12.3.7 Display procedure
Page 106 Specification & Description Language - Real Time

SDL-RT standard V2.2
12.3.8 DisplayStar procedure
Specification & Description Language - Real Time Page 107

SDL-RT standard V2.2
12.3.9 Deployment

The components communicate through IP
Page 108 Specification & Description Language - Real Time

SDL-RT standard V2.2
13 - Differences with classical SDL

It is difficult to list all the differences between SDL-RT and SDL even though an SDL developer
would understand SDL-RT and vice versa. Still to be able to clearly state the differences between
these languages we will pinpoint the main differences in the paragraphs below.

13.1 - Data types
This is the most significant difference between SDL and SDL-RT. Classical SDL has its own data
types and syntax where SDL-RT basically uses ANSI C language. Some symbols have a specific
syntax with SDL-RT since there is no C equivalent instruction such as output, input, save, or
semaphore manipulations.
The advantages are obvious:

• the syntax is known by all real time developers,
• it implicitly introduces the concept of pointers that does not exist in SDL,
• it eases integration of legacy code where it is quite tricky to do from classical SDL,
• and last but not least it makes code generation out of SDL-RT quite straightforward.

13.2 - Semaphores
Semaphore is a key concept in real time systems that classical SDL misses. Specific semaphore
symbols have been introduced in SDL-RT to answer the real time developer needs.

13.3 - Inputs
Classical SDL has nice concepts when it comes to dealing with message exchanges. But these
concepts are not so interesting in real time development and are quite tricky to implement on a
real target or operating system. That is why SDL-RT has removed the following concepts:
enabling conditions when receiving a message, internal messages, two levels priority messages.

13.4 - Names
Classical SDL uses exotic names for some well known concepts such as "signal" where it is basi-
cally related to a "message". Since "message" is the usual name in Real Time Operating Systems
SDL-RT uses the same term.
When it comes to object orientation classical SDL talks about "type" instead of the usual "class"
term. SDL-RT uses the common developer word "class".

13.5 - Object orientation
Classical SDL uses "virtual", "redefined", and "finalized" when it comes to object oriented con-
cepts. For example a super class should specify a transition is "virtual" so that the sub class is
Specification & Description Language - Real Time Page 109

SDL-RT standard V2.2
allowed "redefine" or "finalize" it. This is C++ like but actually quite painful when it comes to
write and does not make things any clearer. SDL-RT takes the Java notation instead where there is
no need to specify anything to be able to redefine it in a sub class.
Page 110 Specification & Description Language - Real Time

SDL-RT standard V2.2
14 - Memory management

Real time systems need to exchange information. The best way to do so is to have a reserved
chunk of shared memory that several tasks can access. SDL-RT implicitly runs on such an under-
lying architecture since it supports global variables and exchanges message parameters through
pointers. That raises memory management rules to follow to ensure a proper design.

14.1 - Global variables
SDL-RT processes can share global variables. This is very powerful but also very dangerous since
the data can be corrupted if manipulated without caution. It is strongly recommended to use sema-
phores to access global variables to be sure data is consistent. An example of such a design is
given later in this document.

14.2 - Message parameters
Parameters of a message are passed through a pointer. This implies the data pointed by the send-
ing process will be accessible by the receiving process. Therefore a good design should meet the
following rules:

• Sending processes allocate specific memory areas to store parameters,
• Once the message is sent the parameter memory area should never be manipulated again

by the sending process,
• Receiver processes are responsible for freeing memory containing message parameters.
Specification & Description Language - Real Time Page 111

SDL-RT standard V2.2
15 - Keywords

The following keyword have a meaning at in some specific SDL-RT symbols listed below:

keywords concerned symbols

PRIO
Task definition
Task creation

Continuous signal

TO_NAME
TO_ID
TO_ENV
VIA

Message output

FOREVER
NO_WAIT semaphore manipulation

>, <, >=, <=, !=, ==
true, false,
else

decision branches

USE
MESSAGE
MESSAGE_LIST
STACK

additional heading symbol

Table 2: Keywords in symbols
Page 112 Specification & Description Language - Real Time

SDL-RT standard V2.2
16 - Syntax

All SDL-RT names must be a combination of alphabetical characters, numerical characters, and
underscores. No other symbols are allowed.

Examples:
myProcessName
my_procedure_name
block_1
_semaphoreName
Specification & Description Language - Real Time Page 113

SDL-RT standard V2.2
17 - Naming convention

Since some SDL-RT concepts can be reached through their names (processes, semaphores) each
name in the system must be unique. This will make the design more legible and ease the support
of SDL-RT in a tool.
It is suggested to use the following convention for names:

• block names should start with ’b’,
• process names should start with ’p’,
• timer names should start with ’t’,
• semaphore names should start with ’s’,
• global variables should start with ’g’.
Page 114 Specification & Description Language - Real Time

SDL-RT standard V2.2
18 - Lexical rules

A subset of the BNF (Backus-Naur Form) is used in these pages :
<traditional English expression> as it says…
[<stuff>] stuff is optional
{<stuff>}+ stuff is present at least one or more times
{<stuff>}* stuff is present 0 or more times
Specification & Description Language - Real Time Page 115

SDL-RT standard V2.2
19 - Glossary

ANSI American National Standards Institute
BNF Backus-Naur Form
ITU International Telecommunication Union
MSC Message Sequence Chart
OMG Object Management Group
RTOS Real Time Operating System
SDL Specification and Description Language
SDL-RT Specification and Description Language - Real Time
UML Unified Modeling Language
XML eXtensible Markup Language
Page 116 Specification & Description Language - Real Time

http://www.omg.org
http://www.itu.int
http://www.ansi.org
http://www.uml.org
http://www.sdl-forum.org
http://www.sdl-rt.org
http://www.w3.org

SDL-RT standard V2.2
20 - Modifications from previous releases

20.1 - Semaphore manipulation

20.1.1 V1.0 to V1.1
The semaphore take now returns a status that indicates if the take attempt timed out or was suc-
cessfull. The semaphore lifeline gets grayed when the semaphore is unavailable.

20.2 - Object orientation

20.2.1 V1.1 to V1.2
There has been an error in the object orientation chapter: it is not possible to declare a process
class or a block class in a block class definition diagram.

20.2.2 V1.2 to V2.0
• UML class diagram has been introduced
• UML deployment diagram has been introduced
• Object creation symbol introduced in the behavior diagram

20.2.3 V2.1 to V2.2
• “Super class transition symbol” added
• “Super class next state symbol” added

20.3 - Messages

20.3.1 V1.1 to V1.2
• Messages now needs to be declared.
• Message parameters are now typed with C types.
• Parameter length can be omited if the parameter is structured. Then the length is implic-

itly the sizeof the parameter type.
• The VIA concept has been introduced.

20.3.2 V2.0 to V2.1
• Messages can have multiple parameters. Declaration, inputs, and outputs have changed.
Specification & Description Language - Real Time Page 117

SDL-RT standard V2.2
20.4 - MSC

20.4.1 V1.1 to V1.2
• Saved messages representation introduced.

20.5 - Task

20.5.1 V1.2 to V2.0
STACK parameter has been added as a parameter when creating a task.

20.6 - Organisation

20.6.1 V1.2 to V2.0
Chapters have been re-organized.

20.7 - New concept

20.7.1 V2.1 to V2.2
“Composite state” has been introduced
Page 118 Specification & Description Language - Real Time

SDL-RT standard V2.2
21 - Index

A
Action

symbol 24
Action symbol

MSC symbol 57
Additional heading symbol 32
Agents 9
Aggregation

class 76
node 82

Association 75

B
Block

class 61

C
call

procedure 27
Cardinality 75
channels 11
Class

active 73
block 61
definition 72
passive 73
process 62

Comment 29
MSC symbol 57

Component 79
Composition 77
Connection 80
Connectors 28
Continuous signal 23
Coregion 54

creation
task 27

D
Data type

difference with classical SDL 109
Data types 60
Decision 24
Declaration

message 40
procedure 39
process 38
semaphore 41
timer 41
variables 31

Dependency 81
Diagram

architecture 9
behavior 14
class 72
communication 11
contained symbols 83
deployment 79
MSC 42

Distributed system 79

E
else

decision 25
keyword 112

Environment
definition 9
message output 19

Extension 30
Specification & Description Language - Real Time Page 119

SDL-RT standard V2.2
F
false

decision 25
keyword 112
transition option 28

FOREVER
keyword 112

G
Generalisation 75
give

semaphore 26

H
HMSC 58

I
if 24
ifdef 28
Input

difference with classical SDL 109
message 16

instance
MSC 42

K
Keywords 112

L
Lexical rules 115

M
Memory

management 111
MESSAGE

keyword 112
Message

communication principles 11
declaration 40
input 16
list 40
memory management 111
MSC 45
output 17
parameters 111
save 23

MESSAGE_LIST
keyword 112

MSC 42
action 57
agent instance 42
comment 57
reference 55
semaphore 43
text symbol 57

N
Naming

convention 114
difference with classical SDL 109
syntax 113

NO_WAIT
keyword 112

Node 79

O
Object

difference with classical SDL 109
OFFSPRING

procedure 27
Page 120 Specification & Description Language - Real Time

SDL-RT standard V2.2
output 17

P
Package 77
PARENT

procedure 27
PRIO

continuous signal 24
keyword 112

Procedure
call 27
declaration 39
return 31
start 31

Process
behavior 14
class 62
declaration 38
priority 38

R
reference

MSC 55
return

procedure 31

S
save 23
SDL-RT

Lexical rules 115
Semaphore

declaration 41
difference with classical SDL 109
give 26
global variable 111
MSC 43
take 25

SENDER

procedure 27
Specialisation 75
STACK

keyword 112
Stack

size definition 32
Start

procedure 31
symbol 14
timer 26

State 14
MSC 48
Super class 34

Stereotype 72
Stop

symbol 15
timer 26

Storage format 84
Super class

state 34
transition 33

Symbol
additional heading 32
in diagram 83
ordering 32
text 31

Synchronous calls
MSC 47

System 9

T
take

semaphore 25
Task

creation symbol 27
Text

MSC symbol 57
symbol 31

Time interval
MSC 52

Timer
declaration 41
MSC 50
Specification & Description Language - Real Time Page 121

SDL-RT standard V2.2
start 26
stop 26

TO_ENV 19
keyword 112

TO_ID 18
keyword 112

TO_NAME 19
keyword 112

Transition
Super class 33

Transition option 28
true

decision 25
keyword 112
transition option 28

U
USE

keyword 112

V
VIA 20

keyword 112

X
XML

data storage 84
Page 122 Specification & Description Language - Real Time

	1 - Introduction
	2 - Architecture
	2.1 - System
	2.2 - Agents

	3 - Communication
	4 - Behavior
	4.1 - Start
	4.2 - State
	4.3 - Stop
	4.4 - Message input
	4.5 - Message output
	4.5.1 To a queue Id
	4.5.2 To a process name
	4.5.3 To the environment
	4.5.4 Via a channel or a gate

	4.6 - Message save
	4.7 - Continuous signal
	4.8 - Action
	4.9 - Decision
	4.10 - Semaphore take
	4.11 - Semaphore give
	4.12 - Timer start
	4.13 - Timer stop
	4.14 - Task creation
	4.15 - Procedure call
	4.16 - Connectors
	4.17 - Transition option
	4.18 - Comment
	4.19 - Extension
	4.20 - Procedure start
	4.21 - Procedure return
	4.22 - Text symbol
	4.23 - Additional heading symbol
	4.24 - Object creation symbol
	4.25 - Super class transition symbol
	4.26 - Super class next state symbol
	4.27 - Composite state
	4.27.1 Composite state definition
	4.27.2 Composite state usage

	4.28 - Symbols ordering

	5 - Declarations
	5.1 - Process
	5.2 - Procedure declaration
	5.2.1 SDL-RT defined procedure
	5.2.2 C defined procedure

	5.3 - Messages
	5.4 - Timers
	5.5 - Semaphores

	6 - MSC
	6.1 - Agent instance
	6.2 - Semaphore representation
	6.3 - Semaphore manipulations
	6.4 - Message exchange
	6.5 - Synchronous calls
	6.6 - State
	6.7 - Timers
	6.8 - Time interval
	6.9 - Coregion
	6.10 - MSC reference
	6.11 - Text symbol
	6.12 - Comment
	6.13 - Action
	6.14 - High-level MSC (HMSC)

	7 - Data types
	7.1 - Type definitions and headers
	7.2 - Variables
	7.3 - C functions
	7.4 - External functions

	8 - Object orientation
	8.1 - Block class
	8.2 - Process class
	8.2.1 Adding a transition
	8.2.2 Overload a transition
	8.2.3 Abstract transition
	8.2.4 Reference to the super class
	8.2.5 Example

	8.3 - Class diagram
	8.3.1 Class
	8.3.2 Specialisation
	8.3.3 Association
	8.3.4 Aggregation
	8.3.5 Composition

	8.4 - Package
	8.4.1 Usage in an agent
	8.4.2 Usage in a class diagram

	9 - Deployment diagram
	9.1 - Node
	9.2 - Component
	9.3 - Connection
	9.4 - Dependency
	9.5 - Aggregation
	9.6 - Node and components identifiers

	10 - Symbols contained in diagrams
	11 - Textual representation
	12 - Example systems
	12.1 - Ping Pong
	12.2 - A global variable manipulation
	12.3 - Access Control System
	12.3.1 Requirements
	12.3.2 Analysis
	12.3.3 Architecture
	12.3.4 pCentral process
	12.3.5 getCardNCode procedure
	12.3.6 pLocal process
	12.3.7 Display procedure
	12.3.8 DisplayStar procedure
	12.3.9 Deployment

	13 - Differences with classical SDL
	13.1 - Data types
	13.2 - Semaphores
	13.3 - Inputs
	13.4 - Names
	13.5 - Object orientation

	14 - Memory management
	14.1 - Global variables
	14.2 - Message parameters

	15 - Keywords
	16 - Syntax
	17 - Naming convention
	18 - Lexical rules
	19 - Glossary
	20 - Modifications from previous releases
	20.1 - Semaphore manipulation
	20.1.1 V1.0 to V1.1

	20.2 - Object orientation
	20.2.1 V1.1 to V1.2
	20.2.2 V1.2 to V2.0
	20.2.3 V2.1 to V2.2

	20.3 - Messages
	20.3.1 V1.1 to V1.2
	20.3.2 V2.0 to V2.1

	20.4 - MSC
	20.4.1 V1.1 to V1.2

	20.5 - Task
	20.5.1 V1.2 to V2.0

	20.6 - Organisation
	20.6.1 V1.2 to V2.0

	20.7 - New concept
	20.7.1 V2.1 to V2.2

	21 - Index

