
Real Time Developer Studio

Tutorial

Tutorial

Page 2 Real Time Developer Studio V4.3

Introduction - 3

A simple system - 5

SDL Tutorial - 6
Organization ... 6
Requirements ... 7
Design .. 11
Simulating the system ... 24

Simulation options 24
Byte-code generation 24
The SDL simulator 27
Verifying the behavior 35

Prototyping GUI ... 37
GUI editor 37
Simulation 42

Testing .. 44
Test case 45
Simulation against the SDL system 48

Code generation .. 49
Code generation options 49
Graphical debugging 52

Conclusion .. 57

SDL-RT Tutorial - 58
Organization ... 58
Requirements ... 59
Design .. 63
Running the system ... 81

Generation profile 82
Compilation errors 84
The SDL-RT debugger 88
Verifying the behavior 97

Prototyping GUI ... 100
GUI editor 100
Simulation 104

Conclusion .. 105

Automatic documentation generation - 107
Publications ... 108
Documentation .. 113
Automatic generation ... 117

Tutorial
1 - Introduction

Before starting this tutorial, it is important to understand the basic concepts used in Real
Time Developer Studio.These concepts derive from the two languages supported by
RTDS, SDL and SDL-RT:

• SDL stands for Specification and Description Language. SDL is a graphi-
cal, object-oriented, formal language defined by the International Telecommuni-
cation Union - Telecommunication Standardization Sector (ITU-T) as
recommendation Z100. The language is intended for the specification of com-
plex, event-driven, real-time and interactive applications involving many con-
current activities that communicate using discrete signals.

• SDL-RT stands for Specification and Description Language - Real Time.
It is a mix of SDL with another graphical language, UML, and of a textual lan-
guage, C. It retains the graphical abstraction brought by SDL while keeping the
precision of traditional techniques in real-time and embedded software develop-
ment and making simpler the re-use of legacy code by using natively the C lan-
guage. The object-orientation is also pushed a step further by using the UML
diagrams.

The underlying concepts of both languages are the same: the overall application to
develop is called the system. Anything that is outside the system is called the environ-
ment. The system itself is described via four complementary and consistent views:

• Architecture
A system can be decomposed in functional blocks. A block can be further
decomposed in sub-blocks and so on until the functionality of the final blocks are
simple enough. A block then fulfils its functionality with one or more proc-
esses, communicating with each other via messages (also called signals). A
process is basically a task and has an implicit message queue to receive messages
from other tasks. There is no need to define it. A block has no direct implementa-
tion in the final application; it is a matter of organizing and structuring the appli-
cation. Blocks and process are called agents.

• Communication
Agents exchange messages through channels. Messages going through chan-
nels are listed to define the interface between the agents. When it comes to final

process

block

block

system

process

process

msg msg

state

state state
Real Time Developer Studio V4.3 Page 3

Tutorial
code on the target, channels have no direct implementation; they are only used
for structuring the software and defining the interfaces.

• Behavior
A process behavior is described graphically as a finite state machine. Internal
process states, events (messages), decisions, timer manipulations, semaphore
manipulations have specific symbols briefly summarized below necessary to
understand the following tutorial:

SDL or SDL-RT procedures can be called within the process behavior descrip-
tion. In SDL-RT, C functions can be called as well; SDL also allows the call of C
function via external operators.

• Data and syntax
This is where SDL and SDL-RT differ the most:
• In SDL, data is defined via ADT (Abstract Data Types), using specific con-

cepts and notations. The data manipulation has also a specific syntax, derived
from languages such as Pascal.

• In SDL-RT, the C language is used to define and manipulate data, making
things more familiar to developers…

Another SDL-RT specificity is the integration of UML use case and class diagrams for
less time-critical parts of the system. Objects can be associated to processes or blocks and
used in the behavioral parts of the processes.
In both SDL and SDL-RT projects, RTDS also integrates the Message Sequence Chart
dynamic view. On such a diagram, time flows from top to bottom. Lifelines represent
agents, semaphores or objects and key SDL-RT events are represented. The diagram
emphasizes the sequence in which the events occur.
Would you need any extra information on the diagrams and their meaning, the following
references may be used:

• For SDL, the SDL Forum web-site has many tutorials and presentations:
http://www.sdl-forum.org/

• For SDL-RT, the reference manual is available in RTDS via the Help / SDL-RT ref-
erence menu. This manual is also available on the SDL-RT web-site:
http://www.sdl-rt.org

Start

State

Input

Output

Plain C code

Decision

Start timer

Stop timer

Take semaphore

Give semaphore

Create task

Declarations

S
D

L
-R

T
 o

n
ly
Page 4 Real Time Developer Studio V4.3

http://www.sdl-rt.org

Tutorial
2 - A simple system

The system we have chosen is simple enough to be written from scratch but rich enough
to pinpoint the basics of SDL-RT and SDL. It is a very basic phone system composed of a
central and of several phones. When the phones are created, the central gives them an
automatically computed phone number. When a user takes a phone to call another one,
the phone asks the central the id of the phone to be called identified by its phone number.
The caller sends directly a call request to the distant phone. For simplicity sake the dis-
tant phone automatically answers.

This tutorial is divided into two parts, depending on the language:
• The part using SDL starts page 6
• The part using SDL-RT starts page 58

And one part for the automatic documentation generation that is based on the SDL sys-
tem but that can be applied to the SDL-RT example.

If you do not want to design the example, you can find a complete project of this system
in the examples under "SDL/tutorial" and "SDL-RT/tutorial".
Real Time Developer Studio V4.3 Page 5

Tutorial
3 - SDL Tutorial

3.1 - Organization
Let’s get our hands on the tool ! Start Real Time Developer Studio. The window that
appears is called the Project manager:

The Project manager window

The project manager gathers all the files needed in the project. First let’s create a new
project with the New SDL project button:
Page 6 Real Time Developer Studio V4.3

Tutorial
The Project manager displays an empty project:

An empty new project

Let’s save it straight away as "phone" and put it in a dedicated directory:

Phone empty project

3.2 - Requirements
Let us express the requirements of our system with a Message Sequence Chart (MSC). To
add an MSC, select the project, and click on the right mouse button. A contextual menu
will appear:

 Add components to the project
Real Time Developer Studio V4.3 Page 7

Tutorial
Select Add component and the following window will appear:

The add component window

Select MSC as a node type and click on the New button. Go to the directory where your
project is and type in "normal" with no extension. Click on save and you will get the fol-
lowing window:

Completed Add component window

Click Ok and the "normal" MSC appears in the "phone" project:

"normal" MSC in "phone" project
Page 8 Real Time Developer Studio V4.3

Tutorial
Double click on the MSC name or icon to open it. The MSC editor opens:

The MSC editor
Real Time Developer Studio V4.3 Page 9

Tutorial
Draw the following to express the requirements of our phone system:

The "normal" MSC

You will have to use the tool bar on the left; You may also use the contextual menu (right
mouse button) to make the condition symbols span the four lifelines. If you have any
problem refer to the user’s manual.

This MSC basically says the following:
• pCentral indicates the system has been initialized and is ready
Page 10 Real Time Developer Studio V4.3

Tutorial
• The initial global state is Disconnected
• The user represented as the environment (RTDS_Env) makes a request on the

first phone pLocal to call the phone with the number 2
• The first pLocal asks the central the queue id of the phone with number 2
• The first pLocal uses the id to send a connect request (sCnxReq) to the second
pLocal

• The second pLocal being disconnected, it confirms the connection (sCnxConf)
• The first pLocal tells the environment the call has succeeded
• The global system state is then considered Connected
• The user hangs up
• The first pLocal sends a disconnection request (sDisReq) to the second pLo-
cal

• The second pLocal confirms disconnection (sDisConf) back to the first pLo-
cal

• The first pLocal tells the environment the disconnection is confirmed
• The overall final state is back to Disconnected

You can write some other MSCs to get clearer ideas on what you want to do. Note the
instances represented on the MSC can be any type of agent. Somehow you are roughly
defining the first architectural elements. You can copy from the SDL/Tutorial example
the "normal" and "busy" MSCs in the project to complete the description.

3.3 - Design
Let us now specify and design the system. As for creating an MSC, select the project and
add a System component:

"Phone" SDL system in the "Phone" project
Real Time Developer Studio V4.3 Page 11

Tutorial
Double click on the system name or icon to open the system diagram in the SDL editor:

The SDL editor

The system will be divided into two main parts:
• The definition of the data types and messages we will use.
• The architecture in terms of processes.
Page 12 Real Time Developer Studio V4.3

Tutorial
To avoid mixing things, we will use partitions in the diagram. A partition is just a means
to separate different kind of contents within a diagram; it is just a group of pages that can
contain any symbol allowed in the diagram.

RTDS has created the first partition for us, so let’s use it to declare the types and mes-
sages we’ll need:

Declarations in the "Phone" system
Real Time Developer Studio V4.3 Page 13

Tutorial
The top declaration text box declares the data and types we need:
• The SYNONYM declaration declares a constant for the maximum number of

phones;
• The SYNTYPE declaration declares a special type for the phone. This is basically

an integer restricted to be between 1 and the maximum number of phones;
• The NEWTYPE declaration actually declares the type for the array of phone pro-

cesses; the index is a phone number, and the value is a PID, which is a basic type
in SDL, just as INTEGER.

The second declaration text box declares the signals that will be used in the system. They
are mainly the ones we used in the MSC we created earlier, plus a few ones for error con-
ditions. Three of the signals we declare have parameters: sCall, sGetId and sId. Note
the sCall and sGetId signals use the PhoneNumberType type we’ve declared above.

Now let’s design the architecture of the system. As we said, we’ll use another partition, so
let’s create it first, using the new partition button in the partition tool-bar:

A new empty partition appears. What you’ve already done is of course not lost: you can
go back to it using the other buttons in the partition tool-bar.

The system being very simple it will not require any block decomposition. The central
will be a process as well as the phones. All the phones have the same behavior so they will
be several instances of the same process. The phone system is therefore made of two pro-
cesses. For better legibility their name will be prefixed by a "p" because they are pro-
cesses.

Please note this architecture is not strictly correct in regular SDL, since processes should
not appear directly at system level. But RTDS allows it, so let’s keep things simple.
Page 14 Real Time Developer Studio V4.3

Tutorial
Note: To draw the cSelf channel keep the shift key down and click where the channel
should break. To change the position of the channel name, select a new segment, right-
click on it and select Set as text segment.

phone system view

Since pCentral is making the link between the pLocal processes and considering the
number of phones can be modified, pCentral will create all instances of pLocal. To
represent that, the name pLocal is followed by the initial number of instances and the
maximum number of instances we defined in the SYNONYM in the other partition.
Real Time Developer Studio V4.3 Page 15

Tutorial
Messages to be exchanged between the processes are listed in the channels . To
specify the incoming and outgoing messages in the diagram double click on the "[]" and
type in between the square brackets. The channel going to the outer frame is implicitly
connected to the environment. In the above example the channel cEnvLocal connects
pLocal to the environment and defines sCall and sHangUp as incoming messages and
sCallConf, sBusy and sHangUpConf as outgoing messages. The channel cEnvCen-
tral connects pCentral to the environment and defines sReady as an outgoing mes-
sage. The cSelf channel has been created to represent messages exchanged between the
different instances of pLocal.

Select pLocal and click on the right mouse button to open the process definition:

Contextual menu

Since the process is not in the project, it will ask if it should be added. Answer yes and a
save window pre-filled with the process name appears. Click Save and you end up in a
new tab in the diagram editor window showing the process definition: The default layout
Page 16 Real Time Developer Studio V4.3

Tutorial
presents the first partition with only a single page. We may use either several partitions
to describe our process or add extra pages via the Diagram / Partition page setup menu.

The process behavior description in SDL editor
Real Time Developer Studio V4.3 Page 17

Tutorial
The first thing to design is the start transition. It is what the process will do as soon as it
is created. In the case of pLocal process, we do nothing:

That transition means that once the process is started it will go to state Idle. Note you

can use automatic insertion in the editor: place a start symbol , keep it selected and

double-click on the state symbol in the tool bar . The state symbol is automatically

inserted and connected after the start symbol. You can also place the symbols manually
and connect them one by one.

An internal data dictionary is updated on the fly to ease the writing of the process behav-
ior. First create the Idle state definition: click on the State icon and put it in your dia-
gram:

The state name is in edit mode so you can directly type Idle in it; but you may also use
context help by pressing F8 or go to the Edit / List available choices menu to list the avail-
able choices for the state symbol.

There is only one entry because the Idle state is the only one that has been defined so
far.

Once the state has been defined, double click on the input symbol in the tool bar
and the input message symbol will be automatically inserted below the state symbol:
Page 18 Real Time Developer Studio V4.3

Tutorial
A template of the expected syntax is written by default. Press F8 or go to the Edit / List
available choices menu. A window will list all the SDL messages that have been defined at
system level:

Double click on the sCall message and complete it with the parameter as described
below. This facility is context sensitive and works for messages, states and timers. You
can now finish the state description by yourself as explained below.

Considering the requirements described earlier, the pLocal process can either be asked
to make a call by the operator or receive a call from another phone. The Idle state can
therefore receive two types of messages described below:

When receiving sCnxReq message, it will reply sCnxConf to the sCnxReq sender. TO
and SENDER are SDL keywords in the output symbol. The SENDER id is stored in
remotePid variable. The process then goes to Connected state.

If asked to make a call, the phone number to call needs to be retrieved. To do so, a vari-
able of the correct type is given as parameter of the receiving message. It will be assigned
when this message is received. Since pLocal has no idea how to address a phone num-
ber it asks the central process the process id of the called pLocal with the sGetId mes-
sage. The calledNumber variable is re-used as is. No receiver is specified since the
receiver process is completely determined by the system architecture. We may however
Real Time Developer Studio V4.3 Page 19

Tutorial
have used TO pCentral to specify it, or even TO PARENT since pLocal was created by
pCentral. The process then goes to GettingId state, waiting for the central to answer.

Once the pid of the remote phone is received from the central, it is stored in a local vari-
able and the connection request message sCnxReq is sent. The process then goes into
state Connecting. If the pid of the receiver was not found, the sError signal is
received. A sBusy message is sent back to inform the user and the process goes back into
state Idle:

Note the receiver for the sBusy message is specified by using VIA cEnvLocal. It means
that the signal will be sent to the process at the other end of the channel cEnvLocal, con-
nected to the process pLocal in the system diagram:

Since this channel is connected to the system’s external frame, the signal will go to the
environment. Please note specifying a receiver for sBusy is necessary here, since this
signal may be sent not only to the environment, but also to the other pLocal processes
in the system. If a receiver is not specified, the SDL semantics is to choose randomly a
receiver among the available ones, so the signal may have been received by the wrong
process.

Once the connection request has been sent, the remote process is either available and
replies sCnxConf, or not available and replies sBusy:
Page 20 Real Time Developer Studio V4.3

Tutorial
Depending on the answer the resulting state is different.

Now that you have understood the basics of the finite state machine you can complete the
process behavior:

As the description is done, the browsing window on the right side is updated allowing to
quickly jump to a transition: just click on the transition. This is especially useful when
the system gets big.

It is now time to declare variables in our process. To do so, the text symbol in the process
behavior diagram is used. The declarations are introduced via the keyword DCL, followed
Real Time Developer Studio V4.3 Page 21

Tutorial
by a list of couples <variable name> <variable type>, with an optional default
value:

Note the type of the variable used in the input and output symbols for sCall and
sGetId are not strictly the ones appearing in the definition: the signal declares a Pho-
neNumberType, but we use a regular INTEGER. This is no problem as long as the INTE-
GER satisfies the conditions set on the PhoneNumberType type.

Let’s have a look at process pCentral now. It must do the following things:
• At startup, it creates all instances of pLocal and gives them a new phone num-

ber.
• When asked for a phone number, it sends back the pid for the corresponding

process.

Go to the system diagram Phone, and double click on pCentral. Since the process is
not in the project it will ask if it should be added. Answer yes and a pre-filled save window
with the process name appears. Click Save and the process definition window appears.
Let’s first write the needed declarations and the initial transition:

The variables include an index which will be used as the phone number for created pLo-
cal’s, and an array of process ids mapping the phone number to the pid.

The initial transition creates all instances of pLocal within a loop testing index <=
NUM_PHONE. Each time the loop is executed the pLocal process is created and its pro-
cess id (OFFSPRING keyword for the parent process) is stored in the pLocals array,
using the phone number as index.
Page 22 Real Time Developer Studio V4.3

Tutorial
After the pLocal processes creation, the sReady signal is sent to the environment to
indicate initialization is finished and the process goes to state Idle.

Note we have voluntarily introduced an error by typing pLocls instead of pLocals in
the lowest block of code to later show how to analyze the errors.

The only request that can be received by pCentral process is sGetId. The phone
number to reach is the parameter passed to the signal, which we will receive in the
index variable. The process id of the phone is extracted from the array and sent back
directly to the sender of the sGetId message (SDL keyword SENDER). If the phone
number is out of range, an error message is sent back to the sender.
Real Time Developer Studio V4.3 Page 23

Tutorial
3.4 - Simulating the system

Now that the system has been designed, we’ll debug it using RTDS’s SDL simulator. The
simulation process is divided into two main phases:

• First, the code for all transitions in all system’s processes is transformed into a
language called SDL byte-code. This language is easy to generate from the pro-
cess description but far easier to interpret than plain SDL instructions. This lan-
guage is used only internally and has no direct external representation.

• The generated byte-code is then executed based on a scheduling managed by
RTDS. The simulation conforms to the SDL semantics: all transitions are consid-
ered to be executed in no time and cannot be interrupted.

3.4.1 Simulation options

The Simulation options and the code generation options are edited via the Generate /
Options... menu. By default a valid simulation profile is listed as well as an empty code
generation profile:

As the simulation profile is the only valid debug profile, it will be used by RTDS by
default.

3.4.2 Byte-code generation

Select the Phone system in the project manager and click on the Debug quick button in

the tool bar:

A log window opens and displays the actions performed by the byte-code generator.
Before actually generating anything, RTDS performs a global syntax and semantics check
on the written code. So any basic error such as typing mistakes or misspelling in variable
names will be reported during this phase.
Page 24 Real Time Developer Studio V4.3

Tutorial
Since we introduced an error in process pCentral, this is what appears in the byte-code
generator log window:

The byte-code generation started at system level, then went down in pCentral. During
the generation for pCentral’s start transition, the wrong name pLocls was encoun-
tered. Since no variable with this name is known, RTDS looked for an operator named
pLocls (the operator would have been called with the same syntax), but didn’t find any.
So the generation stopped and this error message was displayed.

Double clicking on the error automatically opens the SDL editor and selects the symbol
where the error occurred:
Real Time Developer Studio V4.3 Page 25

Tutorial
Once the error have been corrected the log window should look like this:
Page 26 Real Time Developer Studio V4.3

Tutorial
3.4.3 The SDL simulator

Once the byte-code generation is over, the SDL simulator window opens automatically:

The SDL simulator window

The simulator window shows a global state of the running system in terms of:
• Running processes
• Sent messages
• Started timers
• Local variables when in the context of a running process
• Watched variables, allowing to see the value of any variable at any time

The lower part of the window is a shell where actions taking place in the system will be
reported.

Let’s first run a MSC trace so that we can see graphically what is happening in the system.

Click on the Start MSC trace quick button: A MSC Tracer window appears.
Real Time Developer Studio V4.3 Page 27

Tutorial
Now let’s actually start the system by clicking on the Run quick button:

Let the system run until all pLocal processes are created by pCentral and their start
transition executed:

Note you can detach the execution button bar by dragging it away from its header (the

zone looking like this:):

Detached execution buttons toolbar

The environment is represented by the pseudo-process RTDS_Env. This is not really a
process as it does not appear in the list of running processes in the simulator window and
has no code associated. It is only used to trace messages sent from and received by the
environment.

Process pCentral dynamically creates 5 instances of pLocal, sends the sReady mes-
sage to the environment and goes to state Idle. Each pLocal instance then go to state
Idle. On the left is the value of the system time. According to SDL semantics, all start
Page 28 Real Time Developer Studio V4.3

Tutorial
transitions executed in no time, so the system time is still 0 after all processes have
started.

Click on the Stop button to break execution:

The SDL simulator window shows the list of all running processes, displaying for each
one its name, process id, number of messages in its message queue and SDL state:

SDL simulator window

Now let’s put a breakpoint in process pCentral:
• Open pCentral from the project manager.
Real Time Developer Studio V4.3 Page 29

Tutorial
• Go to the transition for signal sGetId in state Idle using the state / message
browser:

or the View menu:

The state / message browser and the View / Go to menu allow to quickly navi-
gate among the transitions defined in the process. Selecting the transition will
automatically open the partition where the transition is and scroll to the corre-
sponding signal input symbol.

• Click on the signal output symbol just after the decision’s true branch:
Page 30 Real Time Developer Studio V4.3

Tutorial
• Click on quick-button or go to Debug / Set breakpoint menu in the SDL edi-

tor. A breakpoint symbol is displayed on the side of the selected symbol:

We will now simulate an incoming message from a user:
• Go to the SDL Simulator and click on "Send an SDL message to the running sys-

tem" quick-button

• The Send an SDL message window shows up:

Send an SDL message window

On the left are listed all possible receiving processes, in the middle all possible
messages, i.e. all messages used in the SDL system, and on the right the value of
the parameters associated with the selected message. Clicking on either the mes-
Real Time Developer Studio V4.3 Page 31

Tutorial
sage or the receiver will restrict the other list to show only the consistent choices.
Here, we want to send a sCall signal, so let’s select this signal in the list:

Since process pCentral cannot receive signal sCall, it disappears from the list
of available receivers.

• Now let’s select the signal receiver and input the called phone number, which
should be passed as a parameter to the sCall signal:

The signal parameters are described in the right part of the signal send window.
Double click on the parameter to edit its value and hit <Enter>.

• Click the Send & close button.
• Resume system execution by clicking the Run button in SDL simulator window.
• The following actions appear in the MSC trace:
Page 32 Real Time Developer Studio V4.3

Tutorial
• When the breakpoint is hit: the SDL editor then pops up and displays the symbol
where the execution has stopped:

• Since we are in the context of a running process, local variables are automatically
displayed in the SDL simulator window. All complex variables such as structs or
arrays can be expanded to show their contents. Here are the local variables with
the pLocals array expanded:

You can see the value for index is 3, so the value sent with the sId message will
be the pid stored at index 3 in pLocals, i.e. 4.

• You can also execute instructions line by line in the symbols by using the Flat

step quick-button:

(NB: you may have to click on the button twice to go to the next state)
The signal send has been done, as shown in the MSC trace:

• Let’s now finish the system execution by pressing the Run button once more.
Real Time Developer Studio V4.3 Page 33

Tutorial
• When the signal sCallConf has been received by RTDS_Env in the MSC trace,

stop system execution with button

The SDL states for all running processes are updated in the simulator window:

• The SDL state of a process can be dynamically changed using the contextual
menu in the process list:

Some caution is required with this feature, since it may have unexpected results
on the system behavior…

• We will now disconnect the two connected pLocal processes by sending another

signal. So press once more:
Page 34 Real Time Developer Studio V4.3

Tutorial
This will send a sHangUp signal to the first pLocal (the receiver for our sCall
message) with no parameters.

• Send the message with the Send & close button.
• We saw that stepping could be done at code line level. There are other step levels

including:

• Step at SDL event level with button

This button will step one SDL event at a time. Click on it while looking at the
MSC trace; you’ll see that each time a SDL event happens (signal send, signal
receive, process creation, timer start, and so on…), the system execution stops
just after the event.

• Step at transition level with button
This button will execute a whole transition and stop just after its end (usually
the next state symbol). Click on it while looking at the MSC trace; you’ll see
the active process execute all actions in current transition up to the state
change, and the system execution stops.

3.4.4 Verifying the behavior

We will now check if the behavior is the one we expected in the first place. To do so we
will use the MSC diff feature.

• Make sure the execution is over by clicking button a last time. Then go to

the MSC trace window, save the trace and close it.
• Close the simulator window.
• In the project manager, open the trace diagram.
• Go to the Diagram / Make diff on diagram... menu to get the MSC Diff configuration

window and set it up as described below:

The first MSC is the trace and the second is the normal scenario we described in
the first place. Since the normal MSC was not supposed to be thoroughly
Real Time Developer Studio V4.3 Page 35

Tutorial
detailed we will only show and compare messages without considering their
parameters.
Click OK; the following window appears:

The only differences between the MSCs are the dynamic task creation of the
pLocal instances. After that the exchange of messages are the same between the
dynamic trace and the specification. The SDL system therefore conforms to the
normal MSC specification.

This is the end of this very simple SDL simulation session. There are many areas that
have not been covered, such as timers, procedures, external operators, system queue
manipulations, watched variables, and so on… You may discover all these features your-
self using the examples delivered in RTDS distribution or by designing your own system.
Page 36 Real Time Developer Studio V4.3

Tutorial
3.5 - Prototyping GUI
RTDS has a built in support to design simple prototyping interface to ease testing. We
will build a very simple one for our phone system to demonstrate its capabilities.

3.5.1 GUI editor
Add a Prototyping GUI node in the project and open it:
Real Time Developer Studio V4.3 Page 37

Tutorial
The left panel contains the incoming triggers for the GUI, the central panel the GUI itself,
and the right panel the outgoing message from the GUI:
Page 38 Real Time Developer Studio V4.3

Tutorial
Let’s add 2 buttons and one LED:
Real Time Developer Studio V4.3 Page 39

Tutorial
Change their display value in the central panel and their widget name in the right panel
in order to recognize them:

Let’s say that when the user clicks on the "Call John" button, the GUI sends an sCall
message with parameter set to "2". Select the CallJohn widget on the right panel and
right click:
Page 40 Real Time Developer Studio V4.3

Tutorial
All the available messages in the system are then listed. Select sCall and expand the
created sub-tree. The parameters are listed with their corresponding type:

Let’s say the parameter value is ’2’ and let’s send sHangUp without any parameter when
clicking on Hangup:

On the left panel we will consider a new trigger, select the top of the tree and right click to
get a list of all the possible triggers:

Let’s add the sCallConf trigger. When a trigger is received by the GUI, a case with a set
of filters is verified. Let’s add a new case:
Real Time Developer Studio V4.3 Page 41

Tutorial
In our case we won’t put any filter, we will just change the color of the LED:

Change the action to change the color. It is possible to directly name the basic colors, oth-
erwise the RGB hexa code can be used. Let’s put the LED back to red when we receive a
HangUp confirmation and we’re done:

3.5.2 Simulation

Let’s start the Simulator again and click on the Start prototyping GUI quick button:
Page 42 Real Time Developer Studio V4.3

Tutorial
The GUI will start and connect automatically to the system:

Start an MSC trace and run the system. Click on the "Call John" button, that should send
the sCall message with parameter value set to 2, the sCallConf should be received by
the GUI, and the LED should be set to green.

In practice, this is not a good example because there are a lot of different pLocal pro-
cesses that could receive the messages sent by the GUI so the receiver is randomly
selected.

For a more advanced GUI, please have a look at the AccessControl system in the SDL
example directory.
Real Time Developer Studio V4.3 Page 43

Tutorial
3.6 - Testing
RTDS supports TTCN-3 standard testing language for edition and simulation. We will
build up a small test case and run it on the phone system we have just designed. Let’s add
a TTCN-3 compoment to the project and name it TestPhone (make sure the module
name in the file is the same as the file name):
Page 44 Real Time Developer Studio V4.3

http://www.ttcn-3.org/
http://www.ttcn-3.org/
http://www.ttcn-3.org/

Tutorial
3.6.1 Test case
The text editor recognizes the TTCN-3 syntax so all the keyword will be highlighted. Here
is the test suite we will explain in the following paragraphs:
Real Time Developer Studio V4.3 Page 45

Tutorial
Since TTCN aims at testing complex systems, it is strongly structured. We first need to
define the data types we will be using in our test case, define the interfaces with the sys-
tem, and the value templates that will be exchanged.

3.6.1.1 Declarations

The messages exchanged between the system and the environment are the ones listed in
the channels connect to the frame of the system. Most of the message exchanged with the
system have no parameters except sCall. sCall takes an integer sub-type as a parameter
we will re-define here:

// Data types
type integer PhoneNumberType (1..5)

There is no message or signal specific type in TTCN, if the message has parameters it is
defined as a record, if it has no parameters, it is defined as an enumerated with a single
posble value:

// The messages
type record sCall {

PhoneNumberType param1
}

type enumerated sHangUp { e_sHangUp }
type enumerated sBusy { e_sBusy }
type enumerated sCallConf { e_sCallConf }
type enumerated sHangUpConf { e_sHangUpConf }
type enumerated sReady { e_sReady }

3.6.1.2 Ports

TTCN-3 can test asynchronous systems, synchronous systems, or a combination of both.
In our tutorial example only asynchronous messages are exchanged with the system. We
will define a port for each channel in the system representing the 2 interfaces:

// The ports
type port cEnvLocal_type message {

out sCall;
out sHangUp;
in sBusy;
in sCallConf;
in sHangUpConf
}

type port cEnvCentral_type message {
in sReady
}

We will now define the component we will be testing, that is the system itself. The name
of the component must be the name of the SDL system.

// The SUT - System Under Test
type component Phone {

port cEnvLocal_type cEnvLocal;
port cEnvCentral_type cEnvCentral;
};
Page 46 Real Time Developer Studio V4.3

Tutorial
3.6.1.3 Templates

When exchanging messages with the system, the values of the parameters of the mes-
sages must be pre-defined. These values are called templates. Templates are used to
both:

• define the values of the outgoing messages parameters,
• to verify the values of the received messages parameters are correct.

In our phone example, the messages coming from the system do not have any parameter,
only the sCall message has one parameter. Still we need to define templates for all the
message we will exchange with the system.

// Templates definitions
 template sReady SystemIsReady := ?;
 template sCallConf CallConf := ?;
 template sBusy Busy := ?;
 template sCall John := { param1 := 2 };

The John template will set the parameter of sCall to ’2’.

3.6.1.4 Core test case

The core test case is the execution part, the scenario itself. To make it simple, we will first
wait until the system sends the ready message on the cEnvCentral port, then we will call
John and wait for the answer. An alternative is created: the call is confirmed and we will
consider the test pass, or John is busy and we will consider the test fail:

// the test cases
 testcase tc_callJohn() runs on Phone
 {
 cEnvCentral.receive(SystemIsReady);
 cEnvLocal.send(John);
 alt
 {
 []cEnvLocal.receive(CallConf)
 {
 setverdict(pass);
 }
 []cEnvLocal.receive(Busy)
 {
 setverdict(fail);
 }
 }
 }

3.6.1.5 Control part

The control part is what will be executed, this is where you combine which test case you
would like to run on the system. Please note there might be a different verdict for each
test case. This won’t stop the execution of the control part. In our tiny example we will
just run the unique control part we wrote:
 // The control part
 control{
Real Time Developer Studio V4.3 Page 47

Tutorial
 var verdicttype verdict1;
 verdict1 := execute(tc_callJohn());
 }

We’re done with our test case, let’s now run the test on the system and see what it does.

3.6.2 Simulation against the SDL system

Select the test suite in the project manager and click on the Debug button.

Please note it is possible to set breakpoints in the test case as well as in the SDL system.

Start an MSC trace and run the System. The scenario will execute by itself and the verdict
is displayed in the shell and in the MSC trace:

Because there are several instances of pLocal it might happen that the test case calls
itself. In that case, run the scenario again for the test to pass.
Page 48 Real Time Developer Studio V4.3

Tutorial
3.7 - Code generation

3.7.1 Code generation options
It is also possible to generate C code out of the SDL system in order to implement it on a
real target. For this chapter, it is necessary to have a supported debugger installed such
as gdb or MinGW.

The generation profiles are listed in Generate / Options...
Real Time Developer Studio V4.3 Page 49

Tutorial
The directory where the C files will be generated is automatically set to the ccg subdirec-
tory under the project directory. Now we’ll use the Option wizard... to quickly create a
valid profile such as described below:
Page 50 Real Time Developer Studio V4.3

Tutorial
Make sure the "Generate environment process" box is checked.
Real Time Developer Studio V4.3 Page 51

Tutorial
3.7.2 Graphical debugging
Once the SDL debug profile is properly defined select the SDL system in the Project

manager and click on the Debug quick button in the tool bar:

Since several execution profiles are defined, a window pops up asking for the profile you
want to work with:
Page 52 Real Time Developer Studio V4.3

Tutorial
Select C code generation and click Ok. The code will be generated, compiled, and the
debugger will be started automatically :
Real Time Developer Studio V4.3 Page 53

Tutorial
The debugger interface looks pretty much like the simulator one :

Click on the Start MSC trace quick button:

An MSC Tracer window appears. Let’s start the system; click on ’run’ quick button:
Page 54 Real Time Developer Studio V4.3

Tutorial
The MSC Trace will look like the one below :

Click on the Stop button to break execution:
Real Time Developer Studio V4.3 Page 55

Tutorial
The SDL debugger window shows the list of processes with their names, priority, process
id, queue id, number of messages in their respective message queues, SDL internal state
as we defined in the diagrams, and the RTOS internal system state if available.

As with the SDL Simulator, it is possible to set breakpoints, view the value of variables,
send messages... Would you like to know more about graphical debugging of C code, we
strongly suggest to go through the SDL-RT tutorial as the debugging features are the
same.
Page 56 Real Time Developer Studio V4.3

Tutorial
3.8 - Conclusion
During this tutorial we have been through the basics of the following:

• SDL,
• Project manager,
• SDL editor,
• MSC editor,
• SDL simulation including three stepping modes:

• SDL code line,
• SDL event,
• transition,

• Conformance checking,
• Prototyping GUI,
• Test,
• C code generation.

As a result, you saw that SDL is perfectly suited to describe high-level specifications for
real time projects. Its complete description of architecture and behavior, including the
code itself with the Abstract data types, allows you to fully describe your system indepen-
dently from any technical requirement such as the type of target, the RTOS or even the
implementation language you’ll use.

These advantages may however become drawbacks when it comes to actually design how
the system will actually be implemented on a given target, since additional requirements
will have to be taken into account:

• Use of legacy code and/or external libraries, usually written in C with no way to
manipulate SDL’s high-level abstract data types;

• Support for additional concepts, such as semaphores or pointers, unneeded in an
SDL description, but usually required in real-time systems.

This is the aim of the SDL-RT language, which keeps the graphical description used in
SDL but introduces all missing concepts required for system low-level design.

So let’s move on to the SDL-RT tutorial!
Real Time Developer Studio V4.3 Page 57

Tutorial
4 - SDL-RT Tutorial

4.1 - Organization
Let’s get our hands on the tool ! Start Real Time Developer Studio. The window that
appears is called the Project manager:

The Project manager window

The project manager gathers all the files needed in the project. First let’s create a new
project with the New SDL-RT project button:
Page 58 Real Time Developer Studio V4.3

Tutorial
The Project manager displays an empty project:

An empty new project

Let’s save it straight away as "phone" and put it in a dedicated directory:

phone empty project

4.2 - Requirements
Let us express the requirements of our system as MSC. To add an MSC, select the project,
and click on the right mouse button. A contextual menu will appear:

 Add components to the project
Real Time Developer Studio V4.3 Page 59

Tutorial
Select Add component and the following window will appear:

The add component window

Select MSC as a node type and click on the New button. Go to the directory where your
project is and type in "normal" with no extension. Click on save and you will get the fol-
lowing window:

Completed Add component window

Click Ok and the "normal" MSC appears in the "phone" project:

"normal" MSC in "phone" project
Page 60 Real Time Developer Studio V4.3

Tutorial
Double click on the MSC name or icon to open it. The MSC editor opens:

The MSC editor
Real Time Developer Studio V4.3 Page 61

Tutorial
Draw the following to express the requirements of our phone system:

The "normal" MSC

You will have to use the tool bar on the left and the right mouse button on the lifelines to
get them "survive". If you have any problem refer to the user’s manual.
Page 62 Real Time Developer Studio V4.3

Tutorial
This MSC basically says the following:
• pCentral indicates the system has been initialized and is ready
• The initial global state is disconnected
• The user represented as the environment (RTDS_Env) makes a request on the

first phone pLocal to call the phone with the number 0x02
• The first pLocal asks the central the queue id of the phone with number 0x02
• The first pLocal uses the id to send a connect request (conReq) to the second
pLocal

• The second pLocal being disconnected, it confirms the connection (conConf)
• The first pLocal tells the environment the call has succeeded
• The global system state is then considered connected
• The user hangs up
• The first pLocal sends a disconnection request (disReq) to the second pLocal
• The second pLocal confirms disconnection (disConf) back to the first pLocal
• The first pLocal tells the environment the disconnection is confirmed
• The overall final state is disconnected

You can write some other MSCs to get clearer ideas on what you want to do. Note the
instances represented on the MSC can be any type of agent or semaphore. Somehow you
are roughly defining the first architectural elements. You can copy from the phone exam-
ple "normal" and "busy" MSCs in the project to complete the description.

4.3 - Design
Let us now specify and design the system. As for creating an MSC, select the project and
add a C header file component:

This header file will contain all type and macro definitions to use in the whole system.
What we need is the number of phones that will be created and a type for the phone
number. So open common.h type its contents:

/* Number of phones to create */
#define NUM_PHONE 5
Real Time Developer Studio V4.3 Page 63

Tutorial
Now, let us actually design the system itself. Select the project and add a System compo-
nent:

"phone" SDL-RT system in the "phone" project
Page 64 Real Time Developer Studio V4.3

Tutorial
Double click on the system name or icon to open the system diagram in the SDL-RT edi-
tor:

The SDL-RT editor

The system being very simple it will not require any block decomposition. The central
will be a process as well as the phones. All the phones have the same behavior so they will
be several instance of the same process. The phone system is therefore made of two pro-
cesses. For better legibility their name will be prefixed by a ’p’ because they are processes.
Real Time Developer Studio V4.3 Page 65

Tutorial
Note: to draw the cSelf channel keep the shift key down and click where the channel
should break.

phone system view

Since pCentral is making the link between the pLocal processes and considering the
number of phones can be modified, pCentral will create all instances of pLocal. To
represent that, the name pLocal is followed by the initial number of instances and the
maximum number of instances. Since the maximum number of instances is defined in
common.h, we include it in a text box.
Page 66 Real Time Developer Studio V4.3

Tutorial
Messages to be exchanged between the processes are defined in the additional heading
symbol and listed in the channels . To specify the incoming and outgoing mes-
sages in the diagram double click on the "[]" and type in between the square brackets.
The channel going to the outer frame is implicitly connected to the environment. In the
above example the channel cEnvLocal connects pLocal to the environment and
defines call and hangUp as incoming messages and callConf, busy and hangUp-
Conf as outgoing messages. The channel cEnvCentral connects pCentral to the
environment and defines ready as an outgoing message. The cSelf channel has been
created to represent messages exchanged between the different instances of pLocal.

In the message definitions, only the messages call, getId and idMsg have parameters.
In our example process ids will be stored, so in order to design an RTOS independent
model the RTDS_QueueId type will be used. During code generation this type will be
mapped to the real RTOS data type.

Messages can handle several parameters and it is important to understand what happens
depending if the parameter is a reference or a value:

• If the parameter type is a reference (a pointer)
Only the pointer is copied but the length does not need to be specified: it will be
computed using a sizeof(...) of the type. That also means the pointed buffer
must be allocated before sending the message and freed when received.

• If the parameter type is a value
The value is simply copied when sent.

Select pLocal and click on the right mouse button to open the process definition:

Contextual menu

Since the process is not in the project it will ask if it should be added. Answer yes and a
save window pre-filled with the process name appears. Click Save and you end up in a
Real Time Developer Studio V4.3 Page 67

Tutorial
new tab of the diagram editor showing the process definition. The default layout presents
a single page but extra pages can be added from the Diagram / Partition page setup menu.

The process behavior description in SDL-RT editor
Page 68 Real Time Developer Studio V4.3

Tutorial
The first thing to design is the start transition. It is what the process will do as soon as it
is created. In the case of pLocal process we do nothing:

That transition means that once the process is started it will go to state idle. Note you

can use automatic insertion in the editor: place a start symbol , keep it selected and

double-click on the state symbol in the tool bar . The state symbol is automatically

inserted and connected after the start symbol. You can also place the symbols manually
and connect them one by one.

An internal data dictionary is updated on the fly to ease the writing of the process behav-
ior. First create the idle state definition: click on the State icon and put it at the top of
your page:

The state name is in edit mode so you can directly type idle in it and return or press F8
or go to the Edit / List available choices menu to list the available choices for the state sym-
bol.

There is only one entry because the idle state is the only one that has been defined so
far.

Once the state has been defined, double click on the input symbol in the tool bar
and the input message symbol will be automatically inserted below the state symbol:
Real Time Developer Studio V4.3 Page 69

Tutorial
A template of the expected syntax is written by default. Press F8 key or go to the Edit / List
available choices menu. A window will list all the SDL-RT messages that have been
defined as message at the upper level:

Double click on the call message and complete it with the parameter as described
below. This facility is context sensitive and works for messages, states, semaphores, and
timers. You can now finish the state description by yourself as explained below.

Considering the requirements described earlier the pLocal process can either be asked to
make a call by the operator or receive a call from another phone. The idle state can there-
fore receive two types of messages described below:

When receiving conReq message, it will reply conConf to the conReq sender. TO_ID
and SENDER are SDL-RT keywords in the output symbol. The SENDER id is stored in
remoteId variable. The process then goes to connected state.

If asked to make a call, the phone number to call needs to be retrieved. To do so, a vari-
able of the correct type is given as parameter of the receiving message. It will be assigned
when this message is received. Since pLocal has no idea how to address a phone number
it asks the central process the receiver queue id with the getId message. The phone-
Number variable is re-used as is and the TO_NAME SDL-RT keyword is used to specify the
receiver. Note TO_ID PARENT could have been used since central process is the current
process parent. The process then goes to gettingId state waiting for the central to
Page 70 Real Time Developer Studio V4.3

Tutorial
answer. Note also that the memory allocated for phoneNumber memory will be freed by
the receiver of the getId message.

Once the queue id of the remote phone is received from central, it is first stored in a local
variable and the connection request message conReq is sent. The process then goes to
connecting state. If the pid of the receiver was not found, the errorMsg message is
received. The process tells the user (environment: TO_ENV) and goes back to idle
state:

The remote process is either available and replies conConf, or not available and replies
busy:

Depending on the answer the resulting state is different.
Real Time Developer Studio V4.3 Page 71

Tutorial
Now that you have understood the basics of the finite state machine you can complete the
process behavior:

As the description is done, the browsing window on the right side is updated allowing to
quickly jump to a transition: just click on the transition. This is especially useful when
the system gets big.

It is now time to declare variables in our process. To do so the text symbol in the process
behavior diagram is used with standard C declarations in it:
Page 72 Real Time Developer Studio V4.3

Tutorial
Note the types of the variables used in the input and output symbols: short for call
and getId and RTDS_PID for idMsg. RTDS_PID is the type for a process identifier; It is
mapped to the corresponding RTOS-dependent data type.

Let’s have a look at process pCentral now. It must do the following things:
• at startup, it creates all instances of pLocal and gives them a new phone number;
• when asked for a phone number, it sends back the queue id for the correspond-

ing process.

To avoid mixing the code managing the phone numbers with the code managing the pro-
cesses, let’s decide we’ll use a class associated to pCentral that will take care of the
phone numbers.

The first thing to do is to tell pCentral that it should use a class. So, let’s go back to the

project manager with the quick button and let’s create a class diagram named

telephoneLibrary in the project:
Real Time Developer Studio V4.3 Page 73

Tutorial
Double-click on the class diagram’s name to open it and let’s define a class associated to
pCentral:

In a class diagram, the process pCentral is represented as an active class with a "graph-
ical stereotype": the class symbol has bold borders and looks like a process symbol in a
block diagram. When creating this symbol, you may use again the contextual help by
pressing F8; a dialog will open showing all available process names in the current sys-
tem. Note the symbol used is a process symbol, not a process class symbol. That means
the symbol is a direct reference to the process declared in the SDL system.

The class PhoneNumberFactory is the class we will use to manage the phone numbers.
Its interface is quite simple:

• its constructor (named <<create>> in the symbol) will just initialize all internal
data, it takes the maximum number of phones to manage;

• append method will add a new phone to be managed.
• getPid method will return the process id for a given phone number.

The class PhoneNumberFactory will also have 2 private attributes:
• numPhone is the next available phone number;
• phoneList is a pointer on a process id. The process ids will actually be stored in

an array.

Since there will only be one instance of PhoneNumberFactory used only in pCentral,
we can make the instance a part of the process via a composition with a cardinality set to
1. The role name phoneId will identify the instance of PhoneNumberFactory in pCen-
Page 74 Real Time Developer Studio V4.3

Tutorial
tral. That means phoneId does not need to be declared in the SDL diagram; it is
implicitly declared.

To fill in the attributes and operations, select the class, click on the right mouse button
and open Properties..

Now we have our class to manage the phone numbers. Of course, it isn’t complete yet,
since we didn’t write any actual code for the methods. But its interface is fully defined, so
we can go back to our pCentral process.

Go to the system diagram phone, and double click on pCentral. Since the process is
not in the project it will ask if it should be added. Answer yes and a pre-filled save window
with the process name appears. Click Save and the process definition window appears.
First, its initial transition:

The first thing to do is to create the instance of PhoneNumberFactory we will use. This
is done via an object initialization symbol, where the instance phoneId (the name we set
in the role in the class diagram) is created as an instance of PhoneNumberFactory. The
class constructor takes the maximum number of phones to handle as a parameter. Again,
because of the association between PhoneNumberFactory and pCentral classes,
phoneId is implicitly declared in pCentral SDL behavior diagram.

Then, all instances of pLocal are created in a loop testing index < NUM_PHONE. Each
time the loop is executed the pLocal process is created and its process id (OFFSPRING
keyword for the parent process) is stored in phoneId object via the append method.

After the pLocal processes creation, the ready message is sent to the environment to
indicate initialization is finished and the process goes to state idle.
Real Time Developer Studio V4.3 Page 75

Tutorial
Note we have intentionally introduced a C syntax error by typing phonId instead of
phoneId in the lowest block of code to later show how to analyze the compiler errors.

The only request that can be received by pCentral process is getId. The phone
number to reach is the GetId parameter (phoneNumber). The process id of the phone is
extracted with the getPid method. When received, the index corresponding to the
received phone number is searched via the getPid method on the
PhoneNumberFactory instance. The answer is sent to SENDER (SDL-RT keyword in
output). If the phone number is out of range, an error message is sent back to the sender.

Now, let’s go back to our class PhoneNumberFactory: we could write the .h and .cpp
files directly, but RTDS can help. So go back to the project manager, select the phone sys-
tem, and select Generate classes code... in the Generate menu. A log window will then list
the operations made during the code generation, which should run without errors.
Page 76 Real Time Developer Studio V4.3

Tutorial
Now let’s close the log window and go back to the project manager:

RTDS class sources package has been automatically created and contains C++ code
generated from the classes defined in the project.
Real Time Developer Studio V4.3 Page 77

Tutorial
RTDS class sources should contain the .h and .cpp files for the class PhoneNum-
berFactory. Open PhoneNumberFactory.h:

Since the file common.h has been defined at the project level, it is supposed to be needed
everywhere in the project. So it has been automatically included in the generated header
file. RTDS_gen.h is a generated file containing declarations specific to the system. The
class definition then contains all attributes and operations we entered in the class dia-
gram.

Please note this header file must not be modified manually: it will be re-generated each
time a code generation is made.
Page 78 Real Time Developer Studio V4.3

Tutorial
Now open PhoneNumberFactory.cpp:

Skeletons for the constructor and the two methods defined for PhoneNumberFactory
have been generated. Note the C++ code browsing window on the right to quickly access
operation definitions. The generated code also includes as a comment the attributes defi-
nitions.
Real Time Developer Studio V4.3 Page 79

Tutorial
Now you can enter the code for the methods:

numPhone represents the next available phone number. The append method stores the
process id in the phoneList array with index numPhone.

Please note that once the .cpp file exists, it will not be overwritten by the next code gen-
eration. So the code you’ve written will be kept as long as you don’t manually erase the
file.
Page 80 Real Time Developer Studio V4.3

Tutorial
4.4 - Running the system
In the current release, execution and debug of the system can be done using:

• Wind River Tornado environment on Windows or Solaris, or
• Posix and gdb integration on Linux or Solaris, or
• Win32 and gdb or MinGW integration on Windows, or
• CMX RTX and Tasking Cross View Pro debugger on Windows, or
• OSE and gdb debugger on Windows, or
• Nucleus and gdb debugger on Windows.

It is important to understand integration is done at two different levels:
• RTOS integration

The generated code is based on C macros that are defined in the "Code template
directory" to call the corresponding RTOS system primitives. Currently there is a
directory for:
• VxWorks,
• Win32,
• Posix,
• CMX RTX,
• OSE Delta,
• OSE Epsilon
• ThreadX,
• uITRON 3,
• uITRON 4,
• Nucleus.

• Debugger integration
To be able to trace execution, set breakpoints, and view variables Real Time
Developer Studio SDL-RT debugger is interfaced with a C debugging environ-
ment. Depending on the C debugger functionalities there might be differences in
the SDL-RT debugger. The available C debugger interfaces are:
• Tornado
• gdb (Gnu debugger)
• MinGW (Minimalist GNU for Windows)
• Tasking Cross View Pro

Tasking integration has one major restriction: it is not possible to send an
SDL-RT message to the running system from the debugger.

• XRAY
As with Tasking integration: it is not possible to send an SDL-RT message to
the running system from the debugger.

• Multi 2000
As with Tasking and XRAY integrations, it is not possible to send an SDL-RT
message to the running system from the debugger.

The rest of the tutorial will use your host environment as a target (windows or posix inte-
gration) and gdb as a debugger.

Please note win32 and posix integrations use a socket to communicate with the host. The
default port set to 49250 but it can be modified in the Socket port num field of the corre-
sponding generation profile.
Real Time Developer Studio V4.3 Page 81

http://www.windriver.com
http://www.ieee.org
http://sources.redhat.com/gdb/
http://www.sunfreeware.com/
http://sources.redhat.com/cygwin/
http://www.microsoft.com/
http://www.cmx.com/
http://www.tasking.com/
http://www.ose.com
http://sources.redhat.com/cygwin/
http://sources.redhat.com/cygwin/
http://www.mingw.org/

Tutorial
4.4.1 Generation profile
Now that the system is designed, let’s debug it with the SDL-RT debugger. To do so we
will need to generate code from the SDL-RT system. Create a directory called ’ccg’ where
the SDL-RT source files are and open the Generate / options menu:

Rename the default empty profile and use the Options wizard to quickly set up a working
profile:

In the profile be sure to fill in the following information:
• the code is generated in ccg
• the C++ compiler is used instead of the default C one:
mingw32-g++

• the C++ include path option includes the upper directory because the common.h
file is in the project directory and the generated C files are in ccg:
-I..
Page 82 Real Time Developer Studio V4.3

Tutorial
Real Time Developer Studio V4.3 Page 83

Tutorial
Gnu example on Windows platform

4.4.2 Compilation errors
Once the SDL-RT debug profile is properly defined select the phone system in the Project

manager and click on the Debug quick button in the tool bar:

If several execution profiles are defined, as in the examples, a window pops up asking for
the profile you want to work with:
Page 84 Real Time Developer Studio V4.3

Tutorial
RTDS will compare the dates of the generated C/C++ files with the dates of the project,
the diagram, the preferences. If the generated C file are not up to date the following win-
dow will pop up to confirm the code should be generated again or not.

This is very useful with large projects to avoid long compilations.

The package RTDS generated code is automatically created in the Project manager
window that will contain all the generated C files.
Real Time Developer Studio V4.3 Page 85

Tutorial
The package RTDS RTOS adaptation is automatically created in the Project manager
window that will contain all the C files needed to adapt to the selected RTOS. These files
are actually in the code templates directory defined in the generation profile. These files
are normally not needed but since they are part of the build process they must be visible.

The package RTDS class sources is also re-generated, but all the existing .cpp files
are left as is.

Syntaxic verification, semantic verification, code generation, and compilation starts:
Let’s consider an error occurred while designing pCentral process. The compiler will
complain in the Generation / compilation output window:
Page 86 Real Time Developer Studio V4.3

Tutorial
Double click on the desired warning or error to automatically open the SDL-RT editor on
the error (please note this is only available with gcc based compilers):

Once the error have been corrected the Generation / compilation output window should
look like this:
Real Time Developer Studio V4.3 Page 87

Tutorial
4.4.3 The SDL-RT debugger
When launched, the SDL-RT debugger will automatically start and initialize the underly-
ing gdb environment.The SDL-RT debugger window is started automatically:

The SDL-RT debugger window

The SDL-RT debugger is basically a debugger with graphical integration. This window
provides snapshots of the overall system.

First we want an MSC trace to see what is happening in the system. Click on the Start MSC

trace quick button:

An MSC Tracer window appears. Note it is not an MSC editor window; the MSC Tracer
has been optimized for performance and the displayed trace can not be edited.

Let’s start the system; click on ’run’ quick button:
Page 88 Real Time Developer Studio V4.3

Tutorial
Let the system run until all pLocal processes are created by pCentral and their start
transition executed:

MSC trace

Note you can detach the execution button bar by dragging it away from the debugger

window by its header (the zone looking like this:).

The environment is represented by RTDS_Env process. It is automatically generated by
RTDS when debugging to represent all external modules. When generating target code it
will of course disappear.

Process pCentral dynamically creates 5 instances of pLocal, sends ready message to
the environment and goes to idle state. Each pLocal instance then go to idle state.
On the left is the value of the system time.
Real Time Developer Studio V4.3 Page 89

Tutorial
Click on the Stop button to break execution:

The SDL-RT debugger window shows the list of processes with their names (all the same
in our case), priority, process id, queue id, number of messages in their respective mes-
sage queues, SDL-RT internal state as we defined in the diagrams, and the RTOS internal
system state if available.

SDL-RT debugger window

It can also display information regarding semaphores and timers, local variables and
watch variables. The SDL-RT debugger shell gives a textual trace of the events displayed
in the MSC.

We are now going to set a breakpoint, simulate a user using the first phone to call the
phone 2 and step in process pCentral.
Page 90 Real Time Developer Studio V4.3

Tutorial
Let’s put a breakpoint in pCentral process. To do so:
• open pCentral process from the Project manager,
• Go to transition getId in state idle using the transition browser window on the

right:

or the view menu:

The transition browser of the View/Go to menu will list all SDL-RT states and all
transitions in each state to quickly navigate through the system. In our case there
is only one state and one transition.

• click on the symbol just after the decision:
Real Time Developer Studio V4.3 Page 91

Tutorial
• click on or go to Debug / Set breakpoint menu in the SDL-RT editor. A break-

point symbol will be displayed on the side of the selected symbol:

We will now simulate an incoming message from a user. Please note this feature is not
available in the Tasking integration nor in the XRAY integration because these C debug-
gers can neither execute function calls on target nor simulate interrupts.

• Go to the SDL-RT debugger and click on "Send an SDL message to the running

system" quick-button

• The Send an SDL message window shows up:

Send an SDL message window

On the left are listed all possible receiving processes, in the middle all possible
messages, i.e. all messages used in the SDL-RT system, and on the right the value
of the parameters associated with the selected message.
Page 92 Real Time Developer Studio V4.3

Tutorial
• Prepare the message to be sent:

The message to be sent is call, and the receiver is the first instance of pLocal.
The message parameter value is 2.

• Click on Send & close button.
• Click on Run in the SDL-RT debugger window,
• The following trace appears in the MSC:

• The SDL-RT editor pops up where the breakpoint was set with the break line in
yellow:
Real Time Developer Studio V4.3 Page 93

Tutorial
The values of the process local variables are automatically displayed in the SDL-
RT debugger. For example the phoneNumber variable value is 2:

Local variables values

• Click on Auto step until next graphical symbol button:

That quick button will actually step in the C code until the line in the C file is gen-
erated from a graphical symbol. In our case it will only step once.

• The SDL-RT has moved to the next symbol:

• Click on Step over button:
Page 94 Real Time Developer Studio V4.3

Tutorial
• This will step in the C code as any normal C debugger. The text editor opens and
displays the next line to execute in the generated C file. Have a look at the gener-
ated code to see how legible it is.

Note it is possible to switch from the SDL source to the generated C source back
and forth with the Search / Go to SDL symbol and Search / Go to generated source
menus.

• Let the system finish its job: click on Run button.
Real Time Developer Studio V4.3 Page 95

Tutorial
• Stop the system once it has finished execution: . The process list is

updated with their new states:

Two instances of the pLocal process are connected.
• It is also possible to change the state of a process. To do so right click on the state

you want to change and a drop down menu will list all possible states. Let’s
change the state of the last instance of pLocal to gettingId for example:
Page 96 Real Time Developer Studio V4.3

Tutorial
The state is changed on the target and the process list will refresh:

It is recommended to be cautious when changing a task state that way...
• We will now disconnect the 2 instances of pLocal. Click on the Send button

:

Click on Send & close.

• We will now use the key SDL-RT event stepping button:

This feature runs the system until the next SDL-RT event such as sending or
receiving a message, changing SDL-RT state, starting or cancelling a timer...
Click on the button and you will see the system executing until the next SDL-RT
event and then stop. This is a very nice feature when debugging for the first time.

4.4.4 Verifying the behavior
We will now check if the behavior is the one we expected in the first place. To do so we
will use the MSC diff feature.

• Once the execution is finished, close the MSC Tracer and save the trace.
• Go to the Project manager and open the trace.
Real Time Developer Studio V4.3 Page 97

Tutorial
• Go to the Diagram / Make diff on diagram... menu to get the MSC Diff configuration
window and set it up as described below:

The first MSC is the execution trace and the second MSC is the normal MSC we
have written in the first place. Since normal MSC was not supposed to be thor-
Page 98 Real Time Developer Studio V4.3

Tutorial
oughly detailed we will only show and compare messages without considering
their parameters. Click Ok and you should get the following result:

The differences between the MSCs are the dynamic task creation of the pLocal
instances. After that the exchange of messages are the same between the
dynamic trace and the specification. The SDL-RT system is therefore conform to
the normal MSC specification.

You are done with a very simple SDL-RT debugging session. If you want more, do your
own system or run the examples delivered in the distribution to see how to manipulate:

• timers,
• semaphores,
• external C header files,
• global variables.
Real Time Developer Studio V4.3 Page 99

Tutorial
4.5 - Prototyping GUI
RTDS has a built in support to design simple prototyping interface to ease testing. We
will build a very simple one for our phone system to demonstrate its capabilities.

4.5.1 GUI editor
Add a Prototyping GUI node in the project and open it:
Page 100 Real Time Developer Studio V4.3

Tutorial
The left panel contains the incoming triggers for the GUI, the central panel the GUI itself,
and the right panel the outgoing message from the GUI:

Let’s add 2 buttons and one LED:
Real Time Developer Studio V4.3 Page 101

Tutorial
Change their display value in the central panel and their widget name in the right panel
in order to recognize them:

Let’s say that when the user clicks on the "Call John" button, the GUI sends a call mes-
sage with parameter set to "2". Select the CallJohn widget on the right panel and right
click:
Page 102 Real Time Developer Studio V4.3

Tutorial
All the available messages in the system are then listed. Select call and expand the cre-
ated sub-tree. The parameters are listed with their corresponding type:

Let’s say the parameter value is ’2’ and let’s send sHangUp without any parameter when
clicking on Hangup:

On the left panel we will consider a new trigger, select the top of the tree and right click to
get a list of all the possible triggers:

Let’s add the callConf trigger. When a trigger is received by the GUI, a case with a set
of filters is verified. Let’s add a new case:
Real Time Developer Studio V4.3 Page 103

Tutorial
In our case we won’t put any filter, we will just change the color of the LED:

Change the action to change the color. It is possible to directly name the basic colors, oth-
erwise the RGB hexa code can be used. Let’s put the LED back to red when we receive a
HangUp confirmation and we’re done:

4.5.2 Simulation

Let’s start the Debugger again and click on the Start prototyping GUI quick button:
Page 104 Real Time Developer Studio V4.3

Tutorial
The GUI will start and connect automatically to the system:

Start an MSC trace and run the system. Click on the "Call John" button, that should send
the call message with parameter value set to 2, the callConf should be received by
the GUI, and the LED should be set to green.

For a more advanced GUI, please have a look at the AccessControl system in the SDL-RT
example directory.

4.6 - Conclusion
During this tutorial we have been through the basics of the following:

• SDL-RT,
• Project manager,
• SDL-RT editor,
• MSC editor,
• Code generation,
Real Time Developer Studio V4.3 Page 105

Tutorial
• SDL-RT debug including the three stepping modes:
• SDL-RT key event,
• SDL-RT graphical,
• textual,

• Conformance checking,
• Prototyping GUI.

As a result you saw SDL-RT has the preciseness of C language with the graphical abstrac-
tion of SDL and UML perfectly suited to real time systems showing key concepts such as
tasks, semaphores, timers, messages in a single consistent development environment.

Now it is time for you to work on a real real time system!
Page 106 Real Time Developer Studio V4.3

Tutorial
5 - Automatic documentation generation

Let’s now have a look at how to document our system. RTDS has an automatic documen-
tation generator that generates OpenDocument (OpenOffice), RTF (Microsoft Word),
HTML, and SGML documents. In this tutorial we will generate an OpenDocument as it is
very similar to generating an RTF document.The basic idea is to document while you are
modeling your system in SDL, and when you are done just generate the documentation
for a word processor or a browser.
Real Time Developer Studio V4.3 Page 107

Tutorial
5.1 - Publications
Let’s first define what is important to document in our system and put it in a publication.
For example let’s consider the architecture of the system should be further documented:
Page 108 Real Time Developer Studio V4.3

Tutorial
Get to the corresponding diagram and go to the Export menu. In that we will export the
whole partition, to do so select Export/publish partition...

The Export/publish window opens:

Let’s give our publication a name, the doc type, and check the Remember as publication
box. That set the Texts button active:
Real Time Developer Studio V4.3 Page 109

Tutorial
Click on Texts allows you to type the text that will be generated before and after the dia-
gram when generating the documentation. Let’s type a few words to document the dia-
gram with the pre-defined paragraph and character styles:

Make sure to use the code-index-entry character style on top of NUM_PHONE so that it
appears as code and that is listed in the index.

When done click OK.
Page 110 Real Time Developer Studio V4.3

Tutorial
Let’s now document a transition. Open the pLocal process and go to the Connected
state:

Go to the Export menu and select Export/publish state...:
Real Time Developer Studio V4.3 Page 111

Tutorial
This will export the state with all the connected inputs as a publication. Let’s document
the state:

Please note the publications are saved within the diagram so it is important to also save
the diagrams.
Page 112 Real Time Developer Studio V4.3

Tutorial
5.2 - Documentation
Let’s now go back the Project manager and create a new item of type Document:

Let’s open the Document Design:
Real Time Developer Studio V4.3 Page 113

Tutorial
Select MyDocumentation and right-click to add a sub-section:

This sub-section will actually be the first chapter of the generated documentation. Add-
ing other sub-sections at the same will generate other chapters. Adding sub-sections to
this section will generate sub-chapters. Let’s type the section title and add some contents
to the section with the + button:
Page 114 Real Time Developer Studio V4.3

Tutorial
The following window will pop up:

The Styled text allows to insert plain text in the documentation. In order to have the Dia-
gram publication reference available, some diagrams containing publications must be
Real Time Developer Studio V4.3 Page 115

Tutorial
opened. So the top level architecture diagram and the pLocal process should be open in
order to move on. The window should then look like this:

Select the right Publication diagram and Publication name to insert in the Document. Then
create another sub-section in the Document with the other publication:
Page 116 Real Time Developer Studio V4.3

Tutorial
5.3 - Automatic generation
Go to Document / Export as / Open Document Format:

An OpenDocument is actually a zip file that contains several files among which:
• one is the document itself as an XML file,
• one describes the styles used in the document also as an XML file.

In order to generate the full OpenDocument zip file, RTDS requires a template file. We
suggest you use the one that is provided in the AccessControl example directory:
Real Time Developer Studio V4.3 Page 117

Tutorial
Now we will create an OpenDocument container for our generated document in which
we can set a title, introduce a table of contents, and an index. To do so, let’s start OpenOf-
fice :
Page 118 Real Time Developer Studio V4.3

Tutorial
Create a new Master document with File / New / Master document menu:

Type the title, insert a page break, and insert a table of content with the Navigator win-
dow:
Real Time Developer Studio V4.3 Page 119

Tutorial
In the same Navigator window, insert the OpenDocument we have just generated:
Page 120 Real Time Developer Studio V4.3

Tutorial
And insert an index:

It is possible to drag and drop sections in the Navigator window to get the right order:

It is possible to add other sections or other external documents in the master document.
Real Time Developer Studio V4.3 Page 121

Tutorial
Save the document and insert it in the Project manager: Select the Phone.rdp system,
right click and Add component. Select External file, Open..., and select the .odm file:

When you further document your system, to update the generated documentation: open
your RTDS document, export it as an OpenDocument, replacing the existing one, and
that’s it! The OpenOffice master document will be updated by itself as well as its table of
contents and index and ready to be printed.

Please note it is also possible to automatically generate all publications and a document
based on the project architecture. To do so, create a new document:
Page 122 Real Time Developer Studio V4.3

Tutorial
Open it and go to the Document / Auto-generate from project... menu:

Select the level for each publication:
Real Time Developer Studio V4.3 Page 123

Tutorial
And a full document is generated:
Page 124 Real Time Developer Studio V4.3

	1 - Introduction
	2 - A simple system
	3 - SDL Tutorial
	3.1 - Organization
	3.2 - Requirements
	3.3 - Design
	3.4 - Simulating the system
	3.4.1 Simulation options
	3.4.2 Byte-code generation
	3.4.3 The SDL simulator
	3.4.4 Verifying the behavior

	3.5 - Prototyping GUI
	3.5.1 GUI editor
	3.5.2 Simulation

	3.6 - Testing
	3.6.1 Test case
	3.6.1.1 Declarations
	3.6.1.2 Ports
	3.6.1.3 Templates
	3.6.1.4 Core test case
	3.6.1.5 Control part

	3.6.2 Simulation against the SDL system

	3.7 - Code generation
	3.7.1 Code generation options
	3.7.2 Graphical debugging

	3.8 - Conclusion

	4 - SDL-RT Tutorial
	4.1 - Organization
	4.2 - Requirements
	4.3 - Design
	4.4 - Running the system
	4.4.1 Generation profile
	4.4.2 Compilation errors
	4.4.3 The SDL-RT debugger
	4.4.4 Verifying the behavior

	4.5 - Prototyping GUI
	4.5.1 GUI editor
	4.5.2 Simulation

	4.6 - Conclusion

	5 - Automatic documentation generation
	5.1 - Publications
	5.2 - Documentation
	5.3 - Automatic generation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /OK
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

